当前位置:文档之家› 制备超薄ZnO薄膜及其在太阳电池中的应用

制备超薄ZnO薄膜及其在太阳电池中的应用

制备超薄ZnO薄膜及其在太阳电池中的应用
制备超薄ZnO薄膜及其在太阳电池中的应用

 第36卷第3期 人 工 晶 体 学 报 Vol .36 No .3 2007年6月 JOURNAL OF SY NTHETI C CRYST ALS June,2007 

中频对向靶磁控溅射制备超薄ZnO 薄膜

及其在太阳电池中的应用

李 微,孙 云,敖建平,何 青,刘芳芳,李凤岩

(南开大学光电子薄膜器件与技术研究所,

天津市光电子薄膜器件与技术重点实验室,天津300071)

摘要:中频溅射制备Zn O 薄膜可改善射频磁控溅射方式中沉积速率过慢的缺点。对于多层薄膜的制备,对向靶的设计可使样品避开等离子体直接轰击,减少基底薄膜的损伤。本文采用这项技术制备厚度约为50n m 的Zn O 薄膜,通过调整工作压强、溅射功率、氧氩比等工艺条件,制备出均匀致密,结晶质量高,电阻率在102~103Ω?c m 之间,可见光区透过率达到90%的Zn O 薄膜。将其应用到C I GS 太阳电池中发现,具有50n m 厚度的Zn O 层的C I GS 太阳电池的性能较无Zn O 层的太阳电池都有了很大提高。

关键词:Zn O 薄膜;中频对向靶;C I GS 太阳电池

中图分类号:O782 文献标识码:A 文章编号:10002985X (2007)0320584205

Fabr i ca ti on of ZnO Th i n F il m s by M F M agnetron Sputter i n g w ith

Fac i n g Targets and Its Appli ca ti on i n Sol ar Cell

L I W ei,SUN Yun,AO J ian 2ping,HE Q ing,L I U Fang 2fang,L I Feng 2yan

(I nstitute of Phot oelectr onic Thin Fil m Device and Technol ogy,Key Laborat ory of Phot oelectr onic

Thin Fil m Device and Technol ogy of Tianjin,Nankai University,Tianjin 300071,China )

(Received 22N ove m ber 2006,accepted 21January 2007)

Abstract:Thickness of 50n m Zn O thin fil m s were deposited via MF magnetr on s puttering fr om cera m ic targets with facing targets .It can reduce the effect of the bo mbardment of the p las ma on the base thin fil m s

using the facing targets,and increase the depositi on rate .The range of resistivity of 1022103Ω?c m and

the op tical trans m ittance over 90%in the visible range are obtained f or these thin Zn O fil m s by adjusting working p ressure,s puttering power and the rati o of O 2/A r .Therefore,the ZnO thin fil m s are app lied in the C I GS s olar cells,which exhibit a stable conversi on efficiency of 10.5%.

Key words:Zn O fil m s;MF facing targets;C I GS s olar cell

收稿日期:2006211222;修订日期:2007201221

基金项目:国家863计划项目(No .2004AA513020)

作者简介:李微(19792),女,河北省人,博士。E 2mail:cli w ei@mail .nankai .edu .cn .1 引 言

Cu (I n,Ga )Se 2(简称C I GS )太阳电池是多元化合物半导体中最有代表性的光伏器件,它由多层半导体薄膜及导电性薄膜组成,其结构为玻璃/Mo /C I GS/CdS /Zn O /ZnO:A l/N i 2A l [123]

。据报道位于A l 掺杂Zn O 层和CdS 缓冲层之间的薄、非掺杂、高电阻的ZnO 层,其厚度约为50n m ,有助于提高基于C I GS 太阳电池的效

 

 第3期李 微等:中频对向靶磁控溅射制备超薄Zn O薄膜及其在太阳电池中的应用585率。对于C I GS太阳电池来说,超薄Zn O薄膜有两个作用:(a)作为晶种层来提高接下来生长的A l掺杂Zn O 薄膜结晶质量,有助于A l掺杂Zn O晶粒生长,使其电阻率降低,减小太阳电池的串连电阻;(b)在溅射A l掺杂Zn O薄膜时保护C I GS吸收层不受高能离子的轰击,提高填充因子[4,5]。此外,超薄ZnO薄膜相对A l掺杂Zn O薄膜是高电阻的,因此如果其太厚不仅影响到透过率,同时会使电池串联电阻增大而导致电流密度减小,导致电池性能下降[4]。

氧化锌(Zn O)薄膜具有良好的透明导电性,使其具有广泛的和潜在的应用。目前制备ZnO薄膜的方法很多:磁控溅射、脉冲光沉积(P LD)、原子层外延(ALE)、金属有机物气相外延(MOCVD)、分子束外延(MBE)等[629],其中溅射沉积是制备ZnO薄膜最广泛的应用技术之一[10214]。本文采用中频对向靶磁控溅射的方法,一方面中频电源相对射频电源而言对其他仪器的干扰要小,且对负载的要求低。另外孪生对向靶的设计不但避免了对基底薄膜的正面轰击,且与平面单靶直流磁控溅射相比较,薄膜沉积速率快,成膜质量好。

本文采用这项技术沉积厚度约为50nm的Zn O薄膜,通过调节工作压强、溅射功率、氧氩比等工艺参数,制备出高结晶度、高透过率、适当电阻率的ZnO薄膜。并将薄膜应用于C I GS太阳电池中,其稳定转换效率为10.5%。

2 实 验

采用中频对向靶磁控溅射在碱石灰玻璃沉积厚度约50n m的ZnO薄膜,靶材用纯度为99.99%的氧化锌烧结而成。将两块相同靶材平行对面放置,玻璃衬底放置侧面,制备的薄膜主要依靠溅射出的粒子漂移到衬底上。靶材尺寸为154×54×2mm3,基片与靶材之间的距离为6c m。

实验中采用三步共蒸发法在表面镀有背电极Mo膜的碱石灰玻璃上制备吸收层C I GS薄膜,然后在其上依次沉积CdS膜,Zn O薄膜,A l掺杂ZnO薄膜,最后蒸发镍铝电极完成C I GS太阳电池的制备。

使用美国AMB I O S XP22型台阶仪测量薄膜厚度,载流子浓度、电阻率以及迁移率的测量使用ACCE NT HL5550LN2型霍尔系数测量仪,晶相结构特性的测量采用荷兰Panalytical公司XπPert Pr o型X射线衍射仪(XRD)分析确定。器件I2V特性在AM1.5(辐照度100mW/c m2)下测定。

3 结果与讨论

3.1 工作压强的影响

图1给出了Zn O薄膜的载流子浓度和电阻率随工作压强的变化关系。从图中可以看出,中频功率为220W,随着溅射压强的增加,电阻率成波谷变化趋势,薄膜的载流子浓度随着工作气压的增加呈现波峰趋势。这是因为当工作压强太低时,电子与氩原子碰撞的几率降低,系统起辉不稳定,影响薄膜的质量。而压强增大后,溅射出的靶粒子到达衬底前与残留气体分子碰撞的几率增大使散射程度增加,压强大时溅射出的靶粒子到达衬底的几率降低,导致薄膜晶化程度较差,使薄膜电阻率升高。

