当前位置:文档之家› 9-5-马媛媛 粉煤灰合成沸石的吸附性能研究-北京林业大学马媛媛

9-5-马媛媛 粉煤灰合成沸石的吸附性能研究-北京林业大学马媛媛

沸石吸附材料的研究进展

沸石吸附的研究进展 摘要:本文主要通过沸石分子筛吸附剂对碘吸附的原理及传质影响的研究,目的是加强认识脱碘的机理,为进一步开发沸石吸附剂的应用提供一定的理论依据。同时针对目前国内外的研发及应用情况进行了概述,提出了存在的问题和解决的思路。 关键字:沸石脱碘吸附传质 前言 沸石是含碱土金属或碱金属的具有三维空间结构的硅铝酸盐晶体,分为天然沸石和人工沸石。天然沸石空隙中充满大量的水分,加热时会沸腾而得其名。人工合成沸石是以硅和含铝的盐为原料,经过水热合成大小与分子大小相当的材料,也称分子筛。沸石的化学通式为M x/n[(AlO2)x(SiO2)y]·mH2O,其中M通常为Na、K、Ca等金属离子。 沸石比表面积适中,一般为500~800m2/g;其孔结构以微孔为主,孔径较小,一般主孔径最大不超过2.5nm,且分布均一。沸石分子筛是通过氧硅四面体和氧铝四面体单元在过氧架桥作用下形成的,其中氧铝四面体带负电性,且孔道内分布有金属阳离子,容易与外界的阳离子发生交换,表现出离子交换性。常用的分子筛全交换工作容量在2.0~2.5mg/g。 沸石是一种强极性吸附剂,极易水分子等极性分子,且由于自身铝硅比和孔径大小不同,对不同极性分子具有选择性,孔道内有可被交换的金属阳离子,对某些特定分子有特殊的吸附作用。 在废气处理方面,沸石可以吸附废气中的SO2和NO x,但是其吸附量低。利用 改性方法可改变沸石的电性、孔径等,可以用来对不同分子特性和直径的气体进行吸附。在水处理方面,利用沸石的离子交换能力,可以吸附去除废水中的氨氮,也可以利用利用改性沸石处理高氟污水或地下水,有价格低的优势,但吸附容量往往不高。 沸石吸附剂脱碘的特性就是一种选择性吸附,通过选择适合碘分子大小孔径的沸石制成吸附剂,达到吸附碘的目的。 二、沸石吸附剂的脱碘原理 1. 吸附原理 (1)物理吸附 沸石吸附剂吸附碘包括物理吸附和化学吸附。物理吸附主要是由于溶液中的碘与沸石分子筛固体表面之间存在范德华力(Van der waals),而产生了范德华吸附,它是可逆的。当沸石分子筛表面分子与液体中碘之间的引力大于液体内部分子运动时,液体中的碘就被吸附在沸石分子筛表面上。它们之间的吸引机理,与气体的液化和冷凝时的机理类似,其吸附热比较低。从分子运动观点看,这些吸附在沸石吸附剂表面的分子由于分子运动,也会从固体表面脱离而进入液体中去,但其本身不发生化学变化。所以物理吸附的特征就是吸附物质不发生任何化学反应,吸附的进程极快,参与吸附的各相间的平衡瞬时即可达到。而且这种吸附通常在固体表面几个分子直径的厚度区域,单位体积固体表面所吸附的量非常小。(2)化学吸附 化学吸附是由于沸石通过所存在的孔道和空腔中的阳离子交换,使其吸附性能发生较大变化,即沸石通过与含Ag的可溶性盐类溶液进行离子交换成银离子型沸石。其脱碘的原理是这种载在沸石上的可交换的银离子从沸石上解离出来,与

在读证明(把红色部分填好后打印出,拿至主楼303审核盖章

在读证明(把红色部分填好后打印出,拿至主楼303审核盖章即可 完成学期填写至上一学期,每个年级只有第一、二学期 如学生现在为大四年级第一学期在读,则已完成大学三年级第二学期 全部课程) 见下页实例(涉及年月的数字需汉字填写): 北京林业大学教务处 在读证明 ×××(男或女,××××年×月×日出生),于××××年六月参加全国统一高考,被我校××××××专业录取,普通全日制本科,学制四年,该生学号为×××,已完成大学×年级第×学期全部课程,预计于××××年七月毕业。 特此证明。 北京林业大学 ××××年×月×日

实例: 北京林业大学教务处 在读证明 张三(男,一九九六年十二月十九日生),于二〇一四年六月参加全国统一高考,被我校物业管理专业录取,普通全日制本科,学制四年,该生学号为140123123,现已完成大学二年级第一学期全部课程,预计于二〇一八年七月毕业。 特此证明。 北京林业大学 二〇一六年四月二十日

在读证明(把横线上内容填好,去掉红色部分打印出,拿至主楼303审核盖章即 可)见下页实例:Beijing Forestry University Certification for On-campus Students This is to certify that (学生姓名), male(男)/female(女), born on (出生日期)(m月) / (d日) / (y年), was admitted into the (专业) program after reaching the required standard in the National College Matriculation Exam in (高考年). It is a full-time, four-year program leading to a Bachelor’s Degree. His(他的)/Her(她的) student number is (学号)and has completed and satisfied the requirements for year(s)(已完几年学业). He(他)/She(她) is expected to graduate in July, (毕业年). Beijing Forestry University Date: (日期)

