当前位置:文档之家› midas桥梁移动荷载动力时程分析

midas桥梁移动荷载动力时程分析

midas桥梁移动荷载动力时程分析
midas桥梁移动荷载动力时程分析

midas时程分析

16. 时程分析 概述 对下面受移动荷载的简支梁运行时程分析。 ?材料 弹性模量 : 2.4?1011 psi 容重(γ) : 0.1 lbf/in3 ?截面 截面面积(Area) : 1.0 in2 截面惯性矩(Iyy) : 0.083333 in4 半径(radius) : 10.0 in 厚度(thickness) : 2.0 in 重力加速度(g) : 1.0 in/sec2

速度 容重 整体坐标系原点 (a)受移动荷载的简支梁 (b)时程荷载函数 图 16.1 分析模型 模型是受600 in/sec速度的移动荷载的简支梁结构。通过时程分析了解动力荷载下结构的反映,改变荷载周期来查看共振的影响。

设定基本环境 打开新文件以‘时程分析 1.mgb’为名保存. 文件 / 新文件 文件 / 保存 ( 时程分析 1 ) 设定单位体系。 工具 / 单位体系 长度 > in ; 力 > lbf 图 16.2 设定单位体系

设定结构类型为 X-Z 平面。且为了特征值分析,设定自重自动转换为节点质量。 模型/ 结构类型 结构类型 > X-Z 平面 将结构的自重转换为质量> 转换到 X, Y, Z 重力加速度( 1 ) 点格(关) 捕捉点(关) 捕捉节点捕捉单元正面 图 16.3 设定结构类型

定义材料以及截面 输入材料和截面,采用用户定义的类型和数值的类型输入数据。 模型/ 特性/ 材料 一般> 名称( 材料) ; 类型> 用户定义 用户定义 > 规范>无 分析数据 > 弹性模量 ( 2.4E+11 ) 容重( 0.1 ) ? 模型/ 特性/ 截面 数值 名称( 截面) ; 截面形状> Pipe 尺寸 > D ( 10 ) ; t w( 2 ) 截面特性值> 面积( 1 ) ; Iyy ( 0.083333 )? 图 16.4 定义材料图 16.5 定义截面

17 关于悬索桥移动荷载分析理解

关于悬索桥移动荷载分析理解 1 实例介绍 人行悬索桥桥跨150m,f/L=1/15,桥面宽4.5m。主缆和吊杆采用索单元模拟,其他为空间梁单元。 图1 有限元模型 图2 一次成桥验证 2 问题重现 在公路-Ⅱ级作用下,位移达到1756mm,如下图: 图3 移动荷载最大竖向位移

3 问题分析 一次成桥验证,桥梁的位移基本满足要求,表明在恒载作用下,索单元的无应力长度是合适的,成桥的设计状态是合理的。此时,关于索单元有大位移分析需要的几何刚度,到拆分析需要的平衡单元节点内力,以及小位移线性分析需要的初始单元内力。 施工阶段分析控制 当进行移动荷载分析时,索单元自动转化为桁架单元并考虑初始单元内力的影响(几何刚度),进行线性分析,此时移动荷载的分析状态为:活载+桁架单元(考虑初始单元内力)+成桥边界。但要注意,初始单元内力只有刚度效应,没有内力效应。实际移动荷载的分析状态为:活载+桁架单元(考虑初始单元内力)+桁架单元初拉力(由恒载内力产生)+成桥边界。对比发现,相差桁架单元初拉力,因此,程序进行移动荷载分析时,输出的位移是没有实际意义的。 4 验证 建立成桥模型:索改为桁架单元,给桁架单元添加恒载产生的初拉力,这样自重+初拉力进行线性分析时,应该达到成桥平衡状态。这也是实际的成桥分析状态。 图4 桁架模型成桥状态 由图可以看出,在自重+初拉力作用下,基本满足设计状态。 分别查看MVmax+初拉力和MVmin+初拉力位移

此时查看的位移,才是有实际意义的。但要注意仅是指线性分析合理的情况。 5 结果分析 实际位移达到1372mm,表明该桥的成桥刚度非常小,可以从成桥(自重)吊杆力看出。

用midas做稳定分析步骤

用MIDAS来做稳定分析的处理方法(笔记整理) 对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题: A.整个结构的稳定性 B.构成结构的单个杆件的稳定性 C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性: 1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳 特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态 2:极值点失稳 特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。 3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。B构成结构的单个杆件的稳定性 通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。 C 单个杆件里的局部稳定(如其中的板件的稳定) 在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没

有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理 A整个结构的稳定性: 分析方法: 1:线性屈曲分析(对象:桁架,粱,板) 在一定变形状态下的结构的静力平衡方程式可以写成下列形式: (1):结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量 结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。临界荷载可以用已知的初始值和临界荷载的乘积计算得到。临界荷载和屈曲模态意味着所输入的临界荷载作用到结构时,结构就发生与屈曲模态相同形态的屈