图2为不同工作压强下ZnO薄膜XRD图谱。由于薄膜厚度仅有50n m,因此采用小角略射的X射线扫描方式,X射线入射角度为0.5°,入射深度超过300nm。所有的ZnO薄膜均展现出(002)纤锌矿结构的特征峰。从图中可以看出,当工作压强由0.5Pa升高到1.3Pa,氧化锌薄膜的半高宽从014320°增加到015117°,同时(002)衍射峰强度明显下降,从而影响薄膜的致密度、附着力和结晶度。当工作压强降低到0.4Pa时, Zn O薄膜的半高宽从0.4320°减少到0.4330°变化不大。然而工作压强太低,电子与氩原子碰撞的几率降低,系统起辉不稳定,因此我们选取工作压强为0.5Pa。

3.2 溅射功率的影响

ZnO薄膜的电阻率与溅射功率存在一定的关系(如图3所示),随着溅射功率的增大,电阻率呈线性缓慢地下降。实验发现电阻率太高和太低都会明显降低电池效率,通常Zn O薄膜的电阻率在102~103Ω?c m 之间电池效率较高。

图4为不同溅射功率下Zn O薄膜XRD图谱。在溅射功率较小时,制备的薄膜晶粒较小,会形成较多的

 人工晶体学报 第36卷586

晶界,膜的缺陷比较多,结晶质量差。随着溅射功率的增大,制备的薄膜晶粒度增大,晶界减少,使晶界势垒对载流子的散射下降,同时薄膜结构趋于完整。

但是结果表明,溅射功率并不是越大越好,220W以上的溅射功率并没有产生高效电池。我们认为过高的功率使C I GS薄膜受到等离子体的强烈轰击,使缺陷密度上升,降低了电池的短路电流密度而影响电池的效率。

3.3 氧氩比的影响

在ZnO薄膜的制备工艺中,通入适当的氧气可以减少薄膜中的氧空位,改善薄膜质量。实验结果表明,氧气与氩气的比例是决定ZnO薄膜光电特性的重要因素。我们采用220W的溅射功率,工作压强为0.5Pa,这样就避免了很低的气压需要很高的电压才能起辉,同时也降低了较高能量的粒子对C I GS薄膜表面的轰击,从而提高电池的性能。

图5为ZnO薄膜的电阻率随氧氩比的变化规律。随氧氩比的增加,ZnO薄膜的电阻率迅速上升,电池的效率就会明显下降。然而氧氩比不是越低越好,随着氧氩比的降低,ZnO薄膜的透过率也会随之下降(如图6所示),这样会使得太阳电池的短路电流下降,所以在制备Zn O薄膜时氧氩比必须选择一个适当的数值,兼顾电阻率和透过率两项指标。我们的实验结果表明氧气含量在0.67~0.89%之间电池效率最高。实验表明氧氩比对ZnO薄膜晶向影响不大。

 第3期李 微等:中频对向靶磁控溅射制备超薄Zn O 薄膜及其在太阳电池中的应用587

 

图6为ZnO 薄膜在可见光范围内的光学透射谱。峰2谷状的谱线来源于光在空气2ZnO 和Zn O 2玻璃界面的反射引起的干涉现象,这也说明薄膜具有平滑均匀的表面。随着O 2含量从0.0%变化到1.10%,相应的薄膜在可见光区的平均透过率由85%左右上升到95%以上。

值得注意的是在可见光谱范围内,工作气压和溅射功率对ZnO 薄膜透过率影响很小。

3.4 太阳电池应用

通过优化工艺条件,我们将制备的ZnO 薄膜应用于C I GS 薄膜太阳电池。理想的ZnO 薄膜要求高结晶质量,适中电阻率和较高的透过率,但具体应用到太阳电池中,我们还要考虑界面轰击的影响,因此在C I GS 图7 Zn O 薄膜表面的SE M 图像(a )和C I GS 电池中Zn O 薄膜的截面SE M 图像(b )Fig .7 SE M p lanar i m age of Zn O fil m (a )and cr oss 2secti onal vie ws of Zn O fil m in C I GS s olar cell (b )太阳电池制备工艺中,我们选择工作压强为0.5Pa,溅

射功率为220W ,氧含量为0.66%沉积Zn O 薄膜。图7

为Zn O 薄膜的扫描电镜图像,图(a )中可以看出ZnO 薄

膜的表面光滑,晶粒细小且均匀致密。图(b )中的Zn O

薄层处于A l 掺杂Zn O 层和CdS 缓冲层之间,起到了晶

格匹配和保护作用。

图8为AM1.5(辐照度100mW /c m 2)下测定的

C I GS 电池的I 2V 特性;(a )为无ZnO 层的电池;(b )为

优化工艺后制备Zn O 层的电池,表1列出了这一组电

池的参数对比。可以看出Zn O 薄膜是制备高性能C I GS

太阳电池必不可少的一层。采用同批C I GS 吸收层,其

它层工艺条件不变,具有50nm 厚度的ZnO 层的C I GS 太阳电池的性能明显优于无ZnO 层的太阳电池,光电转换效率和填充因子都有了很大提高。

表1 有无ZnO 层时太阳电池的测试结果

Table 1 The testi n g result of the sol ar cell w ith and w ithout ZnO l ayer

No .

V oc (mV )J sc (mA /c m 2)FF (%)E ef (%)R s (Ohm )R h (Ohm )i 2ZnO 010313

45030.2939.56 5.39 6.8741.9101031250633.2958.029.77 3.44192.8350nm 4 结 论

采用中频对向靶磁控溅射制备Zn O 薄膜,在溅射过程中,通过调节施加在纯氧化锌陶瓷靶上的工作气

 人工晶体学报 第36卷588

图8 C I GS电池的I2V特性

Fig.8 The current density2voltage curve of the C I GS s olar cell without Zn O fil m(a)and with i m p r oving Zn O fil m(b)

压、溅射功率、氧氩比等条件以改善Zn O薄膜的结构、电学和光学性质。结果表明,较低工作气压和较高溅射功率可以改善着薄膜的结构和电学特性,但对可见光透过率没有太大影响。而适当的氧氩比则可以兼顾Zn O薄膜的光电特性,但对其晶体结构影响不大。通过调节这些工艺参数,制备了出结晶质量高,电阻率在102~103Ω?c m之间,可见光区透过率达到90%的Zn O薄膜。将其应用到电池中发现,具有50n m厚度的Zn O层的C I GS太阳电池的性能较无ZnO层的太阳电池都有了很大提高。

参考文献

[1] Ra manathan K,Teeter G,Keane J C,Noufi R.Pr operties of H igh2efficiency Cu I nGaSe2Thin Fil m Solar Cells[J].Thin Solid F il m s,2005,4802

481:4992502.

[2] Xu Chuan2M ing,Sun Yun,Zhou L in,et al.Preparati on of Cu(I n,Ga)Se2Thin Fil m Solar Cells by Selenizati on of Metallic Precurs ors in An A r

A t m os phere[J].Chin.Phys.L ett.,2006,23(8):2259.

[3] 张力,孙云,何青,等.Cu(I n,Ga)Se2集成电池吸收层的三步共蒸发工艺[J].太阳能学报,2006,27(9),895.