分子筛变压吸附研究报告

院级本科生科技创新项目 研究报告 项目名称变压制富氧分子筛延长寿命的研究 立项时间2014年10月 计划完成时间2015年12月 项目负责人储万熠 学院与班级冶金与生态工程学院冶金1302班 北京科技大学教务

摘要 变压吸附制氧关键的因素是制氧吸附剂和制氧工艺。制氧吸附剂的性能优劣和使用寿命直接影响产品气的氧浓度和收率,氮吸附容量是评价制氧吸附剂性能优劣的一项重要指标。本课题首先对分子筛进行XRF分析、XRD表征和TEM表征探究分子筛的物理及化学性质,确定对分子筛造成影响的条件。 ANSYS FLUENT中的多孔介质模型可以模拟多孔介质内的流体流动、“三传一反”。PSA空分吸附床由固体吸附剂颗粒填充而成,气-固两相区可作为多孔介质,因此可基于多孔介质模型对变压吸附空分吸附床进行模拟,从而得到床层内气体的流动状态和组分浓度分布情况。为研究提高分子筛寿命的研究提供可靠有效的实验数据。

Research of Prolong the Life of Pressure-Swinging-Oxygen-Making Molecular Sieve Abstract The keyfactorof thepressure swinging oxygen making is oxygen adsorbentandoxygenprocess. The quality and service life of oxygen adsorbentdirect impact on the oxygenconcentrationandyield of productgas, nitrogen adsorptioncapacity ofthe oxygensorbentperformanceevaluation ofthe meritsofan important indicator.This paperfirstdo XRFanalysis, XRDand TEMcharacterization ofphysicalandchemicalproperties ofmolecular sieveinquiryto determine theimpact onmolecular sievesconditions. The porous medium model in ANSYS FLUENT can simulate fluid flow in porous media. PSA air separation adsorbent bed is filled by a solid sorbent particles, gas - solid two phase region as a porous medium, thus can simulate the pressure swing adsorption air separation adsorbent bed based on the porous medium model, resulting in the flow state within the bed of gas and component concentration distribution for providing valid and reliable experimental data of improving molecular sieve’s life.

菱沸石合成实验部分

实验部分 方案一 试剂:硅溶胶;硫酸铝;NaOH;N,N,N–三甲基–1 –金刚烷氢氧化铵。 仪器:反应釜;烘箱;X 射线衍射仪。 实验过程: 以硅溶胶、硫酸铝、氢氧化钠、N,N,N-三甲基金钢烷氢氧化铵(R)、去离子水为原料,采用传统的水热法合成SSZ-13,按其原料的氧化物SiO2:Al2O3:Na2O:R2O :H2O =40 ∶1 ∶16 ∶5 ∶900比例混合,搅拌均匀后,在室温下老化0.5 h,然后倒入带聚四氟乙烯衬高压反应釜中,155 ℃下晶化2~5 d。反应结束后倒入烧杯中,加热到70~80 ℃,再加入一定量的氯化铵交换 2 h,抽真空过滤,交换反应重复 3 次。分离出的固体在120 ℃下烘干,然后用程序升温煅烧以除去晶体中的模板剂和水分,得到原粉SSZ-13。 实验在原有合成的基础上,保持其他反应条件不变的情况下,依次改变NaOH、水的量,以及加晶种、加促进剂时,观察比表面积随反应时间的变化。 方案二 试剂:硅溶胶;偏铝酸钠或氢氧化铝;氢氧化钾和氢氧化钠(碱原料);异相T型沸石。 仪器:不锈钢反应釜;抽滤机;X 射线衍射仪。 采用异相T型沸石为晶种诱导在不添加有机模板剂的条件下形成菱沸石,其制备按如下步骤:(1)配制原料液SiO2-Al2O3-K2O-Na2O-H2O体系,各组份摩尔比为:SiO2/Al2O3=10~25,H2O/SiO2=10~16,Na+/K+=0.1~0.8,OH—/SiO2=0.85~1.2; (2)配制好的原料液加入0.1~5wt%T型沸石晶种,倒入不锈钢反应釜中,在80~180℃下水热合成6~48小时; (3)反应完成后,用100℃去离子水煮沸,洗去表面碱液,抽滤,pH洗至7,在100℃下干燥12小时。

沸石研究进展

沸石在环境中的吸附特性的研究进展 张艳艳 南京工业大学环境学院环境工程 摘要:沸石是一种优良的吸附剂,具有成本低、使用方便、安全且不会造成二次污染等特点。其特性对于控制环境污染极为重要,尤其适用于水处理,净化空气,脱水方面,同时还可作滤料。沸石的应用前景广泛,应继续加大对各种天然沸石性能、结构和其改性工艺的研究,充分发挥其应用性能、拓宽其应用范围,使其在环境保护和污染处理中得到更好的应用。 关键词:沸石吸附作水处理 Study on investigation processes of zeolite adsorption effect in the environment Zhang Yanyan Nanjing University of Technology Collgege of Environmental Sciences Abstrac t:Zeolite is a superior adsorbent,which is cheap, convenient, safe and without any secondary pollution. Its characteristics are quite useful for the environmental pollution-control, particularly suitable for water treatment, air purification, dehydration aspect, and it can also be a filter. The application prospects of zeolite is quite extensive,the attention should be focused on the further study of all kinds of natural zeolites and their character, structure and modification to widen their application in water treatment. Key words: zeolite; adsorption ;water treatment 1 引言 沸石作为一种具有优异功能的非金属矿物材料,在工业中有广泛的应用。其显著特点是孔隙度高、比表换性、吸附性、催化性、耐酸性、耐热性、耐辐射性