Midas-移动荷载-设置流程

midas Civil 技术资料 ----移动荷载设置流程 目录 midas Civil 技术资料 1 ----移动荷载设置流程 1 一、定义车道线(车道面) 2 二、定义车辆荷载 5 三、定义移动荷载工况 7 四、移动荷载分析控制 9 五、运行并查看分析结果 12 参考文献 14 北京迈达斯技术有限公司 桥梁部 2013/05/17

本章主要结合中国规范JTG D60-2004[1]进行纵向(顺桥向)移动荷载分析介绍,移动荷载分析主要是计算移动荷载(车道、车辆或人群荷载)在指定路径上(车道线、车道面)移动时产生的各种效应(反力、内力、位移、应力)的包络结果,具体分析过程如下:(1)定义车道线/面; (2)定义车辆荷载--车道荷载、车辆荷载、人群荷载等活荷载; (3)定义移动荷载工况; (4)定义移动荷载分析控制; (5)运行分析并查看结果。 一、定义车道线(车道面) 荷载>移动荷载>移动荷载规范-china,定义车道线或车道面,确定移动荷载路径,程序提供车道单元和横向联系梁两种方法,其中,车道单元法是将作用在车道中心线上的荷载换算到车道单元上(换算为集中力和扭矩),单梁模型中常用;而横向联系梁法是将移 图1-1车道单元法及横向联系梁法示意图 动荷载作用在横梁上,然后由横梁按比例传递到临近的纵梁单元上,梁格模型中常用,此时需要将横梁定义成为一个结构组,传力示意如图1-1所示。 随后即可进行车道线定义,首先是“斜交角”设置,对于斜桥梁格模型可以输入起点和终点的斜交角度,此设置需跟横向联系梁法配合使用,车道单元法不需要设置此项。 “车辆移动方向”,对于直桥,选择三者无差别;如果是斜桥,则车辆移动方向不同,分析结果也不同,故要选择“往返”。

第8-1章 移动荷载列作用下的桥梁动力分析

第三章 简支梁在移动荷载作用下动力响应分析 3.1 简支梁在匀速移动力作用下的位移响应 简支梁在移动力作用下的振动分析:如果移动荷载的质量与梁的质量相比小得多,就可以不考虑荷载的质量惯性力而简化成为图3-1所示的分析模型,相当于仅考虑移动荷载的重力作用,用一个移动的力P(t)来表示。 图3-1 移动力P (t )作用下的简支梁模型 假设简支梁为等截面(EI 为常数),恒载质量均匀分布(单位长度梁的质量m 为常数),阻尼为粘滞阻尼(即阻尼力与结构的振动速度成正比),阻尼效应和质量及刚度性质成正比,荷载P (t )以匀速V 在梁上通过,梁的运动满足小变形理论并在弹性范围内,按照图3-1所示的坐标系,梁的强迫振动微分方程可表示为: ()()2424 ,,(,)()(y x t y x t y x t m c EI x Vt t t x δ???++=????)p t (3-1) 对于简支梁,边界条件为:(0,)0,(,)0y t y L t ==。上式中c 为阻尼系数。 对式(3-1)的求解,其方法与之前求解偏微分方程的方法相同,即用振型分解法(数学上称分离变量法 )。这一变换的表达式如(2-38)所示,为。 式中为广义振型坐标,是时间t 的函数;1(,)()()i i i y x t x q t φ∞ ==∑()i q t ()i x φ为主振型函数。这个式子说明:结构的任一合理位移都可以由此结构具有相应振幅的各个振型的叠加表示。 结构任一变形的振型分量均可由振型的正交特性得到。对于本章讨论的具有均匀截

面特性的梁,为了计算第n 阶振型对位移的贡献,把(2-38)式的两端都乘以()n x φ并进行积分,结果为 1 ()(,)()()()L L n i n n i x y x t dx q t x x dx φφ∞ ==∑∫ ∫φi (3-2) 由于振型的正交性,当时,等式的右边的积分为0,最终,无穷级数就只剩下一项。于是得到剩下的第n 项的振幅表达式为 n ≠ 2 ()(,)()()L n n L n x y x t dx q t x dx φφ=∫∫ (3-3) 按上述原理对简支梁的振动方程进行分解。将(2-38)式代入(3-1)式,得 2424 111 ()()() ()()()()()n n n n n n n n n d q t dq t d x m x c x EI q t x Vt p dt dt dx φφφδ∞ ∞∞ ===++=?∑∑∑t (3-4) 将上式的每一项都乘以第i 个振型函数()i x φ,并沿梁的全长积分,并考虑振型的正交性(根据前面的假定,结构的质量、刚度和阻尼均满足正交条件),第i 个振型的广义坐标运动方程为 2422240000 ()()() ()()()() ()()()L L L i n i i i i L i d q t dq t d x m x dx c x dx EIq t x dt dt dx x Vt p t x dx φφφφδφ++=?∫∫∫∫i (3-5) 对于等截面简支梁,振型函数可假定为三角函数,由于式中的下标均表示任意阶, 为方便叙述,用n 替代(3-5)中的i 表示,这时 ()sin n n x x L πφ= (3-6) 由于2 0sin 2 L n x L dx L π=∫ 0 ()()sin ()sin L n x n Vt x Vt p t dx P t L L ππδ?=∫ 则将(3-6)式代入(3-5)式,并积分,得到 24424 ()()()()sin 222n n n d q t dq t mL cL L n n Vt EIq t P t dt dt L L ππ++= (3-7)