[4] Na walage Cooray F,Katsum i Kushiya,A tsushi Fuji m aki,et https://www.doczj.com/doc/838159950.html,rge A rea ZnO Fil m s Op ti m ized f or Graded Band2gap Cu(I n,Ga)Se22based Thin2

fil m M ini2modules[J].Solar Energy M aterials and Solar Cell,1997,49:2912297.

[5] 李伟,何青,刘伟,等.ZnO薄膜对C I GS太阳电池性能的影响[J].太阳能学报,2004,25:419.

[6] Yong2J in Ki m,Chul2Ho Lee,Young Joon Hong,et al.Contr olled Selective Gr owth of ZnO Nanor od and M icr or od A rrays on Si Substrates by a W et

Che m ical Method[J].A ppl.Phys.L ett.,2006,89:163128.

[7] L i Xiaonan,Sally A sher E,Sukit L i m p ijumnong,et al.Unintenti onal Dop ing and Compensati on Effects of Carbon in Metal2organic Che m ical2vapor

Depositi on Fabricated ZnO Thin Fil m s[J].J.Vac.Sci.Technol.A,2006,24:1213.

[8] Sang2Woo Ki m,Shizuo Fujita,M in2Su Yi,Dae Ho Yoon.Catalyst2free Synthesis of ZnO NanowallNet w orks on Si3N4/Si Substrates byMetal organic

Che m ical Vapor Depositi on[J].Appl.Phys.Lett.,2006,88:253114.

[9] Shen W enjuan,Duan Yao,W ang Jun,et al.Op tical and Structural Pr operties of ZnO Fil m s Gr own on Si(100)Substrates by MOCVD[J].Proc.

SP IE,2006,6029:60290G.

[10] 李微,孙云,何青,等.孪生对靶直流磁控溅射制备ZnO:A l薄膜及其特性研究[J].人工晶体学报,2006,35(4):761.

[11] L iW ei,Sun Yun,W ang Yaxin,et al.Physical Pr operties and Residual Stress I n ZnO:A l Fil m s By DC Magnetr on Sputtering with Facing Targets

[C].15th I nternati onal Phot ovoltaic Science and Engineering Conference,Shanghai,2005:1220.

[12] Chen M,Pei Z L,W ang X,Sun C,W en L S.Structural,electrical,and Op tical Pr operties of Trans parent Conductive Oxide ZnO:A l Fil m s Prepared

by DC Magnetr on Reactive Sputtering[J].J.V ac.Sci.Technol.,2001,A19(3):9632970.

[13] Cebulla R,W endt R,Ell m er K.A l2doped Zinc Oxide Fil m sDeposited by Si m ultaneous RF and DC Excitati on of a Magnetr on Plas ma:Relati onshi p s

bet w een Plas ma Para meters and Structural and Electrical Fil m Pr operties[J].J.Appl.Phys.,1998,83:108721095.

[14] Gup ta V,Mansingh A.I nfluence of Post Depositi on Annealing on the Structural and Op tical Pr operties of Sputtered Zinc Oxide Fil m[J].J.Appl.

Phys.,1996,80:106321073.

三种主要的薄膜太阳能电池详解

三种主要的薄膜太阳能电池详解 摘要:上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池 单晶硅是制造太阳能电池的理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价的材料来取代。为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。来源:大比特半导体器件网 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。来源:大比特半导体器件网 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为 1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LP E技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术

薄膜太阳能电池分类

薄膜太阳能电池分类 21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其使用范围大,可和建筑物结合或是变成建筑体的一部份,使用非常广泛。 1.硅基薄膜电池 硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场主要是非晶硅薄膜电池产品。非晶硅的禁带宽度为1.7eV,通过掺硼或磷可得到p型或n型a-Si。为了提高效率和改善稳定性,还发展了p-i-n/p-i-n双层或多层结构式的叠层电池。 2.碲化镉(CdTe)薄膜电池 碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单,制造成本低,实验室转换效率已超过16%,大规模效率超过12%,远高于非晶硅电池。不过由于镉元素可能对环境造成污染,使用受到限制。近年来美国FirstSolar公司采取了独特的蒸气输运法沉积等特殊措施,解决了污染问题,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW 碲化镉太阳电池组件。 3.铜铟镓硒(CIGS)薄膜电池 铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等方法,在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。基底一般用玻璃,也可用不锈钢作为柔性衬底。实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。 4.砷化镓(GaAs)薄膜电池 砷化镓薄膜电池是在单晶硅基板上以化学气相沉积法生长GaAs薄膜所制成的薄膜太阳电池,其直接带隙1.424eV,具有30%以上的高转换效率,很早就被使用于人造卫星的太阳电池板。然而砷化镓电池价格昂贵,且砷是有毒元素,所以极少在地面使用。 5.染料敏化薄膜电池 染料敏化太阳电池是太阳电池中相当新颖的技术产品,由透明导电基板、二氧化钛(TiO2)纳米微粒薄膜、染料(光敏化剂)、电解质和ITO电极所组成。目前仍停留在实验室阶段,实验室最高效率在11%左右。 非晶硅薄膜电池 简介 非晶硅(amorphous silicon α-Si)又称无定形硅。单质硅的一种形态。棕黑色或灰黑色的微晶体。硅不具有完整的金刚石晶胞,纯度不高。熔点、密度和硬度也明显低于晶体硅。非晶硅的化学性质比晶体硅活泼。可由活泼金属(如钠、钾等) 在加热下还原四卤化硅,或用碳等还原剂还原二氧化硅制得。结构特征为短程有序而长程无序的α-硅。纯α-硅因缺陷密度高而无法使用。采用辉光放电气相沉积法就得含氢的非晶硅薄膜,氢在其中补偿悬挂链,并进行掺杂和制作pn结。非晶硅在太阳辐射峰附近的光吸收系数比晶体硅大一个数量级。禁带宽度1.7~1.8eV,而迁移率和少子寿命远比晶体硅低。现已工业使用,主要用于提炼纯硅,制造太阳电池、薄膜晶体管、复印鼓、光电传感器等。 非晶硅薄膜电池的起源 非晶硅薄膜太阳能电池由Carlson和Wronski在20世纪70年代中期开发成功,80年代其生产曾达到高潮,约占全球太阳能电池总量的20%左右,但由于非晶硅太阳能电池转化效率

