当前位置:文档之家› 基于单片机的热电偶测温系统

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统
基于单片机的热电偶测温系统

基于单片机的热电偶测温系统

摘要

热电偶传感器是目前接触式测温中应用最广的热电式传感器,在工业用温度传感器中占有及其重要的地位。本文设计了基于单片机的热电偶测温系统,该测温系统由温度测量电路、运算放大电路、A/D转换电路及显示电路组成,以AT89C51单片机为主控单元。文中首先介绍了热电偶的测温原理,热电偶冷端补偿方法,结构形式,及其特点等,另外简答介绍了硬件平台中相关模块的功能及用法。另外对硬件电路包括温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件及温度采集电路、温度转换电路、数码管显示电路做了详细的介绍及说明。

关键词温度传感器热电偶热时间常数冷端补偿

The thermocouple temperature measurement system

based on single chip microcomputer

ABSTRACT

Thermocouple sensor is currently the most widely used in non-contact temperature measurement of thermoelectric sensors, in the industry with a temperature sensor and its important status. This paper designed the thermocouple temperature measurement system based on single chip microcomputer, the temperature measurement system composed of temperature measuring circuit, operational amplifier circuit, A/D conversion circuit and display circuit, AT89C51 single chip processor as the main control unit. This paper first introduces the principle of thermocouple temperature measurement, the thermocouple cold junction compensation method, structure form, and its characteristics, etc., in the hardware platform are introduced another short answer function and usage of related modules. In addition to hardware circuit including temperature conversion chip MAX6675, K type thermocouple, 89 c51, digital tube and other components and temperature acquisition circuit, temperature conversion circuit, digital tube display circuit made detailed introduction and description.

KEY WORDS Temperature sensor Thermocouple Thermal time constant Cold junction compensation

1绪论

温度是反映物体冷热状态的物理参数,对温度的测量在冶金工业、化工生产、电力工程、机械制造和食品加工、国防、科研等领域中有广泛地应用。在某些特殊的场合对温度的检测速度有很高的要求,例如:在测量汽车发动机吸入空气的温度的时候,就要求热响应时间小于1s;航天飞机的主发动机的温度测量要求0.4s 内完成等。因此针对以上问题就有人提出温度快速测量的思想。

通常用来测量温度的传感器有热电阻温度传感器、热敏电阻、热电偶、半导体温度传感器等几种。这些常用温度传感器一般的温度测量中可以满足响应速度的问题。但在特殊的场合就不能达到快速检测的要求,例如在气体温度测量时候,由于温度传感器自身的热滞特性,而气体传热过程又比较缓慢,气体温度测量就有很大滞后。工业常用的精度较高的温度传感器有铂热电阻、半导体温度传感器等。铂热电阻具有温度测量范围大、重复性好、精度高等特点,但是响应不是很快,特别是在对气体温度测量时至少要几秒钟,在某些工作环境比较特殊的场合,如高压环境下,还需使用铠装的铂热电阻,更是延缓了热响应速度。半导体温度传感器分热敏电阻和PN结型温度传感器两种。热敏电阻非常适合对微弱温度变化的测量,但是缺点是非线性严重;PN结型的特点是体积小、线性输出、精度高,但是不能使用在液体环境,对气体温度变化响应也较慢[1]。所以用温度传感器一般都存在着对气体温度变化响应较慢的问题。在对温度实时性测量要求比较高的系统,运用常用温度测量方法很难做到对温度的快速测量,对系统的精度影响就很大。

在工业过程控制与生产制造领域普遍使用具有较高测温精度及测温范围的热电偶做测温元件。在工业标准热电偶中,K型(镍铬-镍硅)热电偶由于具有价格低廉、输出热电势值较大、热电势与温度的线性关系好、化学稳定性好、复制性好、可在1000℃下长期使用等特点,因而是工业生产制造部门应用最广泛的热电偶元件。但是将热电偶应用在基于单片机的嵌入式系统领域时,却存在着以下几方面的问题[2]。①非线性:热电偶输出热电势与温度之间的关系为非线性关系,因此在应用时必须进行线性化处理。②冷端补偿:热电偶输出的热电势为冷端保持为0℃时与测量端的电势差值,而在实际应用中冷端的温度是随着环境温度而变化的,故需进行冷端补偿。③数字化输出:与嵌入式系统接口必然要采用数字化输出及数字化接口,而作为模拟小信号测温元件的热电偶显然无法直接满足这个要求。在许多热工实验中,往往面临热电偶冷端温度