midas施工阶段分析

目录 Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2) Q2、 POSTCS阶段的意义 (2) Q3、施工阶段定义时结构组激活材龄的意义 (2) Q4、施工阶段分析独立模型和累加模型的关系 (2) Q5、施工阶段接续分析的用途及使用注意事项 (2) Q6、边界激活选择变形前变形后的区别 (3) Q7、体内力体外力的特点及其影响 (4) Q8、如何考虑对最大悬臂状态的屈曲分析 (4) Q9、需要查看当前步骤结果时的注意事项 (5) Q10、普通钢筋对收缩徐变的影响 (5) Q11、如何考虑混凝土强度发展 (5) Q12、从施工阶段分析荷载工况的含义 (5) Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6) Q14、赋予各构件初始切向位移的意义 (6) Q15、如何得到阶段步骤分析结果图形 (6) Q16、施工阶段联合截面分析的注意事项 (6) Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)

Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。 因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。 注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。 Q2、P OSTCS阶段的意义 A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。 施工阶段的荷载效应累计在CS合计中,而POSTCS阶段各个荷载的效应独立存在。 POSTCS阶段荷载效应有ST荷载,移动荷载,沉降荷载和动力荷载工况。 有些分析功能也只能在POSTCS阶段进行:屈曲、特征值。 Q3、施工阶段定义时结构组激活材龄的意义 A3.程序中有两个地方需要输入材龄,一处是收缩徐变函数定义时需输入材龄,用于计算收缩应变;一处是施工阶段定义时结构组激活材龄,用于计算徐变系数和混凝土强度发展。因此当考虑徐变和混凝土强度发展时,施工阶段定义时的激活材龄一定要准确定义。 当进行施工阶段联合截面分析时,计算徐变和混凝土强度发展的材龄采用的是施工阶段联合截面定义时输入的材龄,此时在施工阶段定义时的结构组激活材龄不起作用。 为了保险起见,在定义施工阶段和施工阶段联合截面分析时都要准确的输入结构组的激活材龄。 Q4、施工阶段分析独立模型和累加模型的关系 A4.进行施工阶段分析的目的,就是通过考虑施工过程中前后各个施工阶段的相互影响,对各个施工阶段以及POSTCS阶段进行结构性能的评估,因此通常进行的都是累加模型分析。 对于线性分析,程序始终按累加模型进行分析,如欲得到某个阶段的独立模型下的受力状态,可以通过另存当前施工阶段功能,自动建立当前施工阶段模型,进行独立分析。 在个别情况下,需要考虑当前阶段的非线性特性时,可以进行非线性独立模型分析,如悬索桥考虑初始平衡状态时的倒拆分析,需用进行非线性独立模型分析。 Q5、施工阶段接续分析的用途及使用注意事项 A5.对于复杂施工阶段模型,一次建模很难保证结构布筋合理,都要经过反复调整布筋。 每次修改施工阶段信息后,都必须重新从初始阶段计算。接续分析的功能就是可以指定接续分析的阶段,被指定为接续分析开始阶段前的施工阶段不能进行修改,其后的施工阶段可以进行再次修改,修改完毕后,不必重新计算,只需执行分析〉运行接续