非晶硅薄膜太阳能电池及制造工艺

非晶硅薄膜太阳能电池及制造工艺 一、非晶硅薄膜太阳能电池结构、制造技术简介 1、电池结构 分为:单结、双结、三结 2、制造技术 ①单室,多片玻璃衬底制造技术。主要以美国Chronar、APS、EPV公司为代表 ②多室,双片(或多片)玻璃衬底制造技。主要以日本KANEKA公司为代表 ③卷绕柔性衬底制造技术(衬底:不锈钢、聚酰亚胺)。主要以美国Uni-Solar 公司为代表。 所谓“单室,多片玻璃衬底制造技术”就是指在一个真空室内,完成P、I、N 三层非晶硅的沉积方法。 作为工业生产的设备,重点考虑生产效率问题,因此,工业生产用的“单室,多片玻璃衬底制造技术”的非晶硅沉积,其配置可以由X个真空室组成(X为≥1的正整数),每个真空室可以放Y个沉积夹具(Y为≥1的正整数),例如:?1986年哈尔滨哈克公司、1988年深圳宇康公司从美国Chronar公司引进的内联式非晶硅太阳能电池生产线中非晶硅沉积用6个真空室,每个真空室装1个分立夹具,每1个分立夹具装4片基片,即生产线一批次沉积6×1×4=24片基片,每片基片面积305mm×915mm。 ?1990年美国APS公司生产线非晶硅沉积用1个真空室,该沉积室可装1个集成夹具,该集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积760mm×1520mm。 ?本世纪初我国天津津能公司、泰国曼谷太阳公司(BangKok Solar Corp)、泰国光伏公司(Thai Photovoltaic Ltd)、分别引进美国EPV技术生产线,非晶硅沉积也是1个真空室,真空室可装1个集成夹具,集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积635mm×1250mm。 ?国内有许多国产化设备的生产厂家,每条生产线非晶硅沉积有只用1个真空室,真空室可装2个沉积夹具,或3个沉积夹具,或4个沉积夹具;也有每条生产线非晶硅沉积有2个真空室或3个真空室,而每个真空室可装2个沉积夹具,或3个沉积夹具。总之目前国内主要非晶硅电池生产线不管是进口还是国产均主要是用单室,多片玻璃衬底制造技术,下面就该技术的生产制造工艺作简单介绍。 二、非晶硅太阳能电池制造工艺 1、内部结构及生产制造工艺流程 下图是美国Chronar公司技术为代表的内联式单结非晶硅电池内部结构示意图:图1、内联式单结非晶硅电池内部结构示意图

非晶硅薄膜太阳能电池的制备工艺流程

非晶硅薄膜太阳能电池的制备 工艺流程 非晶硅薄膜太阳能电池的制备工艺流程 清抚是玻璃镀膜必备的一道工序,因为班璃基片的清洁度会直接膨响沉积的薄臓的的匀性和粘附力?棊片上的任何微粒、油污和杂大程健上降低薄震的附若力.玻璃淸洗机是玻西在真亨橫痕.熟弯、钢化、中空合片等探加工丄艺和対璇璃农面述和清活、干燥处理的设篇.实验所采用的班隣为普通浮法股越口玻璃尺、j为700mm550mm D ?35rSa机主要由传动系统、辰洗、清水冲洗、纯水冲洗、冷、热J4千、电拎系统等组成”本立实验中使用HKD-TY1200清洗机清洗擴膜前的玻革基片” 背板玻璃清诜机工艺{£程为; 入料一城切1~盘刷洗一淀剂滾刪抚一风切2—D】水滚刷洗?傀切3—高压

喷附洗-BJ清洗一啧衲洗[-咬淋洗2-DI术洗?风刀「燥"除静电一出料玻璃淸洗后经检玲光源檢测,确认玻璃表曲没有明显微观峡陌和可见污Jft 物后方可进入镀膜阶段. “ 2,1.2玻璃基片的加热 为了提冉IF品硅太阳能电池的生产效率,首先将淆抚干挣的玻珀辜片裝载入沉枳盒.沉积盒放入侦热炉中加熱.预热炉加热方武为熱颯循环式.加热温度均20CV-300r.控富糯度£编?控制方式为PID涮节. 2J.3 AZO膜的溅射设备 实验采用与企业共同开发研制的非标大廊积苹片磁捽银膜中试线.设备有盘岚业潔和中茨电阪靶村为平沏甕材*靶材与基片闾的距离为g如.基片敖置于墓片架上,在荷动机构的潜动下征返运动.设备设计加工尺寸为宽SS0im?. K7W W的平面肢璃赴板材科.采用夹心直加無营加热方貳.有肉匀的布P方式和稳定的抽吒速度.

制备AZO薄膜之前,使用中频反应溉射沉积SiOr钩离子阻挡层,使用的Si耙纯度为99.999%, Ar气纯度为99.99%,本底真空高f 2x10^3.之后使用直流磁控裁射沉积AZO薄膜,采用氧化锌掺铝陶瓷把材,威射气体及本底真空与隔离层一致.实验中制备的电池组件需要激光刻划来完成电池的集成.AZO 薄膜沉积之后,使用波长为355nm的激光刻划AZO薄膜. 2.1.4 Si膜的PECVD设备及电池的篥成 PECVD设备是非晶硅太阳能电池生产线的关键设备,完成a-SiiH膜的沉积。本设备为多片武中试线设备,主要由反应室、片盒、真空系统,电控系统,水路.气路,机架等组成.加热采用板式加热劈室外烘烤方式,沉积室内祁址高能达到300*0。设备电源有两种:一为AE射频CRF)电源,频率为13.56MHz, 最大功率为1?2KW; 二.为AE其离频(VHP》电源,频率为40.68MHzo设备的极用真空可以达到1X10-P/沉积用的气体由供气系统提供,柜内气体种类有硅烷⑸比)、磷烷(PH3k乙硼烷厲人)、氢气但2〉、氫气(Ar)、氮气两?设条配备有尾气处理系统.用于处理被抽出的易燃、易爆及席蚀性工艺气体.此非晶莊薄膜太阳德电池中试设篇用于生产700mmX550nun的大面积璇璃基非晶硅太阳能电池组件。 1、检査压缩空气、冷却水、设备电減足否正常,梅预热好的沉积盒推入沉枳室内,馈闭炉门。 2、开维持泵,开底抽管道插板阀,待破完管道真空后关低抽管路充气阀,开底 抽管道插板阀,开滑阀泵,特真空室内压力低于50OPa以下时,关旁路预抽阀,开低抽高阀,开罗茨泵,抽压力至IP A以下,此时若分子泵前级压力低于IP B。开分子泵,当分子泵转速到达最高转速时(31080).关底抽管道插板阀.开分子泵前级阀"开髙抽阀,拉真空至本底真空,打开出气总阀,打开要做工艺气体的出口阀,调节流盘计度数,抽管路真空至本底良空. 3、打开尾气处理系统。观察尾气处理系统水、气、负压是否正常,炉口、炉内、水位有无报警,温度是否升到雯求700*0.加热裂解装置是否正常功能工作。 4、梅干泵N?吹扫址调制85L,开干泵,开干泵前级阀? 5、打开凱气、翘气、硅烷、磅烷气体瓶阀,确认后,开岀气总阀,依次开配气 柜氧气岀气阀,配气柜氨气进气阀,调节流爲计读数至工艺所需移数.通Ar起?辉.打击极板10分钟,关闭射频电瀕.再依次通入氢气、硅烷、确烷,调节角阀设定压力(0?266)?调节至工艺所需压力.待压力稳定后,开射频电源开关调节至工艺所需功率奁看辉光情况.稳定后,开始计时. 6、沉枳p层膜 7、沉枳到工艺所需时间后,关闭射频电源,迅速调小工艺气体流量.用干泵抽真