问题,不管是采用恒温补偿法(冰点补偿法)还是电桥补偿法,都会带来实验费用较高、实际的检测系统较复杂.难以达到实时测量、接口转换电路复杂等问题,而随着计算机测控技术在工业生产制造领域的普遍应用,温度参数的微机化测量与控制已成为必然趋势。因此我们必须解决对热电偶测量信号的放大调理、非线性校正、冷端补偿、模数转换、数字输出接口等一系列复杂的问题,以及解决模拟与数字电路硬件设计过程和建表、查表、插值运算等复杂的软件编制过程,以达到使电路简化,成本减少,增加系统可靠性的目的。

鉴于上面的分析,本论文主要任务是设计一种基于高精度K型热电偶传感器的快速测温系统。采用带有冷端补偿的温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件设计出相应温度采集电路、温度转换电路、温度控制电路、超量程报警电路、数码管显示电路。系统用单片机对带有冷端补偿的温度转换芯片MAX6675进行控制,要达到任务书中的技术指标,并对系统进行protuse的调试和仿真试验,使其具有良好的实用性能,能够实现对固体表面、液体和气体温度的高精度快速测量。

2系统原理概述

2.1 热电偶测温基本原理

热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路[2],当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端(热端),温度较低的一端为自由端(冷端),自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后即可知道被测介质的温度。热电偶的热电势,应注意如下几个问题:1、热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;2、热电偶所产生的热电势的大小当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关。若热电偶冷端的温度保持一定,这时热电

偶的热电势仅是工作端温度的单值函数。

2.2热电偶冷端补偿方案确定

热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。

2.2.1分立元气件冷端补偿方案

方案一的热电偶冷端温度补偿器件是由分立元件构成的,其体积大,使用不够方便,而且在改变桥路电源或热电偶类型时需要重新调整电路的元件值。主要包括温度采集电路、信号放大电路、A/D转换电路、热电偶冷端补偿电路、数码管显示电路等。

2.2.2集成电路温度补偿方案

方案二采用热电偶冷端补偿专用芯片max6675,max6675温度转换芯片具有冷端温度补偿及对温度进行数字化测量这两项功能[5]。一方面利用内置温度敏感二极管将环境温度转换成补偿电压,另一方面又通过模数转换器将热电势和补偿电压转换为代表温度的数字量, 将二者相加后从串行接口输出的测量结果,即为实际温度数据。主要包括温度采集电路、max6675温度转换电路、数码管显示电路等。

2.2.3方案确定

综合对比以上两种方案,方案一电路复杂,且测量不精确照成误差较大,方案二采用集成温度转换芯片不仅能很好的解决冷端温度补偿及温度数值化问题,并消除由热电偶非线性而造成的测量误差,且精确度高,可实现电路的优化设计。故最后采用方案二。

2.3硬件组成原理

本系统硬件主要由热电偶温度采集电路、MAX6675温度处理电路、89C51单片机控制电路、超量程报警电路和数码管显示电路组成。

热电偶采用分度号为K的热电偶,为了减少外界信号的干扰通过双绞线跟MAX6675芯片直接相连接。MAX6675芯片通过SPI串行接口传输数据,采用的89C51单片机对带有冷端补偿的温度转换芯片MAX6675进行控制。本系统设计还具有报警的特点,当所测量的温度低于零摄氏度或者高于400摄氏度时报警电路发出警报。显示电路由89C51单片机通过锁存器对四位共阳数码管控制,数码管工作需要较大的

电流采用型号为8550的PNP三极管进行控制,当所测温度在规定范围内时就可以通过数码管快速显示出来。

2.4软件系统工作流程

系统的软件工作流程为:热电偶采集的温度数据;温度数据经过MAX6675内部电路的AD转换、冷端补偿、内部校正[6];温度转换电路将处理后12位数字温度量以串行方式送给单片机;单片机将数字量进行软件算法处理;如果测量温度在测量范围内,最后通过数码管显示出测量温度;如果超出测量范围由单片机控制使报警电路报警。其软件工作流程图如图2-4。