道路桥梁荷载计算与设计方法

道路桥梁荷载计算与设计方法 摘要:桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称。本文依托实测车辆的统计数据,对桥梁车辆设计荷载进行了研究和分析,为公路桥梁荷载设计理念和设计方法的逐步完善实现科学化和合理化。 关键词:设计荷载;公路桥梁;荷载效应;分项系数 前言 桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称,包括恒载、活载和其他荷载。包括铁路列车活载或公路车辆荷载,及它们所引起的冲击力、离心力、横向摇摆力(铁路列车)、制动力或牵引力,人群荷载,及由列车车辆所增生的土压力等。在公路桥上行驶的车辆种类很多,而且出现机率不同,因此把大量出现的汽车排列成队,作为计算荷载;把出现机率较少的履带车和平板挂车作为验算荷载。车辆活载对桥梁结构所产生的动力效应中,铅直方向的作用力称冲击力、它使桥梁结构增加的挠度或应力对荷载静止时产生的挠度或应力之比称为动力系数μ,也称冲击系数。最近的研究成果把动力系数分为两部分:一为适用于连续完好的线路部分μ1;另一为受线路不均匀性影响部分μ2。动力系数则为μ1与μ2之和。在计算公式中,除考虑桥梁的跨度外,反映了车辆的运行速度和桥梁结构的自振频率。公路桥梁汽车荷载的冲击力为汽车荷载乘以冲击系数,平板挂车和履带车不计冲击力。 1 公路桥梁荷载标准 2004 年修订的《公路桥涵设计通用规范》(JTGD60-2004)采用车道荷载形式。2004 版公路桥梁荷载标准中规定:汽车荷载修改调整为车道荷载的模式,废除车队荷载计算模式。并且提出车道荷载的均布荷载kq和集中荷载KP 的标准值 2 荷载效应计算 2.1 影响线计算 桥梁结构必须承受桥面上行驶车辆时的移动荷载的作用,结构的内力也随作用点结构上的变化而变化。所以需要研究并确定其变化范围和变化规律和内力的最大值此过程中作为设计标准。因此,需要确定的是荷载最不利位置和最大值。首先要确定在移动荷载作用下,结构内力的变化规律,将多种类型的移动荷载抽象成单位移动荷载P=1 的最简单基本形式。只要经过清楚地分析内力变化规律,其他类型的荷载就可以根据单位移动荷载作用下的结构内力变化规律叠加原理求出。影响线是内力(或支座反力)在移动单位荷载的作用下的引起的变化规律的图形。所以,影响线是研究车辆荷载等移动荷载作用下桥梁结构内力最大值的基本工具。初步选定对周围环境的影响的工程规模及结构类型、使用要求、材料

MIDAS中移动荷载车道的定义

MIDAS中移动荷载车道的定义——我的理解MIDAS中关于移动荷载车道的定义很多人都不是很清楚原理,MIDAS自己也讲的不是很清楚,事实上很多累死软件对横向荷载的分布处理也不是很完善,下面我就我个人理解,参考其他前辈的理解,说说我的看法,希望大家积极跟帖,多多讨论,把这个问题搞清楚。定义一般车道时,应该就是选择距离设计车道中心线最近的一根纵梁作为车道单元,然后定义偏心来按规范规定的等效车道荷载加载。偏心距离是车道中心距离就近梁单元中心的距离。结构尺寸确定后,车道中心和每个纵梁的中心(如果是单梁那就是结构的中心)都是已知的,这时就很容易确定车道的偏心距离了。横向联系梁车道定义时和一般车道定义方法是一样的,要选择就近的一根纵梁作为车道单元,定义偏心、定义跨度、定义车道分配单元,唯一不同的就是横向联系梁要选择横向联系梁结构组而已。MIDAS官方的说法是: 车道单元是定义车道位置的参考单元,civil中目前横向车道位置需由用户定义。车道偏心量为车辆中心线距参考单元距离。我理解的具体加载情况是: 一根单梁,车道中心布置,如果定义车道时不考虑车辆宽度,则荷载加载在梁单元中心线上;而如果定义车道时考虑车辆宽度(貌似2006版才有了这个功能) 1.8m,则荷载为偏心梁单元荷载,分别加载在梁单元中心两侧 0.9m的位置上,因此换算成梁单元荷载就是集中载和换算扭矩。 对于单梁分析,是否考虑车辆宽度对结构没有影响,但如果是梁格模型,是否考虑车辆宽度对结果的影响还是很大的。规范规定的等效车道荷载是没有考虑车辆宽度的(但是,我在邵旭东的《桥梁工程》中看到了一句大实话: 车道荷载的单向布载宽度为 3.0m,这个才更接近实际情况)。具体的,根据规范进行双车道中载和偏载加载时,一个是把车道荷载分别加载在两个车道设计中心线上,一个就是以最小间距3m来在一侧布置2个车道加载。如具体偏载情况: 第一个车道中心位置:

中英桥梁移动荷载对比研究

第16卷 第10期 中 国 水 运 Vol.16 No.10 2016年 10月 China Water Transport October 2016 收稿日期:2016-08-05 作者简介:曾 卓(1986-),女,2011年毕业华中科技大学,桥梁与隧道工程专业,研究生,中交武汉港湾工程设计研 究院有限公司,工程师。 乔长江(1985-),男,武汉市政工程设计研究院有限责任公司,工程师。 中英桥梁移动荷载对比研究 曾 卓1 ,乔长江2 (1. 中交武汉港湾工程设计研究院有限公司,湖北 武汉 430000; 2. 武汉市政工程设计研究院有限责任公司,湖北 武汉 430023) 摘 要:基于目前越来越多的国际项目的背景下,将在国际上广泛使用的英国规范BS5400-2中的移动荷载与中国规范(JTG D60-2015)的移动荷载进行了对比,同时将2006版和1978版英国规范的荷载效应也进行了对比分析。得到了对于中小跨径简支梁、连续梁,即使在中国规范考虑冲击系数的情况下,06版英国规范的移动荷载效应仍然比中国规范大16%~20%。本文可以作为相关海外项目很好的参考。 关键词:BS5400;移动荷载;英国规范;冲击系数;中国公路桥涵设计通用规范 中图分类号:U441.2 文献标识码:A 文章编号:1006-7973(2016)10-0184-03 一、概述 近年来伴随着“一带一路”和“走出去”战略,我国的工程建设企业在国外的项目越来越多,而英国作为曾经的老牌殖民地国家,曾经在地球上有着广阔的版图,于是英国标准在全球有着广泛的认可度和使用度(特别是对于曾经的英属殖民地国家),于是对英标可以熟练的使用并有深刻的认识成为了新时代对于海外项目的工程师们的新的要求。而桥梁设计领域在我国的海外项目中又占有相当重要的地位,许多重大桥梁会成为当地的新地标,对于树立中国的国际形象,改善当地居民的出行条件有着十分重要的意义。本文就中国桥梁设计通用规范(JTG D60-2015)[1]与英国桥梁设计规范(BS5400-2-2006[2],BS5400-2-1978[3])对于桥梁的移动荷载进行对比研究,在对比中引入英标的旧规范是因为在一些国家和地区仍然使用的是旧版本的规范。在本文中引入工程实例,对几种荷载对于桥梁产生的效应进行了对比研究,希望可以作为海外设计项目的参考。 二、车道荷载对比研究 图1 HA 均布荷载加载曲线(2006版) (注:Load W per metre of lane 车道每延米荷载W, Loaded length L 加载长度 L) 图2 HA 均布荷载加载曲线(1978版) (注:Load W per metre of lane 车道每延米荷载W, Loaded length L 加载长度L) BS5400-2中公路桥梁移动荷载分为HA 和HB 荷载,HA 荷载是一个均布荷载加上一个集中荷载,均布荷载根据加载长度变化,图一为BS5400-2(2006)的HA 均布荷载变化曲线,图2为BS5400-2(1978)的HA 均布荷载变化曲线,集中荷载在两版规范中对每一个计算车道均为120kN。 从两张图我们可以直观的看到新规范对于较小的加载长度荷载有明显的提升,下表中为不同加载长度HA 均布荷载的变化以及新老规范均布荷载的对比。 表1 不同加载长度HA 均布荷载变化 L(m)BS5400(1978) BS5400(2006) 差值比(%) 10 30.0 71.8 139.5 20 30.0 45.1 50.5 30 30.0 34.4 14.7 40 26.2 28.4 8.4 50 23.5 24.4 3.8 60 21.6 23.9 10.7 70 20.1 23.5 17.3 80 18.8 23.2 23.3 90 17.8 23.0 28.9 100 16.9 22.7 34.1

midas gts n 三维移动列车荷载案例

Basic Tutorials Chapter 10. 3D Moving Train Load Time History Chapter 10. 3D Moving Train Load Time History | 1 三维移动列车荷载案例 1.1学习目的 列车振动是周期加载现象,这是由于火车车轮间隔性地与铁轨发生震动。振动周期与铁轨间隔及列车速度有关。 列车振动的特点受到各种因素的影响,如车辆、轨道、支撑结构、地面、地下结构等。这些因素是交互作用,激发和传播的,是比较复杂的振动现象。 在本教程中,会涉及以下概念: ?从二维网格拓展生成三维网格。 ?特征值分析。 ?生成移动列车荷载。 ?分析结果——周围的振动效应和垂直地面沉降。 ?分析结果——建立随时间变化曲线 Section 1 学习目的及概要 ?列车动力荷载

Chapter 10. 3D Moving Train Load Time History Basic Tutorials 2 | Chapter 10. 3D Moving Train Load Time History 1.2模型和分析总概述 本教程进行动力分析,分析了列车移动荷载通过路堤的时候的振动荷载周围结构的影响和地表响应 ,火车上行为移动载荷应用于堤防。 分别建立底层、顶层、分层的加固层的路基,最后在最上层加上路面。

Basic Tutorials Chapter 10. 3D Moving Train Load Time History Chapter 10. 3D Moving Train Load Time History | 3 [打开附加开始文件(10 _train_start)] *:分析> 分析工况>设置 ?设置模型类型,重力方向,初始参数和单元系统。单位系统可以在建模过程中随时改变甚至在执行分析之后。输入的参数会自动转换为当下单位系统对应的值。 ?本教程是一个三维模型,重力方向是Z 向,使用SI 单位制(kN,m,sec)。 Section 2 设置分析条件 ?分析设置