薄膜太阳能电池技术及市场发展现状

薄膜电池技术发展现状 太阳能电池发展中,薄膜电池从一开始就以低成本成为众人关注的亮点,目前国际上已经能进行产业化大规模生产的薄膜电池主要有3种,硅基薄膜太阳能电池、铜铟镓硒薄膜太阳能电池(CIGS )、碲化镉薄膜太阳能电池(CdTe ),其中,硅基薄膜电池以其特有的优势快速发展。 2010年行业专家预测,a-Si ,CdTe ,CIGS 3种电池将分别占有薄膜光伏市场的52%,37%和11%。可 见,硅基薄膜电池在中长期发展阶段仍将占据薄膜光伏市场的主导地位。薄膜电池近几年全球产量、市场份额趋势预测见表1、表2。笔者将重点介绍硅基薄膜太阳电池技术和薄膜太阳能电池市场发展现状。 摘 要:详细叙述了硅基薄膜太阳能电池结构、工艺制造技术,a-Si 沉积设备,并针对薄膜电池技术的发展现状, 分析了薄膜电池引起波动和变化的原因,展望了BIPV 薄膜电池在未来城市建筑中的应用前景。关键词:薄膜太阳能电池;非晶硅;转换效率中图分类号:TN604 文献标志码:A 收稿日期:2011-05-12;修回日期:2011-06-16 作者简介:张世伟(1962-),男,山西运城人,高级工程师,主要从事电子工艺及专用设备研究,E-mail :scjs@https://www.doczj.com/doc/838159950.html, 。 薄膜太阳能电池技术及市场发展现状 (中国电子科技集团公司第二研究所,山西 太原 030024) 张世伟 文章编号:1674-9146(2011)07-0041-04 表1 近几年薄膜电池全球产量 200920102011201220137211224196027373136185.5341.5484627.577311041605214426493151 2010.53170.545886013.5706054.9150.6246.7344.0544.63 9.2310.7710.5510.4310.9535.8638.6142.7245.5144.42年份 碲化镉(CdTe ) /MW 铜铟镓硒(CIGS ) /MW 非晶硅薄膜 /MW 全球产量/MW CdTe 市场份额/%CIGS 市场份额/%非晶硅薄膜市场份额 /% 表2 市场份额及趋势预测 2009201020112012201311531865270535553625464591.5721.5880107020902680311937464158 3707513765458181885356.3952.1847.6545.7946.97 12.5211.5111.0210.7612.0931.163.3141.3343.4540.95年份 碲化镉(CdTe )/MW 铜铟镓硒(CIGS )/MW 非晶硅薄膜 /MW 全球产量/MW CdTe 市场份额/%CIGS 市场份额/%非晶硅薄膜市场份额 /%

(整理)薄膜太阳能电池种类

薄膜太阳能电池种类 为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。 砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。 磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。 GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中 MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术异质外延方法制造GaAs电池是降用低成本很有希望的方法。已研究的砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷--砷化镓异质结,金属-半导体砷化镓,金属--绝缘体--半导体砷化镓太阳电池等。 砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。除GaAs外,其它III-V化合物如Gasb,GaInP等电池材料也得到了开发。 1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为 24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研

薄膜太阳能电池课程报告

演讲人:陈俊飞(常熟理工学院,光电系) 前言:(概述) 1.什么是薄膜太阳能电池?我个人的简单认识; 2.薄膜电池与我们之前所了解的晶硅电池相比又有哪些不同,抑或说是 优缺点; 3.薄膜电池有哪些用途(对应的商品),以及今后的发展方向。 第一张:标题(薄膜太阳能技术课程报告) 第二张:简述我对薄膜电池的基本认识; 详细内容: 薄膜电池顾名思义就是将一层薄膜制备成太阳能电池,其用硅量极少,更容易降低成本,同时它既是一种高效能源产品,又是一种新型建筑材料,更容易与建筑完美结合。在国际市场硅原材料持续紧张的背景下,薄膜太阳电池已成为国际光伏市场发展的新趋势和新热点。目前已经能进行产业化大规模生产的薄膜电池主要有3种:硅基薄膜太阳能电池、铜铟镓硒薄膜太阳能电池(CIGS)、碲化镉薄膜太阳能电池(CdTe)。 分类详细说明: 1.硅基薄膜电池 硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场上主要是非晶硅薄膜电池产品。非晶硅(a - S i)太 阳电池一般是通过高频等离子体辉光放电等方法使硅烷(S i H4)气体

分解沉积而成的。非晶硅的禁带宽度为1.7e V,通过掺硼或磷可得到p 型或n型a - S i。然而由于非晶硅原子排列的不规则性,单纯的非晶硅p - n结中隧道电流占主导地位,无整流特性,不能制作太阳电池。为得到良好的二极管整流特性,一般要在p层和n层之间加入较厚的本征层i,以遏制其隧道电流,所以非晶硅太阳电池一般具有p - i - n结构。为了提高效率和改善稳定性,发展了p - i - n / p - i -n双层或多层结构式的叠层电池;美国联合太阳能(U n i t e dS o l a r)还做出了a - S i / a - S i G e /a-SiGe 三层堆叠硅锗电池,使吸收光谱更广。 2.碲化镉薄膜电池 碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单、制造成本低,实验室转换效率已超过16%,大规模效率超过10.5%,远高于非晶硅电池。不过由于镉元素可能对环境造成污染,使用受到限制。近年来,美国第一太阳能公司采取独特的蒸气输运法沉积等特殊措施,解决了镉元素的污染问题,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW碲化镉太阳电池组件。 3.铜铟镓硒薄膜电池 铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等方法在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。基底一般用玻璃,也可用不锈钢作为柔性衬底。铜铟镓硒薄膜电池的实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。4.砷化镓薄膜电池