热电偶温度数据

采集

MAX6675将采集的数

据处理为数字量

单片机通过算法编程达到

快速测温效果

温度高于或低于某一温度值报警温度在测量范围内显示

图2-4 系统软件工作流程图3硬件设计

3.1热电偶简介

热电偶是工程上应用最广泛的温度传感器。它是将温度量转换为电量变化的装置。它构造简单,使用方便,具有较高的准确度、稳定性及复现性,温度测量范围宽,在温度测量中占有重要的地位。

3.1.1热电效应

当两种不同材料的导体或半导体连成闭合回路时,将两个接点分别置于温度为T 和T0的热源中,该回路内会产生热电势[2]。热电势的大小反映两个接点温度差,保

持T0不变,热电势随着温度T 变化而变化。测得热电势的值,即可知道温度T 的大小。

图3-1 热电偶测温原理图

产生的热电势由两部分组成:温差电势和接触电势。

接触电势产生的原因:由于两种不同导体的自由电子密度不同而在接触处形成的电动势。两种导体接触时,自由电子由密度大的导体向密度小的导体扩散,(N A >N B ,A 到B )在接触处失去电子的一侧带正电,得到电子的一侧带负电,形成稳定的接触电势。接触电势的数值取决于两种不同导体的性质和接触点的温度。两接点的接触电势)(T e AB 和)(0T e AB 可表示为:

BT

AT AB N N e KT T e ln )(= (3-1) 0

0ln )(00BT AT AB N N e KT T e = (3-2) 式中:K —波尔兹曼常数;e —单位电荷电量;AT N 、BT N 和0AT N 、0BT N — 分别在

温度为T 和0T 时,导体A 、B 的自由电子密度。

同一导体温差电势是由同一导体的两端因其温度不同而产生的一种热电势。同一导体的两端温度不同时,高温端的电子能量要比低温端的电子能量大,因而从高温端跑到低温端的电子数比从低温端跑到高温端的要多,结果高温端因失去电子而带正电,低温端因获得多余的电子而带负电,形成一个静电场,该静电场阻止电子继续向低温端迁移,最后达到动态平衡。因此,在导体两端便形成温差电势,其大小由下面公式给出:

dT T T e T

T A A ?=0),(0σ (3-3) A σ:汤姆逊系数,表示导体A 两端的温度差为1℃时所产生的温差电动势。

热电偶回路中总的热电势应是接触电势与温差电势之和。

),(),()(),(0000T T e T T e T e e T T E A B AB AB ABE -+-=

dT N N e KT N N e KT T T A B BT AT BT AT )(ln ln 00

00?-+-=σσ (3-4) 在总热电势中,温差电势比接触电势小很多,在精度要求不高的情况下,热电偶的热电势可近似表示为:

)()(),(00T e T e T T E AB AB AB -≈ (3-5)

对于已选定的热电偶,当参考端温度0T 恒定时,)(0T e AB 为常数,则总的热电动势就只与温度T 成单值函数关系,即:

)()(),(0T f c T E T T E AB AB =-= (3-6)

实际应用中,热电势与温度之间关系是通过热电偶分度表来确定的。分度表是在参考端温度为0℃时,通过实验建立起来的热电势与工作端温度之间的数值对应关系。

热电偶回路的几点结论:1、如果构成热电偶的两个热电极为材料相同的均质导体,则无论两结点温度如何,热电偶回路内的总热电势为零。必须采用两种不同的材料作为热电极。2、如果热电偶两结点温度相等,热电偶回路内的总电势亦为零。3、热电偶AB 的热电势与A 、B 材料的中间温度无关,只与结点温度有关。

3.1.2 热电偶基本定律

中间导体定律:利用热电偶进行测温,必须在回路中引入连接导线和仪表,接入导线和仪表后会不会影响回路中的热电势呢?中间导体定律说明,在热电偶测温回路内,接入第三种导体,只要其两端温度相同,则对回路的总热电势没有影响。