沸石分子筛膜的合成方法

沸石分子筛膜的合成方法 人工制备分子筛的合成得到的一般是松散的晶粒,要得到致密的分子筛膜,分子筛晶体之间必须互生,在多孔载体上定向长成致密层,具有一定的渗透性能。近年来,随着膜技术的发展,分子筛膜制备技术取得了不小的进展,常用的有原位生长法,二次晶种法和微波合成法,此外,还有溶胶-凝胶法、嵌入法、蒸汽相法等。 一、原位水热法 原位生长法采用与分子筛粉末合成相同的方法,将载体、硅源、铝源、模板剂、碱和水按照一定的生长比例加入反应釜中,在一定温度和自生压力下水热晶化,多孔材料在载体表面附着生长,多孔载体表面生长一层致密的分子筛膜层。使用该方法已经成功制备的分子筛膜有MFI、A、SAPO-34和八面沸石膜、丝光沸石膜等。原位水热合成中,沸石膜经历成核期和生长期两个阶段。成核期,母液中的营养随着水热能量的给与而随机成核,附着在载体上,也有部分散落在营养液中;生长期,已经生成的晶核不断原位长大,载体上附着的晶核也长大并互生,连成一片致密的膜层。 膜是由分子筛晶粒互生相连而成。生长液中硅铝比、碱浓度、模板剂的比例、温度和晶化时间都对合成的膜有影响,载体的适当修饰也会对提高分子筛膜的质量。该制备方法设备简单,方法易行,易实现大批量生产,具有工业化前景。不足之处在于可控性差,晶体要优先在载体表面成核而不是溶液主体,受载体表面性质影响和晶核随机生长的影响,膜层的生长很容易不均匀,难致密,膜层厚度不易控制。该方法比较适用于管状的载体生长沸石分子筛膜。迄今为止,人们已经成功的在石英、金属、氧化铝、玻璃等多孔材料表面原位合成了高质量的MFI 型分子筛膜。而且对合成的分子筛膜进行了气体分离和液体渗透汽化分离等测试,膜表现良好。 二、二次晶种法 二次晶种法,顾名思义,先要合成纳米级或者微米级的晶种,然后将纳米晶涂覆在载体的一侧表面,再将载体置于二次生长的母液中水热晶化成膜。合成的晶种的尺寸最好控制在纳米级别,将得到的纳米晶种洗干净后使之均匀分散在溶剂中,得到晶种的悬浮液。然后采用一定的办法,例如沾取涂布法、滴涂法,旋

北京林业大学关于本科毕业论文(设计)工作的规定(修订)

北京林业大学关于本科毕业论文(设计)工作的规定(修订) 毕业论文(设计)是实现培养目标的重要教学环节,是本科教学计划的重要组成部分,是学生在校学习的最后阶段和质量总检查,对全面提高教学质量具有重要意义;同时,毕业论文(设计)的质量也是衡量教学水平,学生毕业与学位资格认证的重要依据。为加强本科毕业论文(设计)工作,深化教学改革,全面推进素质教育,特作本规定。 一、毕业论文(设计)资料的组成 毕业论文(设计)文本,按规定格式撰写、排版、打印、装订;电子文档(含毕业论文或毕业设计、设计图纸等,以光盘形式存储)。 文献综述。 毕业论文(设计)任务书;中期检查表;指导教师评价表;评阅人评价表;答辩小组成员评价表;答辩评价表。 其它。 二、指导教师的职责 毕业论文(设计)实行指导教师负责制,指导教师应对整个毕业论文(设计)阶段的教学活动全面负责。 指导教师应由讲师及相当职称以上的教师担任,助教不单独指导毕业论文(设计),可协同其它指导教师工作。每个指导教师指导学生数原则上理工农类不超过6名,经管文法类不超过8名,初次担任毕业论文(设计)指导教师的,指导的学生数不超过2名。可与校外教师联合指导,但以本校教师为主导。 指导教师负责填写学生毕业论文(设计)任务书。任务书中要明确列出毕业论文(设计)的选题、研究范围、目的和意义、主要内容和基本要求、查阅文献范围和数量、工作进度等。 审定学生拟定的工作计划或实验设计方案,批改译文及外文摘要,批改学生文献综述。 学生进入毕业论文(设计)阶段后,指导教师应随时了解学生的工作情况,对毕业实习、实验和毕业论文(设计)中出现的问题及时给予指导。 指导学生正确撰写毕业论文(设计),对学生的毕业论文(设计)进行评定,向答辩小组介绍向学生下达的任务及要求、学生完成论文(设计)的质量及应用价值等。 负责将学生论文(设计)最后交所在学院统一收藏。 三、学生应遵守的原则 根据学院公布的毕业论文(设计)选题,结合自己的特长、爱好和工作意向等提出选题申请,在指导教师的指导下独立撰写毕业论文(设计)的研究或设计实施方案。 独立完成规定的工作任务,不弄虚作假,不抄袭别人的成果。 在完成毕业实习、实验和毕业论文(设计)工作期间,要努力学习、刻苦钻研、勇于创新、勤于实践,培养自己分析问题、解决问题的能力和实际操作技能。 遵守纪律,合理安排工作和业余生活;遵守实验室、设计场所的有关规章制度,保持良好的工作环境。按指导教师要求查阅中外文文献(不少于15篇,其中外文文献不少于5篇),撰写不少于1万字的论文(设计说明书)。 毕业论文(设计)完成后,交还指导教师、资料室、实验室的各种资料和借用物品。 认真进行答辩。 四、选题 符合教学基本要求和人才培养目标,与所学专业及基础密切相关,使学生能够综合运用所学知识和技能。选题应尽可能结合生产、科研、教学与实验室任务,做出的结果有一定的理论与实际意义。 选题应有一定的深度与广度,工作量饱满,使学生在规定的时间内经过努力能按时完成;同时选题要有明确的针对性,使学生有具体工作内容,避免过空过大,在完成毕业设计(论文)过程中得到理论与实践的训练。 一人一题是选题的重要原则。需几名学生完成的课题,必须以每个学生的侧重点为其选题,明确规定每