碲化镉薄膜太阳能电池及其溅射制备

3上海海事大学青年骨干教师培养项目(No.025063)  张榕:通信作者 Tel :021********* E 2mail :rongzhang @https://www.doczj.com/doc/838159950.html, 碲化镉薄膜太阳能电池及其溅射制备3 张 榕1,周海平2,陈 红3 (1 上海海事大学基础科学部,上海200135;2 四川师范大学物理与电子工程学院,成都610066; 3 上海交通大学物理系凝聚态光谱与光电子物理实验室,上海200030) 摘要 简单综述了化合物半导体碲化镉太阳能电池的发展历史、基本结构和核心问题,在此基础上重点总结了 用溅射法制备的多晶碲化镉薄膜太阳能电池的优缺点、面临问题、发展现状,展望了它的发展趋势,并讨论了用溅射法制备渐变带隙碲化镉薄膜太阳能电池以提高转化效率的可能性。 关键词 碲化镉 薄膜太阳能电池 溅射法中图分类号:TM914.42 An Overvie w of CdT e Thin Film Solar Cells and R elevant Sputtering F abrication ZHAN G Rong 1,ZHOU Haiping 2,C H EN Hong 3 (1 Basic Science Department ,Shanghai Maritime University ,Shanghai 200135;2 Department of Physics and Electronic Engineering , Sichuan Normal University ,Chengdu 610066;3 Laboratory of Condensed Matter Spectroscopy and Opto 2electronic Physics , Department of Physics ,Shanghai Jiaotong University ,Shanghai 200030) Abstract This article firstly gives a brief overview to the development history ,basic structures and critical is 2 sues of compound semiconductor Cd Te 2based solar cells ,then sheds light on the advatages and disadvantages ,current status ,and trend of development of the sputtered polycrystalline Cd Te thin film solar cells.Finally ,it also discusses the possibility to fabricate graded 2bandgap Cd Te solar cells by using the sputtering method K ey w ords Cd Te ,thin film solar cells ,sputtering   0 引言 随着当今世界人口和经济的增长、能源资源的日益匮乏、环境的日益恶化以及人们对电能的需求量越来越大,太阳能的开发和利用已经在全球范围内掀起了热潮。这非常有利于生态环境的可持续发展,造福子孙后代,因此世界各国竞相投资研究开发太阳能电池。 太阳能电池是一种利用光生伏特效应将太阳光能直接转化为电能的器件。早在1839年,科学家们已经开始研究光生伏特效应,到20世纪40年代中期,太阳能电池的研制取得了重大突破,在单晶硅中发现了称之为Czochralski 的过程。1954年,美国贝尔实验室根据这个Czochralski 的过程成功研制了世界上第一块太阳能电池,能量转换效率达到4%。太阳能电池的问世,标志着太阳能开始借助人工器件直接转换为电能,这是世界能源业界的一次新的飞跃。 太阳能电池种类繁多,包括单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、化合物半导体电池和叠层太阳能电池等。 硅材料是目前太阳能电池材料(即光伏材料)的主流,这不仅因为硅在地壳中含量丰富,而且用它制成的电池转化效率相对较高。单晶硅太阳能电池在实验室里最高的转换效率接近25%,而规模生产的单晶硅太阳能电池,其效率为15%。但是单晶硅太阳能电池制作工艺繁琐,且单晶硅成本价格居高不下,大幅降低成本非常困难,无法实现太阳能发电的大规模普及。 随着新材料的不断开发和相关技术的发展,以其他材料为基础的太阳能电池愈来愈显示出诱人的前景。目前国际低成本大规模生产技术的研究主要集中在多晶硅、大面积薄膜非晶硅、碲化镉(Cd Te )、铜铟硒(CuInSe 2)太阳能电池,Ⅲ2Ⅴ族化合物半导体高效太阳能电池,非晶硅及结晶硅混合型薄膜太阳能电池等方面。与单晶硅太阳能电池相比,除多晶硅、砷化镓、铜铟硒、碲化镉等外,其他材料的电池光电转化效率普遍未超过15%。尽管如此,硅材料仍不是最理想的光伏材料,这主要是因为硅是间接带隙半导体材料,其光学吸收系数较低,所以研究其他光伏材料成为当前的一种趋势。其中,Cd Te 和CuInSe 2被认为是两种非常有应用前景的光伏材料,目前已经取得一定的进展,但是要将它们大规模生产并与晶体硅太阳能电池抗衡还需要投入大量的人力物力进行研发。 Cd Te 是一种化合物半导体,在太阳能电池中一般作吸收层。由于它的直接带隙为1.45eV [1],最适合于光电能量转换, 因此使得约2 μm 厚的Cd Te 吸收层在其带隙以上的光学吸收率达到90%成为可能,允许的最高理论转换效率在大气质量AM1.5条件下高达27%[2]。Cd Te 容易沉积成大面积的薄膜,沉积速率也高。因此,Cd Te 薄膜太阳能电池的制造成本较低,是应用前景较好的一种新型太阳能电池,已成为美、德、日、意等国研发的主要对象。目前,已获得的最高效率为16.5%(1cm 2),电池模块效率达到11%(0.94m 2)[2~4]。然而,人们当前对Cd Te 太阳能电池的特点和发展趋势认识很零散,没有一个系统的、整体的了解。此外,人们对用溅射法制备的多晶碲化

中国薄膜太阳能电池生产厂商列表12资料

天津 S i 薄天津津能电池 科技有限公司 www.jnsolar.c a-Si/a-Si双结及 柔性电池,1.245m x Energ y Solar 技术来自南 开大学 25MW量产中

膜https://www.doczj.com/doc/838159950.html,0.635m,Pm=40W,Vm =46V,Eff=5.5% 河北 S i 薄膜保定天威薄膜 光伏有限公司 a-si/uc-Si双结, 1.1m x 1.3m, Pm=125W,Eff=9.3% Oerli kon 天威保变的 控股子公司 CEO&CTO--- 麦耀华 50MW 6月试生 产成功, 预计8月 量产 S i 薄膜保定风帆光伏 能源有限公司 http://www.sa https://www.doczj.com/doc/838159950.html,/ a-Si/a-Si双 结,1.245m x 0.635m,Pm=40W,Ef f=5.5% 美国 Ameli o Solar 公司 Turn- key线 由风帆股份 与美国 Amelio Solar公司 合资成立, 技术来自美 国Amelio 公司,Dr Zoltan Kiss 一期 5MW,二 期25MW 2009年5 月1日厂 房改造, 设备尚未 move in S i 薄膜新奥光伏新能 源有限公司(廊 坊) http://www.en https://www.doczj.com/doc/838159950.html, a-si/uc-Si双结, 2.2m x 2.6m, Pm=458W,Vm=220V, Im=2.08A,Eff=8% AMAT turn- key CEO蔡洪秋, 总经理万克 家,北京研 发中心总经 理周民,北 美研究院院 长周德颂, 副院长郭铁 60MW 试生产成 功,6月通 过TCUV 认证 S i 薄膜常源光伏科技 有限公司(衡 水) http://www.ev https://www.doczj.com/doc/838159950.html,/ a-Si单结,1.1m x 1.4m,Pm=100W, Vm=75V,Im=1.34A, Eff=6.5% ULVAC25MW 设备正在 move in 河南 S i 薄膜阿格斯新能源 有限公司(郑 州) http://www.ar https://www.doczj.com/doc/838159950.html, a-Si单结,1.245m x 0.635m,Pm=43W, Vm=45.2V, Im=0.95A, Eff=5.5% 金太 阳集 团下 属公 司提 供设 备, EPV系 列,设 备投 资 CEO赵一辉 博士 25MW 设备调试 中

薄膜太阳能电池发展背景

薄膜太陽能電池發展背景 薄膜太陽能電池,顧名思義,乃是在塑膠、玻璃或是金屬基板上形成可產生光電效應的薄膜,厚度僅需數μm,因此在同一受光面積之下比矽晶圓太陽能電池大幅減少矽原料的用量。薄膜太陽能電池並非是新概念的產品,實際上人造衛星就早已經普遍採用砷化鎵(GaAs)所製造的高轉換效率薄膜太陽能電池板(以單晶矽作為基板,轉換效能在30%以上)。 不過,一方面因為製造成本相當高昂,另一方面除了太空等特殊領域之外,應用市場並不多,因此直到近幾年因為太陽能發電市場快速興起後,發現矽晶圓太陽電池在材料成本上的侷限性,才再度成為產業研發中的顯學。目標則是發展出材料成本低廉,又有利於大量生產的薄膜型太陽能電池。 自2006下半年以來,因全球太陽能市場需求成長,造成矽原料供應不足、矽晶太陽能電池及模組生產成本水漲船高。而薄膜太陽能電池因具有輕薄、低成本、可撓曲、多種外觀設計等優點,成為繼矽晶太陽能電池之後,被認為是當前最具發展潛力的太陽能技術。 太陽能電池技術發展 第一代結晶矽 單晶、多晶、非晶 第二代薄膜太陽能電池 矽薄膜、化合物薄膜 第三代染料敏化太陽能電池(DSSC)、其他新技術、新材料薄膜太陽能電池發電原理 薄膜太陽能電池,是以pn半導體接面作為光吸收及能量轉換的主體結構。在基板上分別塗上二種具不同導電性質的p型半導體及n型半導體,當太陽光照射在pn接面,部份電子因而擁有足夠的能量,離開原子而變成自由電子,失去電子的原子因而產生電洞。透過p型半導體及n型半導體分別吸引電洞與電子,把正電和負電分開,在pn接面兩端因而產生電位差。在導電層接上電路,使電子得以通過,並與在pn 接面另一端的電洞再次結合,電路中便產生電流,再經由導線傳輸至負載。 從光產生電的過程當中可知,薄膜太陽能電池的能量轉換效率,與材料的能隙大