均质导体定律:由一种均匀介质导体组成的闭合回路,不论导体的截面、长度以及各处的温度分布如何,均不产生热电势。换句话说:如果热电偶的两根热电极是由两种均质导体组成,那么热电偶的热电势仅与两接点温度有关,与沿热电极的温度分布无关。如果热电极为非均质导体,当处于具有温度阶梯的情况时,将会产生附加电势,引起测量误差。所以热电极材料的均匀性是衡量热电偶质量的主要指标之一。 参考电极的实用价值在于:它可大大简化热电偶的选配工作。实际测温中,只要获得有关热电极与参考电极配对时的热电势值,那么任何两种热电极配对时的热电势

均可按公式而无需再逐个去测定。用作参考电极(标准电极)的材料,目前主要为纯铂丝材,因为铂的熔点高,易提纯,且在高温与常温时的物理、化学性能都比较稳定。 中间温度定律:)(),(),(0,0T T E T T E T T E C AB C AB AB +=热电偶AB 在接点温度为T 、0T 中间温度为c T .该定律是参考端温度计算修正法的理论依据。在实际热电偶测温回路中,利用热电偶这一性质[10],可对参考端温度不为0℃的热电势进行修正。

图3-2 热电偶中间导体示意图

3.1.3 热电偶温度补偿

从热电偶测温基本公式可以看到,对某一种热电偶来说热电偶产生的热电势只与工作端温度t 和自由端温度t 0有关即:

)()(),(00t e t e t t E AB AB AB -= (3-7)

热电偶的分度表是以t 0=0℃作为基准进行分度的,而在实际使用过程中,参考端温度往往不为0℃,那么工作端温度为t 时,分度表所对应的热电势)0,(t E AB 与热电偶实际产生的热电势),(0t t E AB 之间的关系可根据中间温度定律得到下式:

)0,(),()0,(00t E t t E t E AB AB AB += (3-8)

由此可见,)0,(t E AB 是参考端温度t 0的函数,因此需要对热电偶参考端温度进行处理。 常用的补偿方法有[7-8]:1、冷端恒温法;2、补偿导线法;3、计算修正法;4、电桥补偿(又称冷端补偿器)法;5、显示仪表零位调整法;6、软件处理法。

3.1.4 热电偶的结构形式

为了适应不同生产对象的测温要求和条件、热电偶的结构形式有普通型热电偶、铠装型热电偶和薄膜热电偶等。

普通型结构热电偶工业上使用最多,它一般由热电极、绝缘套管、保护管和接线盒组成。其结构图如图3-3所示。

图3-3 普通结构热电偶

铠装热电偶又称套管热电偶。它是由热电偶丝、绝缘材料和金属套管三者经拉伸加工而成的坚实组合体,它可以做得很细很长,使用中随需要能任意弯曲。铠装热电偶的主要优点是测温端热容量小,动态响应快,机械强度高,挠性好,可安装在结构复杂的装置上,因此被广泛用在许多工业部门中。其结构图如图3-4所示。

图3-4 套管热电偶结构图

薄膜热电偶是由两种薄膜热电极材料,用真空蒸镀、化学凃层等办法蒸镀到绝缘基板上面制成的一种特殊热电偶,薄膜热电偶的热接点可以做得很小(可薄到0.01~0.1μm), 具有热容量小,反应速度快等的特点,热相应时间达到微秒级,适用于微小面积上的表面温度以及快速变化的动态温度测量。其结构图如图3-5所示。

图3-5 薄膜热电偶结构图

3.1.5K型热电偶概述

K型热电偶作为一种温度传感器,K型热电偶通常和显示仪表,记录仪表和电子调节器配套使用。K型热电偶可以直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。

图3-6 K型热电偶

镍铬-偶(K)型热电偶是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。K型热电偶丝直径一般为1.2~4.0mm。

正极(KP)的名义化学成分为:Ni:Cr=92:12,负极(KN)的名义化学成分为:Ni:Si=99:3,其使用温度为-200~1300℃。

K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中广泛为用户所采用。

K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛.