沸石实验报告

沸石实验初步报告 一、实验的目的和意义:随着矿渣微粉应用的普及,矿渣供应越来越紧,而且价格越来越高,寻找一种新的材料完全或部分取代矿渣很有必要。沸石是一种含水的碱金属或碱土金属的铝硅酸矿物,常见于喷出岩,特别是玄武岩的孔隙中,也见于沉积岩、变质岩及热液矿床和某些近代温泉沉积中,其阳离子交换性、吸附性、分子筛这三种特性构成了沸石应用领域广泛的物性基础,广泛应用于建筑工业、农业、轻工业、环保以及国防等领域。 沸石在建材工业领域的应用主要有: 1、作为水泥活性混合材料,水泥工业用量最大。该矿石粉碎后不再做其它加工,可以直接掺入水泥熟料中,从而降低水泥的生产成本。 2、使用沸石作发泡剂,应用于制造泡沫轻质建筑砌块,配制多孔混凝土,生产硅钙板,建筑灰膏等。 3、应用沸石烧制人工轻骨料“陶粒”,具有轻质,高强,吸水率等特点。陶粒被广泛应用于新型建筑材料工业以及建筑业,代替粘土砖,还可以应用于农业搞无土栽培。再就是环保方面做洁净美化,污水过滤,烟尘过滤,隔音材料等。 4、用沸石作因化剂,可将有害的废料固定在混凝土当中。 5、可以加工制造成小颗粒,直接掺入水泥中作轻骨料,生产建筑砌砖,空心砖,轻质高强板材等。 因此,本次试验主要是探索沸石在建材产品中应用的可行性 二、样品制备:从潍坊矿山及水泥厂取各种沸石,用试验小磨分别磨制到不同比表面积。A、铁红色颗粒状(取自水泥厂);B、颗粒状青色(矿山);C、粉状青色(与B同一矿山) 制备如下: 比表面积 样品样品名称 ≥400 ≥500 ≥600 ≥800 粉磨时间8ˊ--- A 比表面积470 --- 比表面积398 510 625 829 B 粉磨时间7ˊ15ˊ18ˊ22ˊ20" 比表面积398 470 603 757 C 粉磨时间13ˊ20ˊ32ˊ60ˊ

沸石分子筛用于气体吸附分离的原因

沸石分子筛用于气体吸附分离的原因 氧气、氮气、一氧化碳及甲烷都是重要的工业原料气体。随着工业的发展,这些原料气体的需求量不断地增加,使N2/O2分离、N2/CH4分离、CO/N2分离及CO/CH4分离具有非常重要的工业意义。工业上气体分离过程有深冷法、吸附分离法等。过去二十多年来,吸附分离法取得了很大的发展,尤其是变压吸附(PSA)循环的逐渐完善,使得气体吸附分离更为经济有效。吸附剂是PSA气体分离技术的基础,吸附剂的性能直接影响最终分离效果,甚至影响工艺步骤的选择和PSA的生命力。适用于PSA的吸附剂必须对目的气体有高的吸附容量和分离选择性;吸附剂的分离选择性系数Α只有在大于3时,PSA过程才具有经济性;当Α低于2时,就很难设计出一个满意的PSA分离过程。在工业上,孔隙率高且通常用于气体或蒸气混合物分离的吸附剂主要有沸石分子筛、活性炭、活性粘土、硅胶及活性氧化铝。沸石分子筛以其规整的晶体结构、均匀一致的孔分布和可调变的表面性质在吸附分离领域得到广泛应用。 沸石分子筛是结晶硅铝酸盐,普通化学式为Mx/n[(AlO2)x(SiO2)y]·mH2O.它在气体分离过程中备受欢迎的一些独特性能是: a.晶体三维微孔结构赋予其很高的热稳定性和水热稳定性; b.与活性炭等吸附剂不同,其孔结构均匀一致,孔大小分布单一; c.通过不同骨架外阳离子交换,可以调变其孔的尺寸; d.通过改变骨架硅铝比,可调变其表面极性; e.与其它类型吸附剂相比,即使在较高的温度 和较低的吸附质分压下,仍有较高的吸附容量。 PSA过程主要是基于以下因素:

沸石分子筛是一种离子型极性吸附剂,孔道表面高度极化,即沸石晶穴内部有强大的库仑场和极性使其易于吸附极性较强、极化率较大的分子。当沸石分子筛晶体粉末与粘合剂经挤压成型时,晶体微粒间形成大孔,这些大孔与晶粒自身的微孔构成了双分散二级孔结构,使其更加符合工业气体分离方面的应用。影响沸石分子筛气体吸附分离的因素主要是,沸石分子筛的孔道(尤其是孔口)的几何因素和沸石分子筛的骨架外阳离子产生的电子因素。由表1可知,这几种气体分子的大小和极性都较为接近。但是,沸石分子筛能将气体有效分离的奥妙在于,沸石分子筛通过离子交换等改善其表面电性和调变其孔口尺寸,从而使具有微小极性差异的气体分子分离开。 总之,沸石分子筛具有适应工业气体分离要求的独特结构,同时可通过离子交换、改变硅铝比、调变骨架元素等方面对其改性,从而实现N2/O2,CH4/N2,CO/N2及CO/CH4的有效分离。

沸石吸附剂研究及应用

沸石脱碘吸附剂的机理及研发 摘要:本文主要通过沸石分子筛吸附剂对碘吸附的原理及传质影响的研究,目的是加强认识脱碘的机理,为进一步开发沸石吸附剂的应用提供一定的理论依据。同时针对目前国内外的研发及应用情况进行了概述,提出了存在的问题和解决的思路。 关键字:沸石脱碘吸附传质 一、前言 沸石是一种多孔性骨架型硅铝酸盐分子筛,可作为离子交换剂、吸附分离剂、催化剂等。沸石骨架中微孔孔径由于孔穴的结晶性质使其分布非常均一,内部的孔穴对大小不同的分子可进行选择性吸附,即可依据沸石吸附剂晶体内部孔穴大小吸附一定大小的分子,能将混合物中各组分高效分离,或将其中杂质彻底脱除,特别是一些困难的分离过程,所以吸附分离的应用已越来越受到重视。 沸石吸附剂脱碘的特性就是一种选择性吸附,通过选择适合碘分子大小孔径的沸石制成吸附剂,达到吸附碘的目的。 二、沸石吸附剂的脱碘原理 1. 吸附原理 (1)物理吸附 沸石吸附剂吸附碘包括物理吸附和化学吸附。物理吸附主要是由于溶液中的碘与沸石分子筛固体表面之间存在范德华力(Van der waals),而产生了范德华吸附,它是可逆的。当沸石分子筛表面分子与液体中碘之间的引力大于液体内部分子运动时,液体中的碘就被吸附在沸石分子筛表面上。它们之间的吸引机理,与气体的液化和冷凝时的机理类似,其吸附热比较低。从分子运动观点看,这些吸附在沸石吸附剂表面的分子由于分子运动,也会从固体表面脱离而进入液体中去,但其本身不发生化学变化。所以物理吸附的特征就是吸附物质不发生任何化学反应,吸附的进程极快,参与吸附的各相间的平衡瞬时即可达到。而且这种吸附通常在固体表面几个分子直径的厚度区域,单位体积固体表面所吸附的量非常小。(2)化学吸附 化学吸附是由于沸石通过所存在的孔道和空腔中的阳离子交换,使其吸附性能发生较大变化,即沸石通过与含Ag的可溶性盐类溶液进行离子交换成银离子型沸石。其脱碘的原理是这种载在沸石上的可交换的银离子从沸石上解离出来,与碘相互作用,生成难溶的AgI

合成条件对粉煤灰合成沸石过程中沸石生成和品质的影响

5期吴德意,等:合成条件对粉煤灰合成沸石过程中沸石生成和品质的影响1155 Q 102030 2e/(o) 图1粉煤灰(a)及不同水热合成温度下沸石产物(b—e)的x射线衍射图谱 Fig.1XRDpatternsofcoal丑yash(a)andtheproductshydrothermallytreatedatvarious temperatures(b—e) 600C(b);80。c(c);900c(d);1200c(e).Q--quartz;M=mullite;P=NaPlzeolite;C----chabazite.Synthesisconditions--time:24h,liquid/solidratio:10,NaOHconcentration:2m01.L-1始溶解,硅、铝等物质被溶解到碱性溶液中并随后在残余的颗粒表面沉积、形成沸石结晶[1,10】.由图3可见,合成产物的颗粒已失去球状形态,且表面粗糙、多孔,由此确认了沸石结晶的生成.在更低温度及其他不同的合成条件下,尽管程度不同,电子显微镜下均可以观察到类似的变化. 1 i 、 § 图2温度(口),液固比(△),NaOH浓度。对粉煤灰合成沸石的阳离子交换容量的影响 Fig.2Effectsoftemperature(口),liquid/solidratio(△),andNaOHconcentration(O)onthecationex—changecapacityofzeolitessynthesizedfrom丑yash口一NaoHconcentration:2tool?L一1.1iquid/solidra-tio:10,reactiontime:24h;△一NaOHconcentration:2tool?L~,temperature:1200C,reactiontime:24h;0--temperature:1200C,liquid/solidratio:lO,reactiontime:24h 图3粉煤灰及由此合成的沸石产物的扫描电子显微镜照片 Fig.3SEMphotographsofnyash(a)andsynthesizedzeoliteproduct(b) Synthesis conditions--NaOHconcentration:2mol?L~,temperature:120。C,reactiontime:24h;liquid/solidratio:103.2NaOH浓度的影响 不同NaOH浓度下(液固比10;反应时间24h;温度120。C)合成产品的粉晶x射线衍射