薄膜太阳能电池基础知识整理

非晶硅薄膜太阳能电池基础知识 一、优点: 1.光谱特性好(弱光性好、光谱吸收范围宽) 2.温度特性好(温度上升时电池效率下降很小) 3.成本能耗低(硅用量少:2um、生产温度底:200度) 4.生产效率高(连续,大面积,自动化生产) 5.使用方便(重量轻,厚度薄.可弯曲,易携带) 6.无毒无污染、美观大方 缺点: 二、非晶硅薄膜太阳能电池的四个效应: 1.光电效应 2.光致衰退效应(薄膜经较长时间的强光照射或电流通过,在其内部将产生缺陷而 使薄膜的使用性能下降,简称为S-W效应) 3.边缘效应(边缘效率比中心效率低) 4.面积效应(面积越大,效率越低) 三、结构 1.一般结构 2.非晶\微晶硅叠层结构

衬底:玻璃、不锈钢、特种塑料 TOC :透明导电氧化膜(要求:透光性>80%、表面绒面度12~15% 面电阻R 9~13 Ω ) 四、原理 非晶硅太阳电池的工作原理是基于半导体的光伏效应。当太阳光照射到电池上时,电池吸收光层(i 层)能产生光生电子—空穴对,在电池内建电场Vb 的作用下,光生电子和空穴被分离,空穴漂移到P 边,电子漂移到N 边,形成光生电动势VL, VL 与内建电势Vb 相反,当VL = Vb 时,达到平衡; IL = 0, VL 达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc ,此时VL= 0;当外电路加入负载时,则维持某一光电压VL 和光电流IL 。其I--V 特性曲线见图 3 SiO2(20~40nm) TCO(700~1000nm) a-si(~300nm) SiO2(100nm) μc-Si (~1.7μm ) AZO (~100nm) Ag (130~200nm)

(发展战略)发展碲化镉薄膜太阳能电池的几个关键问题

发展碲化镉薄膜太阳能电池的几个关键问题 2009.4 ?碲化镉薄膜太阳能电池的发展日益受到重视。碲资源、电池成本、电池生产和使用对环境的影响等问题是碲化镉薄膜太阳能电池发展中受到很多人关注的问题。本文对此进行了分析讨论,最后分析了工业化规模生产碲化镉薄膜太阳能电池组件的关键技术。 引言 碲化镉薄膜太阳能电池的发展受到国内外的关注,其小面积电池的转换效率已经达到了16.5%,商业组件的转换效率约9%,组件的最高转换效率达到11%。国内四川大学制备出转换效率为13.38%的小面积单元太阳能电池,54cm2集成组件转换效率达到7%,正在进行0.1㎡组件生产线的建设和大面积电池生产技术的研发。 成本估算 考虑电池的结构为玻璃/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni,碲化镉薄膜的厚度为5微米,转换效率为7%,1MW碲化镉薄膜太阳能电池所消耗的材料的成本如下表所示。 碲化镉薄膜太阳能电池的材料成本 可见,碲化镉和透明导电玻璃构成材料成本的主体,分别占到消耗材料总成本的45.4%和38.2%。 消耗材料的成本还可以进一步降低,如将碲化镉薄膜的厚度减薄1微米,则碲化镉材料的消耗将降低20%,从而使材料总成本降低9.1%,即从每峰瓦6.21元降为5.64元。如使用99.999%纯度的碲化镉,效率依然能达到7%,材料成本还将进一步降低。因此,材料成本达到或低于每峰瓦5元人民币是可能的。

考虑工资、管理、电力和设备折旧等其他成本,碲化镉薄膜太阳能电池的成本大约是每峰瓦13.64元人民币或更低。因此,即使销售价格为每峰瓦20~22元人民币,约为晶体硅太阳能电池现在价格的60%,也能保证制造商有相当的利润空间。 由于碲化镉薄膜太阳能电池成本低,其发展对于解决我国西部地区分散居住人口的电力供应具有重要意义。 碲资源 碲是地球上的稀有元素,发展碲化镉薄膜太阳能电池面临的首要问题就是地球上碲的储藏量是否能满足碲化镉太阳能电池组件的工业化规模生产及应用。工业上,碲主要是从电解铜或冶炼锌的废料中回收得到。据相关报道,地球上有碲14.9万吨,其中中国有2.2万吨,美国有2.5万吨。 在美国碲化镉薄膜太阳能电池制造商First Solar年产量25MW的工厂中,300~340 公斤碲化镉即可以满足1MW太阳能电池的生产需要。考虑到碲的密度为6.25g/cm3,镉的密度为8.64g/cm3,则130~140公斤碲即可以满足1MW碲化镉薄膜太阳能电池的生产需要。 由以上数据可以知道,按现已探明储量,地球上的碲资源可以供100个年生产能力为100MW的生产线用100年。 环境影响 由于碲化镉薄膜太阳能电池含有重金属元素镉,使很多人担心碲化镉太阳能电池的生产和使用对环境的影响。多年来,一些公司和专家不愿步入碲化镉太阳能电池的开发和生产。那么,碲化镉薄膜太阳能电池的生产和使用中镉的排放究竟有多严重呢? 为此,美国布鲁克文国家实验室的科学家们专门研究了这个问题。他们系统研究了晶体硅太阳能电池、碲化镉太阳能电池与煤、石油、天然气等常规能源和核能的单位发电量的重金属排放量。在太阳能电池的分析中,考虑了将原始矿石加工得到制备太阳能电池所需材料、太阳能电池制备、太阳能电池的使用等全寿命周期过程。研究结果表明(见图1),石油的镉排放量是最高的,达到44.3g /GWh,媒次之,为3.7g /GWh。而太阳能电池的排放量均小于1g /GWh,其中又以碲化镉的镉排放量最低,为0.3 g / GWh。与天然气相同,硅太阳能电池的镉排放量大约是碲化镉太阳能电池的两倍。