学习midas心得

r Calculate Propertes Now MIDAS/SPC U 1.5.1 - Sectional Property Calculate Iriported AutoCAD DXF model data -Model: Cunie [140], Point [仙町 I —I —JI —1\ Procts# Message / i r I r 练习 midas 时的心得 I Generate Section Type ---------------- ti Plane 广 Line ? ■■I. ..■■■. .■■■ . ?■■■■■ ^11 ■■■ :_■■■■■? ?■■■. . ■■■ r i^lerge Strai^t Line^— Angle | [Deg] rjame [ r Location I 厂 Group I Sectior Color Apply Clos e I 馆 SEcliQn ]

HIDA^/src V 1 ■応~I - 5e[;n re]… PtLilt [*] H PW pl4ihr ii^cl L?i (S^Etitii f1 J a n 缈?叶 fr^pgrti ?& >f 1 CBqrinn 町?町駁|c ?)4Eud ? 首先在CAD 中将需要导入的截面画好(注意截面必须是闭合的!),然后保存 为DXF 文件;在midas 中打开截面特性计算器,选择与 导入DXF 文件,然后点生成截面、计算截面特性再保存为 中截面添加选择spc 数值,点击导入spc 截面就是保存的sec 文件!然后只需 要设置一些截面的参数就可以了! 7! > V tt ■,■ 10 u Hart Sortian I- Marhbo-EHr CciaiE Fne ke<^LJdt^ [占田 a I CtKt ] V ¥1* Ei 七 尹打*■冷劈《 T<-ilc K+lp 'D 磴U 曾I 口 垢 PnriBfhf HnJ _ lb IlH ■ *C 1 2户怕口怕3胶I 厂 血I |>Pdr m2、 f 畅(5性 F : hd mVfiR 甩口F Irntidl ['Iv% 何rrn ■哎 oL|「*nii 广 Irf 『Em nri Iratq] L ] 口cram Zn- L JJ. T U a Bf 7 niBAS/y^C V ii5 +1 £Htr ?rMi m 托 uw* |vf?rrF<1 A ?FinR4? Kr rw4l*l 4?la -ItodHp Curve ffl]. P*lnt [fl] 决? pl?e fPCLl.n [lectio.-PI] y^ner^tea. ItiF prftfiertiFS - ?-F 1 arctinn ATF C -J J 匚 ulalrd. I i I CAD 一致的单位,再 sec 文件;在 midas 刁:>■ V r > . 1£ tie 4 >

midas时程荷载工况中几个选项的说明

时程荷载工况中几个选项的说明 动力方程式如下: 在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。另外,正如哲学家所言:运动是绝对的,静止是相对的。静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。 0.几个概念 自由振动: 指动力方程中P(t)=0的情况。P(t)不为零时的振动为强迫振动。 无阻尼振动: 指[C]=0的情况。 无阻尼自由振动: 指[C]=0且P(t)=0的情况。无阻尼自由振动方程就是特征值分析方程。 简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。 非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。 任意荷载: P(t)为随机荷载(无规律),如地震作用。随机荷载作用下的振动为随机振动。 冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。 1.关于分析类型选项 目前有线性和非线性两个选项。该选项将直接影响分析过程中结构刚度矩阵的构成。 非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。 只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。 如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。 2.关于分析方法选项 目前有振型叠加法、直接积分法、静力法三个选项。这三个选项是指解动力方程的方法。关于振型叠加法、直接积分法可以参考一些动力方程方面的书籍。 振型叠加法是将多自由度体系的动力反应问题转化为一系列单自由度体系的反应,然后再线性叠加的方法。其优点是计算速度快节省时间,但是由于采用了线性叠加原理,原则上仅适用于分析线弹性问题,当进行非线性动力分析时或者因为装有特殊的阻尼器而不能满足阻尼正交(刚度和质量的线性组合)时是不能使用振型叠加法的。 直接积分法是将时间作为积分参数解动力方程式的方法,又称为时域逐步积分法。直接

桥梁移动荷载分析

13. 移动荷载分析 概述 在3跨连续梁施加移动荷载 (标准车辆荷载) 时,根据影响线估算出各截面的最大截面力, 查看产生最大截面力的移动荷载的位置。 材料 混凝土设计标准抗压强度 : 270 kgf/cm2 截面 形状 : 实腹长方形截面 形状 : B x H = 3000 x 1000mm 荷载 1. 标准移动荷载 : QC-20 2.支座沉降:1.0cm 图 13.1 分析模型(单位m)

设定基本环境 打开新文件以‘活荷载.mgb’为名保存。单位体系为设置为‘m’和‘tonf’。 文件/ 新文件 文件/ 保存( 活荷载 ) 工具 /单位体系 长度 > m ; 力 > tonf 图 13.2 设定单位体系