沸石吸附氨氮技术研究进展

沸石吸附氨氮技术研究进展 摘要:介绍了沸石脱除氨氮的原理和再生机制,综述了国内外应用沸石在改良常规污水处理工艺、作为氨氮污水处理系统的介质与最终出水的氨氮控制环节等方面的研究进展。炼油催化剂生产过程中产生的污水氨氮浓度高,先后试验了多种处理方法,但水中的氨氮很难达标。研究经济合理的工艺去除催化剂生产污水中的氨氮是紧迫而实际的。沸石吸附可作为组合工艺予以试验。 关键词:沸石污水处理氨氯 氨氮对人体和水体具有一定的危害,水质指标中氨氮是引起水体富营养化和环境污染的一种重要污染物。去除污水中氨氮的方法有生物硝化法、气体吹脱法和离子交换法”等.生物法无污染,耗能低,但其转换作用缓慢,去除难于彻底;气体吹脱法工艺简单,投资少,但易造成二次污染;而离子交换法却没有以上不足,且反应过程稳定、易控,吸附剂可再生利用,处理成本较低,特别是使用沸石作为吸附剂时.沸石具有稳定的硅氧四面体结构、大小均一的宽阔空间和连通孔道,能够吸附大量的氨氮,因此被认为是最有应用前景的去除氨氮吸附剂.。鉴于沸石有着良好的吸附与离子交换性能,而我国是世界上少数几个富产沸石的国家之一,美、日等发达国家已将沸石应用在污水处理、特效干燥剂、土壤饲料改良剂等方面,而我们大部分停留在出卖原矿为主甚至干脆闲置不用。因此加强对沸石的开发和利用研究非常必要。 沸石脱氨氮技术是近年来引起人们重视的一种生物物化相结合实现污水脱氨氮的新技术,这一技术就是把沸石对铵根离子的选择性吸附能力和生物硝化反硝化结合起来,加强生物脱氨氮系统的性能和效率 一、沸石对污水中氨氮的去除机理 沸石是具有四面体骨架结构的多孔性含水硅铝酸盐晶体,有良好的吸附及离子交换性能;同时沸石比表面积大,对微生物无毒害,易于附着微生物作为生物载体。生物沸石脱氨氮工艺中,一方面沸石用于生物载体富集硝化菌;另一方面沸石通过离子交换作用吸附水中的铵,还有很重要的一方面就是沸石表面生物膜中的硝化菌将吸附在沸石上的氨氮转化为硝酸盐,形成了一个自我吸收、自我消化的循环过程。通过生物方式不但能使沸石不断得到再生,还能提高脱氨氮的硝化性能,利用微生物作用有效地去除氨氮。此时,沸石得以全部或者部分自我再生,可以继续循环使用。生物沸石脱氨氮过程实质是化学吸附、离子交换和生物硝化三个过程。 沸石孔径一般在0.4 nm左右,大于这个孔径的分子和离子将不能进入,而NH4+的离子半径为0.286 nm,很容易进入沸石晶穴内部进行离子交换,沸石对氨氮具有很强的选择性吸附能力,其交换能力远大于活性炭和离子交换树脂。利用沸石的离子交换吸附能力去除污水中的氨氮包括:吸附阶段和沸石再生阶段,沸石再生可分为化学再生法和生物再生法。

关于沸石吸附性的报告

关于沸石吸附性的报告 一沸石的物理性质 沸石,别名硅酸铝钾盐,英文名称Zeolite或Aluminosilicate。其晶体多呈纤维状、毛发状、柱状,少数呈板状或短柱状。密度为1.9~2.3g/cm3,基本组成如下表: 二沸石的吸附原理 天然沸石是一种含水架状结构硅铝酸盐矿物质,其结构特点除了有离子交换性(极易与周围水溶液的阳离子发生交换作用,交换后的沸石晶体结构不被破坏),催化性(其大孔穴可容纳一定数量的物质,从而促使化学反应在其表面加速进行)外,还有吸附性。其吸附原理如下: 2.1 沸石的“分子筛”作用 沸石晶格内部有很多大小均一的孔穴和通道,孔穴和通道的体积有的可占沸石晶体体积50%以上,这些空穴和通道在一定物理化学条件下具有精确而固定的直径(3—10A)。各种不同的沸石其直径也不同,小于这个直径的物质能够被其吸附,而大于这个直径的物质则被排除在外,这种现象被称为“分子筛”作用。 2.2 沸石的静电作用 沸石具有较大的静电吸引力,在它的铝硅酸盐格架上的电荷即阳离子晶格上的负电与平衡阳离子正电的电荷中心在空间上是不重叠的,所以在其孔穴中有很大的静电吸引力,因而使沸石对极性物质具有优先选择吸附作用。