CdTe薄膜太阳能电池产业发展报告

CdTe薄膜太阳能电池产业发展报告 标签:薄膜太阳电池CdTe solar 2007-10-09 12:21 一、概述 CdTe是Ⅱ-Ⅵ族化合物半导体,带隙1.5eV,与太阳光谱非常匹配,最适合于光电能量转换,是一种良好的PV材料[1],具有很高的理论效率(28%)[2],性能很稳定,一直被光伏界看重,是技术上发展较快的一种薄膜电池。碲化镉容易沉积成大面积的薄膜,沉积速率也高。CdTe 薄膜太阳电池通常以CdS /CdT e异质结为基础。尽管CdS和CdTe和晶格常数相差10%,但它们组成的异质结电学性能优良,制成的太阳电池的填充因子高达F F =0.75[3]。 制备CdTe多晶薄膜的多种工艺和技术已经开发出来,如近空间升华、电沉积、PVD、CVD、CBD、丝网印刷、溅射、真空蒸发等[4]。丝网印刷烧结法:由含CdTe、CdS浆料进行丝网印刷CdTe、CdS 膜,然后在600~700℃可控气氛下进行热处理1h 得大晶粒薄膜. 近空间升华法:采用玻璃作衬底,衬底温度500~600℃,沉积速率10μm/min. 真空蒸发法:将CdTe 从约700℃加热钳埚中升华,冷凝在300~400℃衬底上,典型沉积速率1nm/s. 以CdTe 吸收层,CdS 作窗口层半导体异质结电池的典型结构:减反射膜/玻璃/(SnO2:F)/CdS/P-CdTe/背电极。电池的实验室效率不断攀升,最近突16%。20世纪90年代初,CdTe电池已实现了规模化生产,但市场发展缓慢,市场份额一直徘徊在1%左右。商业化电池效率平均为 8%-10%[5]。 为了更好地、更系统地研究CdTe系太阳电池,本文简要介绍CdTe薄膜太阳能电池的国内外的研究进展与产业发展状况,以及存在的问题、制约因素等。 二、国外CdTe薄膜太阳能电池产业发展状况与趋势 CdTe薄膜太阳电池是薄膜太阳电池中发展较快的一种光伏器件。美国南佛罗里达大学于1993年用升华法在1cm2面积上做出效率为15.8 %的太阳电池[6] , 随后,日本 Matsushita Battery报道了CdTe基电池以CdTe 作吸收层,CdS 作窗口层的n-CdS/ P - CdTe 半导体异质结电池,其典型结构为MgF2/ 玻璃/ SnO2∶F/ n-CdS/ P- dTe/ 背电极,小面积电池最高转换效率16%[7],成为当时CdTe薄膜太阳能电池的最高纪录,近年来,太阳电池的研究方向是高转换效率、低成本和高稳定性. 因此,以CdTe为代表的薄膜太阳电池倍受关注,Siemens报道了面积为3600cm2电池转换效率达到11.1%的水平。美国国家可再生能源实验室提供了Solar Cells lnc的面积为6879cm2CdTe薄膜太阳电池的测试结果,转换效率达到7.7%;Bp Solar的CdTe薄膜太阳电池,面积为4540cm2,效率为8.4%,面积为706cm2的太阳电池,转换效率达到10.1%;Goldan Photon的CdTe太阳电池,面积为3528cm2,转换效率为7.7%。详细情况如表1[7-11]。 表1 CdTe 薄膜太阳电池参数表[7-11]

薄膜太阳能电池知识大全

薄膜太阳能电池知识大全 说明:薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,因此在同一受光面积之下可较硅晶圆太阳能电池大幅减少原料的用量(厚度可低于硅晶圆太阳能电池90%以上),目前转换效率最高以可达13%,薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,在薄膜太阳电池制造上,则可使用各式各样的沈积(deposition)技术,一层又一层地把p-型或n-型材料长上去,常见的薄膜太阳电池有非晶硅、CuInSe2 (CIS)、CuInGaSe2 (CIGS)、和CdTe..等。 薄膜太阳电池产品应用: 半透明式的太阳能电池模块:建筑整合式太阳能应用(BIPV) 薄膜太阳能之应用:随身折迭式充电电源、军事、旅行 薄膜太阳能模块之应用:屋顶、建筑整合式、远程电力供应、国防 薄膜太阳能电池的特色: 1.相同遮蔽面积下功率损失较小(弱光情况下的发电性佳) 2.照度相同下损失的功率较晶圆太阳能电池少 3.有较佳的功率温度系数 4.较佳的光传输 5.较高的累积发电量 6.只需少量的硅原料 7.没有内部电路短路问题(联机已经在串联电池制造时内建) 8.厚度较晶圆太阳能电池薄 9.材料供应无虑 10.可与建材整合性运用(BIPV) 太阳能电池厚度比较:晶硅(200~350μm)、非晶性薄膜(0.5μm) 薄膜太阳能电池的种类: 非晶硅(Amorphus Silicon, a-Si)、微晶硅(Nanocrystalline Silicon,nc-Si,Microcrystalline Silicon,mc-Si)、化合物半导体II-IV 族[CdS、CdTe(碲化镉)、CuInSe2]、色素敏化染料(Dye-Sensitized Solar Cell)、有机导电高分子(Organic/polymer solar cells) 、CIGS (铜铟硒化物)..等 薄膜太阳能电池分类表 薄膜太阳能电池制造厂商:联相光电、富阳光电、旭能光电、绿能科技、新能光电、茂迪、奇美能源、大亿光电、大丰能源、鑫笙能源、威奈联合、嘉晶电子、崇越科技、台达电、中环、宇通光电 薄膜太阳能测试设备厂商:庆声科技 薄膜太阳能制程流程表 薄膜太阳能模块结构图 说明:薄膜太阳能模块是由玻璃基板、金属层、透明导电层、电器功能盒、胶合材料、半导体层..等所构成的。薄膜太阳能电池可靠度试验规范:IEC61646(薄膜太阳光电模块测试标准)、CNS15115(薄膜硅陆上太阳光电模块设计确认和型式认可)

薄膜太阳能电池,你了解多少

薄膜太阳能电池,你了解多少? 光伏电池组件来源:新能源前线2017/10/19 16:48:14我要投稿 关键词: 薄膜电池太阳能电池光伏技术 近几年来,太阳能电池越来越受到科研人员的重视,发展迅速,前景光明。除了传统的晶体硅用于太阳能电池的制备中,现在薄 膜太阳能电池板也发展得如火如荼,那么薄膜太阳能电池有哪些? 它们的性能如何?跟着小编看看吧! 随着基础科学的发展,太阳能电池板的性能也有了很大的提高。薄膜太阳能电池板正逐渐成为主流。相比于传统的硅材料太阳能电池板,它具有更好的柔韧性,拓宽了太阳能电池的应用领域,能够和你家的结构设计无缝连接! 传统太阳能电池板和薄膜电池板的不同,二者之间最明显的区别在于厚度,导致了传统太阳能电池板和薄膜太阳能电池在太阳能捕获效率上存在差异,其原因在于材料的不同,薄膜太阳能电池采用了不同的化合物。 传统的太阳能板用的是晶体硅(C-Si),这项技术已经发展多年,比较成熟可靠。值得注意的是,虽然C-Si具有较高的能量转换效率,但是实际吸光效率较差,这就意味着太阳能板必须足够厚,才能提高实际效率。与此不同的是,薄膜技术可以“混搭”多种元素,比传统太阳能板薄350倍左右,通过在玻璃、金属、塑料等材料表面镀膜或者沉积就可以制备太阳能电池面板。这样,不同类型的材料对光能可以充分利用,提高效率。

薄膜太阳能电池的类型 现在,薄膜太阳能电池要达到两个目标:一是要具有足够的柔韧性,能够在大型建筑材料表面附着,二是要实现和传统太阳能电池一样的效率,甚至更高。不同的制备技术所得的薄膜太阳能板和传统的太阳能板相比,具有不同的优缺点。通常对薄膜太阳能板的命名来自于半导体材料的类型。 1.不定形硅(a-Si) 图1.a-Si光伏电池结构 不定形硅是最早的也是最成熟的用于制作薄膜太阳能电池。这可能是因为晶体硅早已用在传统太阳能电池上,人们对硅电子的性质的了解比较透彻。 优点:

相关主题
文本预览
相关文档 最新文档