设定结构类型为X-Z平面。 模型 / 结构类型 结构类型 > X-Z 平面? 定义材料以及截面 连续梁的材料选择混凝土 (设计标准抗压强度 270 kgf/cm2),输入截面数据。 模型 / 特性 / 材料 材料号( 1 ) ; 类型 >混凝土 规范 > GB-Civil(RC) ; 数据库 >30? 模型 / 特性 / 截面 数据/用户 截面号( 1 ) ; 名称( 长方形 ) 截面形状> 实腹长方形截面 ; 用户 H ( 1 ) ; B ( 3 ) ? 图 13.3 定义材料图 13.4 定义截面

建立单元 首先输入节点, 然后用扩展单元功能建立连续梁。 正面, 捕捉点 (关) 捕捉轴线 (关) 捕捉节点 (开) 捕捉单元 (开) 自动对齐(开) 节点号 (开) 模型 / 节点 / 建立节点 坐标( 0, 0, 0 ) ? 模型 / 单元 / 扩展单元 全选 扩展类型 > 节点 线单元 单元属性 > 单元类型 >梁单元 材料 > 1:30 ; 截面 > 1:长方形 ; Beta 角( 0 ) 一般类型 > 复制和移动 ; 移动和复制> 等间距 dx, dy, dz ( 35/14, 0, 0 ) ; 复制次数( 14 )? 图 13.5 建立连续梁

MIDAS中关于移动荷载车道的定义MIDAS中关于移动荷载车道的定义很多人

MIDAS中关于移动荷载车道的定义 MIDAS中关于移动荷载车道的定义很多人都不是很清楚原理,MIDAS自己也讲的不是很清楚,事实上很多累死软件对横向荷载的分布处理也不是很完善,下面我就我个人理解,参考其他前辈的理解,说说我的看法,希望大家积极跟帖,多多讨论,把这个问题搞清楚。 定义一般车道时,应该就是选择距离设计车道中心线最近的一根纵梁作为车道单元,然后定义偏心来按规范规定的等效车道荷载加载。 偏心距离是车道中心距离就近梁单元中心的距离。结构尺寸确定后,车道中心和每个纵梁的中心(如果是单梁那就是结构的中心)都是已知的,这时就很容易确定车道的偏心距离了。横向联系梁车道定义时和一般车道定义方法是一样的,要选择就近的一根纵梁作为车道单元,定义偏心、定义跨度、定义车道分配单元,唯一不同的就是横向联系梁要选择横向联系梁结构组而已。 MIDAS官方的说法是:车道单元是定义车道位置的参考单元,civil中目前横向车道位置需由用户定义。车道偏心量为车辆中心线距参考单元距离。 我理解的具体加载情况是:一根单梁,车道中心布置,如果定义车道时不考虑车辆宽度,则荷载加载在梁单元中心线上;而如果定义车道时考虑车辆宽度(貌似2006版才有了这个功能)1.8m,则荷载为偏心梁单元荷载,分别加载在梁单元中心两侧0.9m的位置上,因此换算成梁单元荷载就是集中载和换算扭矩。对于单梁分析,是否考虑车辆宽度对结构没有影响,但如果是梁格模型,是否考虑车辆宽度对结果的影响还是很大的。 规范规定的等效车道荷载是没有考虑车辆宽度的(但是,我在邵旭东的《桥梁工程》中看到了一句大实话:车道荷载的单向布载宽度为3.0m,这个才更接近实际情况)。 具体的,根据规范进行双车道中载和偏载加载时,一个是把车道荷载分别加载在两个车道设计中心线上,一个就是以最小间距3m来在一侧布置2个车道加载。如具体偏载情况: 第一个车道中心位置: 人行道边缘+0.5+0.9 第二个车道中心位置: 人行道边缘+0.5+0.9+3.1 ,用梁中心线计算出偏心距离输入即可。 希望能抛砖引玉,大家多多发言和讨论来一起把这个问题弄清楚。更深一层的也希望能以此为开始给我们板块注入新的活力和增添新的风气,希望除了资料和图纸的分享以外能更多一些经验和技术的交流,多一些答疑和解惑,也多一些朋友和老师,在使得板块更有活力也更人性化的同时也能让大家工作和学习更进一步,有道是“它山之石,可以攻玉,如切如磋,如琢如磨”啊! 谢谢大家!