2.3 沸石的色散力作用 沸石具有很大的比表面积(达500-800平米/克)因而能产生较大色散力,可用做出色的吸附剂,对于主要由扩散力起作用的吸附过程,在大多数情况下,特别是在低分压范围内,沸石的吸附容量很大,高于其它许多吸附剂,但在高分压范围内,沸石的吸附容量往往很小。 三沸石的应用 3.1 沸石在水处理方面的应用 人们利用天然沸石NH4+离子具有很强的选择性吸附能力,用它来从废水中除去氨氮,其中斜发沸石的氨氮去除能力较强。袁俊生等[13]研究过斜发沸石去除水中氨氮的工艺条件和处理效果。结果表明:在废水的pH值为7时,沸石对NH4+的平均交换容量达到12.96 mg/L,处理后水中氨氮低于50 mg/L。 天然沸石经过多种特殊工艺活化后,可以使沸石吸附性能更强,离子交换性能更好,更有利于去除水中各种污染物,成为多功能深度水处理的能替代活性炭的新型材料。 活化沸石就是其中的代表产品,它不仅能去除水中的浊度、色度、异味,而且对水中有害的重金属,如:铬、镉、镍、锌、汞、铁离子及有机物:酚、六六六、滴滴涕、三氮、氨氮、磷酸根离子等物质具有吸附交换作用,也有利于去除水中各种微污染物且水浸出液不含有毒,有害人体物质,去除水中铁、氟效果更为显著。因此活化沸石是工业给水、废水处理及自来水过滤的新型理想滤料 3.2 沸石在其它方面的应用 例如,在畜牧养殖业和饲料工业中,较常用的斜发沸石和合成沸石(4A沸石)添加剂,它们能够促进动物生长、提高生产性能、增加经济效益;在农业上用作土壤改良剂,能起保肥、保水、防止病虫害的作用;在医学上沸石用于血液、尿中氮量的测定…… 四报告结论

粉煤灰沸石的合成及其应用进展

第37卷第11期 硅 酸 盐 通 报 Vol .37 No .11 2018年11月 BULLETIN OF THE CHINESE CERAMIC SOCIETY November ,2018 粉煤灰沸石的合成及其应用进展 陈 毅,陈佳琦,李良葵,姚亚阳,苑立奇,李 涛,任保增 (郑州大学化工与能源学院,郑州 450001) 摘要:粉煤灰是电厂中煤炭燃烧后产生的主要固体废弃物,对其不恰当的处理会对环境造成一定的危害,因此开展粉煤灰的研究十分必要。利用粉煤灰合成沸石不但能够减轻环保压力同时也能获得高附加值产品,具有较好的市场前景。重点综述水热法合成粉煤灰沸石的研究进展,概述粉煤灰沸石的其他几种合成方法;概述了粉煤灰沸石在污水治理、土壤修复、催化及其他领域的应用情况;简要概述了国内外对粉煤灰沸石规模化生产的基础研究现状,并对其发展趋势进行了展望。 关键词:粉煤灰;沸石;合成方法;应用;工业化 中图分类号:TQ 177.1+9 文献标识码:A 文章编号:1001-1625(2018)11-3454-06 ProgressinSynthesisandApplicationofFlyAshZeolite CHENYi,CHENJia-qi,LILiang-kui,YAOYa-yang,YUANLi-qi,LITao,RENBao-zeng (School of Chemical Engineering and Energy ,Zhengzhou University ,Zhengzhou 450001,China ) 基金项目:国家自然科学基金青年基金(21506197);国家自然科学基金(21646011);郑州大学大学生创新创业训练计划 作者简介:陈 毅(1997-),男.主要从事绿色化工与技术研究. 通讯作者:李 涛,博士,副教授.Abstract:Fly ash is the main solid waste generated from the combustion of coal in power plants .Improper disposal of fly ash will cause certain harm to the environment ,so it is necessary to carry out research on it .Using fly ash to synthesize zeolite can not only reduce environmental pressure but also obtain high value -added products ,which has a good market prospect .It is focused on the research progress of hydrothermal synthesis of fly ash zeolite ,and summarized several other synthetic methods of fly ash zeolite .The application of fly ash zeolite in water treatment ,gas separation ,catalysis ,soil improvement and other fields is overviewed .The basic research status of the industrial production of fly ash zeolite is briefly summarized ,and the development trend of the synthetic zeolite of fly ash is prospected .Keywords:fly ash ;zeolite ;synthetic method ;application ;industrialization 1 引 言 粉煤灰通常被作为道路和矿井的填充材料或用于制造砌砖、水泥和混凝土等建筑材料,而未能利用的则通常会被堆积在灰坝中储存,其高值化利用的问题亟待解决。粉煤灰主要由SiO 2、Al 2O 3、CaO 和未燃尽碳等成分组成,其中丰富的硅铝元素可有效地用于制备沸石。从最传统的水热法开始,研究人员利用多种新技术对粉煤灰合成沸石的方法进行改进,多种沸石产品被开发出来。为了更好地利用粉煤灰合成沸石并拓展其应用范围,本文对粉煤灰沸石的合成技术、应用状况进行了综述,对其发展趋势进行了展望。 2 粉煤灰概况 自2015年以来,我国粉煤灰年产量一直维持在6亿吨左右,与之相反,我国粉煤灰的利用率仅70%,与发达国家存在较大差距。因大量的粉煤灰不能得到妥当处理,其对大气、土壤及水资源均造成了极大的污染。因粉煤灰的产地不同,其化学成分和物理结构会存在较大差异,下表列举了粉煤灰主要化学成分的具体数据,见表1[1]。 万方数据

变压吸附实验报告

变压吸附实验报告 篇一:分子筛变压吸附研究报告 院级本科生科技创新项目 研究报告 项目名称变压制富氧分子筛延长寿命的研究立项时间XX年10月 计划完成时间 XX年12月项目负责人储万熠 学院与班级冶金与生态工程学院冶金1302班 北京科技大学教务 摘要 变压吸附制氧关键的因素是制氧吸附剂和制氧工艺。制氧吸附剂的性能优劣和使用寿命直接影响产品气的氧浓度和收率,氮吸附容量是评价制氧吸附剂性能优劣的一项重要指标。本课题首先对分子筛进行XRF分析、XRD表征和TEM 表征探究分子筛的物理及化学性质,确定对分子筛造成影响的条件。 ANSYS FLUENT中的多孔介质模型可以模拟多孔介质内的流体流动、“三传一反”。PSA空分吸附床由固体吸附剂颗粒填充而成,气-固两相区可作为多孔介质,因此可基于多孔介质模型对变压吸附空分吸附床进行模拟,从而得到床层内气体的流动状态和组分浓度分布情况。为研究提高分子筛寿

命的研究提供可靠有效的实验数据。 Research of Prolong the Life of Pressure-Swinging-Oxygen-Making Molecular Sieve Abstract The keyfactorof thepressure swinging oxygen making is oxygen adsorbentandoxygenprocess. The quality and service life of oxygen adsorbentdirect impact on the oxygenconcentrationandyield of productgas, nitrogen adsorptioncapacity ofthe oxygensorbentperformanceevaluation ofthe meritsofan important indicator.This paperfirstdo XRFanalysis, XRDand ofmolecular TEMcharacterization sieveinquiryto ofphysicalandchemicalproperties theimpact onmolecular determine sievesconditions. The porous medium model in ANSYS FLUENT can simulate fluid flow in porous media. PSA air separation adsorbent bed is filled by a solid sorbent particles, gas - solid two phase region as a porous medium, thus can simulate the pressure swing adsorption air

纳米沸石的合成

摘要:纳米沸石作为沸石的主要发展趋势之一,近年来得到了长足发展。沸石纳米化后,由于外表面增大、表面能增高、孔道缩短、外露孔口增多以及外表面酸位数量增加,使其拥有了一系列特殊的优异性能,因此将在工业上得到广泛 关键词:纳米沸石;合成;应用 1概述 纳米科技是20世纪80年代末期刚刚诞生并正在崛起的新科技,是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。它主要由纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学和纳米力学等7个相对独立的部分组成[1]。其中纳米材料作为纳米科技领域中最富活力、研究内涵十分丰富的学科分支而备受关注。 纳米材料从广义上来讲,是指在三维空间中至少有一维处于纳米尺度范围,或由它们作为基本单元构成的材料,如零维的纳米颗粒、原子团簇,一维的纳米丝、纳米棒、纳米管以及二维的超薄膜、多层膜、超晶格等。由于纳米材料结构单元的尺度(1 nm~100nm)与物质中的许多特征长度(如电子的德布罗洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸等)相当,从而使其在物理和化学性质上表现出既不同于微观的原子、分子,也不同于宏观物体的一系列特殊性质(如量子尺寸效应、宏观量子隧道效应、表面效应、巨磁阻效应等),使其在新能源、新材料、环境、电子、电力等高新科技领域有着广泛的应用前景,进而对自然学科的各个领域产生深远影响。 纳米沸石是指晶粒大小在1 nm~100nm之间的沸石。由于晶粒极小,纳米沸石的比表面积尤其是外表面积明显增加,表面原子数与体积原子数之比急剧增大,孔道缩短,外露孔口增多,从而使纳米沸石具有更高的反应活性和表面能,表现出明显的体积效应和表面效应。具体说,有以下几方面。 1)由于外表面积增大,使更多的活性中心得到暴露,有效地消除了扩散效应,使催化剂效率得到充分发挥,从而可使大分子的反应性能得到改善。 2)由于表面能增高,使沸石的吸附量增大、吸附速度加快,从而使沸石的有效吸附能力得到改善。 3)纳米沸石的孔道短,其晶内扩散阻力小,加之巨大的外表面积使纳米沸石有更多的孔口暴露在外部,这既有利于反应物或产物分子的快速进出,又可防止或减少因产物在孔道中的聚积而形成结碳,提高反应的周转率和沸石的使用寿命。 对于那些因受扩散限制而难以发生、或反应物或产物分子大小与沸石孔口尺寸相近的反应,纳米沸石将表现出更大的优越性。目前已成功制备出的纳米沸石包括纳米ZSM-5沸石、纳米TS-1沸石、纳米silicalite-1沸石、纳米β沸石、纳米Y沸石、纳米X沸石、纳米A沸石、纳米HS沸石、纳米BETA 沸石以及纳米AlPO4-5沸石等。最近,作者采用水热合成法也成功地合成出纳米4A沸石。 2 纳米沸石的合成 2.1水热法合成纳米沸石 水热合成法是沸石合成中广泛采用的一种方法,同时也是纳米沸石合成的首选方法。利用水热合成法

相关主题
相关文档 最新文档