弹塑性时程分析实例

80 第40卷 增刊 建 筑 结 构 2010年6月 北京某超高层商住楼动力弹塑性时程分析 徐晓龙,高德志,桂满树,姜毅荣,何四祥,王 侃 (北京迈达斯技术有限公司,北京 100044) [摘要] 基于梁柱塑性铰和剪力墙纤维模型,利用MIDAS Building 软件实现了超高层建筑结构的弹塑性时程分析。结合该结构研究了在大震作用下结构将出现的破坏模式、塑性发展特点等,并与弹性分析进行了对比,说明弹塑性分析更能反映实际情况,能对结构的抗震性能给出较为合理全面的评价,并对工程设计给出指导。 [关键词] 动力弹塑性时程分析;MIDAS Building ;纤维模型 Elastic-plastic time-history analysis on the super-high business-living building in Beijing Xu Xiaolong, Gao Dezhi, Gui Manshu, Jiang Yirong, He Sixiang, Wang Kan (Beijing MIDAS Technology Information Co.,Ltd,. Beijing 100044,China ) Abstract: Based on the theory of plastic hinges (beams and columns ) and fiber model (walls ), elastic-plastic time-history analysis is performed on the super-high business-living building in Beijing by MIDAS Building software under the scarce earthquake load. Failure Modes and plastic zone development are researched according to the feature of the structure. Through the comparison with the elastic analysis, it is considered that evaluation on the structure can be deduced from the elastic-plastic analysis more reasonably and comprehensively, and there will be better instruction to the projects. Keywords: dynamic elastic-plastic analysis; MIDAS Building; fiber model 1 结构特点 某50层的超高层商住两用建筑,地上50层,结构高度达到236.3m ,采用钢骨混凝土柱框筒结构形式,平面尺寸64.8m ×43.8m (轴线尺寸)。结构已经超过型钢混凝土框架-钢筋混凝土筒体结构8度(0.2g )抗震设防下的最大适用高度(150m ),该结构为抗震超限结构,故有必要对结构进行动力弹塑性时程分析,以考察其在罕遇地震作用下的响应、薄弱环节、破坏模式等。结构整体模型及首层平面见图1,2。 2 动力弹塑性时程分析 图1 结构模型图 图2 首层平面图 时程分析法[1]被认为是目前结构弹塑性分析的最可靠和最精确的方法,它不仅能对结构进行定性分析,同时又可给出结构在罕遇地震下的量化性能指标,并且得到结构在各个时刻的真实地震反应。弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过逐步积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接积分法。 弹塑性动力时程分析有如下优点:1)输入的是罕遇地震波的整个过程,可以真实反映各个时刻地震作用引起的结构响应,包括变形、内力、损伤状态(开裂和破坏)等;2)有些程序通过定义材料的本构关系来考虑结构的弹塑性性能,故可以准确模拟任何结构,计算模型简化较少;3)该方法基于塑性区的概念,对带剪力墙的结构,结果更为准确可靠。 基于MIDAS Building 动力弹塑性分析平台,对北京某超高层商住楼进行了罕遇地震作用下的动力时程分析,研究其各个抗震性能指标以及破坏模式。 2.1 弹塑性动力分析的基本方法 弹塑性动力分析包括以下几个步骤:1)建立结构

Midas civil荷载组合详解

主要根据公路桥涵设计通用规范(JTG D60-2004)编制。在结果>荷载组合对话框中选择“自动生成”功能。 a. 在荷载>移动荷载分析数据中定义移动荷载时,下面组合中的符号L 用ML 代替。b. 反应谱荷载工况的简称为ESP c. 在荷载>移动荷载分析数据中,将人群荷载按移动荷载定义,并在移动荷载工况中将其与其它汽车荷载子荷载工况进行组合时(在移动荷载工况中选择“组合”),在定义人群荷载子荷载工况时,系数应取0.8(根据通用规范 4.1.6 条第 1 项)。为了考虑人群荷载单独作用的情况(系数1.0 的情况),需要另外单独定义一个人群荷载移动工况。 d. 下面组合中考虑了可变荷载作用的不同时组合(JTG D60-2004 中表4.1.5) e. 不考虑汽车荷载的恒荷载+其他可变荷载的组合及组合值系数需用户另外添加(规范无规定)。 f. 永久荷载中既有对结构承载能力不利,又有对结构的承载能力有利的永久荷载时,需要用户另外添加组合或修改“永久荷载对结构的承载能力有利组合”中的系数。g. 在荷载组合自动生成对话框中选择“考虑弯桥制动力”时,当汽车制动力与离心力同时出现在荷载组合中时,制动力荷载的组合系数自动乘以0.7 的系数。 h. 程序会自动生成各状态组合的包络组合。i. 钢结构的组合依然沿用旧规范。j. 当有移动荷载作用时,在设计中实际采用的组合会更多(对每个荷载组合都会对弯矩最大时、剪力最大时、轴力最大时的情况进行验算)。k. 在荷载>静

力荷载工况中定义荷载名称,但没有具体定义荷载值时,荷载组合的自动生成功能将不包含该荷载工况名称。l. 预应力混凝土设计荷载组合在荷载组合的“混凝土”中定义。a) 永久荷载对结构的承载能力不利(120 个) 恒荷载组合(1 个): 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL 永久荷载+1 个可变作用(8 个): 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*(L+IL+CF) 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*LS 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*CRL 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.1*W 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*SF 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*IP 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*(T+TPG) 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0.

相关主题
文本预览
相关文档 最新文档