3.1.6K型热电偶特点

K型热电偶是工业上最常用的温度检测元件之一。必须配和二次仪表使用其优点是:

①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

3.2具有冷端补偿的数字温度转换芯片MAX6675功能简介

MAX6675是美国Maxin公司生产的基于SPI总线的专用芯片[9],不仅能对K型热电偶进行冷端补偿,还能对热电势信号作数字处理,具有很高的可靠性和稳定性,可广泛应用于工业、仪器仪表、自动化领域等。其内部结构框图如图3-7所示。

图3-7 MAX6675内部结构框图

3.3单片机选择及部分功能简介

MCU是整个系统的控制核心,由于温度测量系统的接口方便,综合考虑整个系统,选用美国ATMEL公司生产的AT89C51型单片机。AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,其外观引脚图如下:

图3-11A T89C51外观引脚图

AT89C51提供以下标准功能[12]:4k字节的flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0hz的静态逻辑操作,并支持两种软件可选的节电工作模式、空闲方式停止CPU工作,但允许RAM,定时/技

术器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其他所有部件工作指导下一个硬件复位。

AT89C51共有4个双向的8位并行I/O端口,分别为P0~P3,共有32根口线,端口的每一位均由锁存器、输出驱动器和输入缓冲器所组成。P0~P3的端口寄存器属于特殊功能寄存器系列。这四个端口除了可以按字节寻址外还可以位寻址。其中P0口为漏极开路作为输出使用时应外加上拉电阻,P3口既可以做为普通I/O口使用,还可以作为特定的功能引脚。虽然51单片机只有一个串口接口,但其I/O口既可以用字节寻址也可以位寻址,这样在实际应用中,我们就可以通过模拟不同总线的时序特征来实现各种数据的传输。

AT89C51单片机内部有一个功能强大的全双工的一部通信串口。其串行口有四种工作方式:分别为同步通信方式、8位异步收发、9位异步收发(特定波特率)、9位异步收发(定时器控制波特率)。它有两个物理上独立接收发送缓冲器SBUF,可同时发送、接收数据。波特率可由软件设置片内的定时器来控制,而且每当串行口接收或发送1B完毕,均可发出中断请求。

AT89C51单片机的SPI实现

串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口,Motorola公司生产的绝大多数MCU(微控制器)都配有SPI 硬件接口。SPI 用于CPU与各种外围器件进行全双工、同步串行通讯。SPI可以同时发出和接收串行数据。它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)、低电平有效从机选择线CS。当SPI工作时,在移位寄存器中的数据逐位从输出引脚(MOSI)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前)。发送一个字节后,从另一个外围器件接收的字节数据进入移位寄存器中。主SPI的时钟信号(SCK)使传输同步。其时序图如下:

图3-12SPI总线时序图

对于不带SPI串行总线接口的AT89C51单片机来说,可以使用软件来模拟SPI 的操作[13],包括串行时钟、数据输入和数据输出。对于不同的串行接口外围芯片,它们的时钟时序是不同的。对于在SCK的上升沿输入(接收)数据和在下降沿输出(发送)数据的器件,一般应将其串行时钟输出口P1.1(模拟MCU的SCK线)的初始状态设置为1,而在允许接口后再置P1.1为0。这样,MCU在输出1位SCK时钟的同时,将使接口芯片串行左移,从而输出1位数据至MCU的P1.3口(模拟MCU 的MISO线),此后再置P1.1为1,使单片机从P1.0(模拟MCU的MOSI线)输出1位数据(先为高位)至串行接口芯片。至此,模拟1位数据输入输出便宣告完成。此后再置P1.1为0,模拟下1位数据的输入输出,依此循环8次,即可完成1次通过SPI总线传输8位数据的操作。对于在SCK的下降沿输入数据和上升沿输出数据的器件,则应取串行时钟输出的初始状态为0,即在接口芯片允许时,先置P1.1为1,以便外围接口芯片输出1位数据(MCU接收1位数据),之后再置时钟为0,使外围接口芯片接收1位据(MCU发送1位数据),从而完成1位数据的传送。

3.4路同相三态双向总线收发器74LS245

74LS245是我们常用的芯片,用来驱动led或者其他的设备,它是8路同相三态双向总线收发器,可双向传输数据。其引脚图如下:

图3-13 74LS245引脚功能图

74LS245还具有双向三态功能,既可以输出,也可以输入数据。

当89C51单片机的P0口总线负载达到或超过P0最大负载能力时,必须接入74LS245等总线驱动器。当片选端E低电平有效时,DIR=“0”,信号由 B 向 A 传输;(接收)DIR=“1”,信号由 A 向 B 传输;(发送)当E为高电平时,A、B均为高阻态。由于P2口始终输出地址的高8位,接口时74LS245的三态控制端1G和2G接地,P2口与驱动器输入线对应相连。P0口与74LS245输入端相连,E端接地,保

证数据线畅通。89C51的/RD和/PSEN相与后接DIR,使得RD且PSEN有效时,74LS245输入(P0.1←D1),其它时间处于输出(P0.1→D1)。

3.5硬件电路详细设计

3.5.1温度采集电路

热电偶作为一种主要的测温元件,具有结构简单、制造容易、使用方便、测温范围宽、测温精度高等特点[14]。但是,热电偶的应用却存在着非线性、冷端补偿、数字化输出等几方面的问题。设计中采用的MAX6675是一个集成了热电偶放大器、冷端补偿、A/D转换器及SPI串口的热电偶放大器与数字转换器,其电路如图3-14所示。

K型热电偶的两端分别跟MAX6675芯片的T-跟T+相连,为了允许热电偶断路检测,T-引脚必须接地。MAX6675的测量精度对电源耦合噪声较敏感。为降低电源噪声影响,在MAX6675的电源引脚附近接入1只0.1μF陶瓷旁路电容。温度由热电偶采集,然后将数据直接送给冷端补偿芯片MAX6675芯片进行处理,处理后送给单片机控制电路,完成简单的温度采集过程。

图3-14温度采集电路原理图

3.5.2显示电路

LED显示器是单片机应用系统中常用的输出器件,是由若干个发光二极管组成的,当发光二极管导通时,相应的一个或一个笔画发光,控制不同组合的二极管导通,这就能显示出不同字符。

七段LED共有8个发光二极管,其中7个发光二极管七端字形“8”,一个发光二极管构成小数点。发光二极管阴极连在一起的称为共阴极显示器,如图3-15a所示。共阴极LED显示器的发光二极管阴极接地,当某个发光二极管的阳极为高电平时,即逻辑电平“1”时,发光二极管点亮。发光二极管阳极接在一起的称为共阳极显示器,如图3-15b所示。共阳极LED显示器的阳极接在+5V电压源上,当某个发光二极管的阴极为低电平,即逻辑“0”时,发光二极管点亮。

a 共阴极显示器 b 共阳极显示器

图3-15 七段LED 显示器内部结构图

点亮显示器有静态和动态两种方式。所谓静态显示就是显示器在显示某个字符时,相应的发光二极管恒定的导通或截止。这种显示方式每个显示器都需要一个8位输出口控制,需要硬件多,适用于显示位数较少的场合。当显示位数较多时采用动态显示。所谓动态显示就是一位一位的轮流点亮各位显示器,对于每位显示器来说,每隔一段时间点亮一次。显示器的点亮和点亮时的导通电流有关,还与点亮时间和间隔时间有关,调整电流和时间参数,可实现亮度较高较稳定的显示。

本设计使用的是一个四位共阳数码管,当89C51单片机的P0口总线负载达到或超过P0最大负载能力时,必须接74LS245等总线驱动器。本文温度显示电路设计是由一个4位共阳数码管通过三态双向总线收发器芯片74LS245跟单片机相连接,其电路如图3-16所示。其中74LS245的片选跟三态控制引脚接地,数据由单片机向数码管传输。数码管的位的选择通过8550三级管进行控制,三级管基极通过限流电阻跟单片机的I/O 口相连接,当端口为高电平时,三极管截止,当给端口为低电平时三极管导通,数码管相应的位被选中。这样可方便地对数码管每一位进行单独控制。 R3-R10为限流电阻。三极管饱和开通时,集电极-发射极之间电压ce V 取0.5V ,数码管的压降f V 取2V ,数码管的工作电流f I 取5mA ~15mA 。则限流电阻可这样计算获得: f ce

f cc f I V V V R --= (3-9)

把数据带入式子(3-9)得f R 可取值170Ω~500Ω现取Ω=240f R 。为保证三极管可靠开通关断,且要求数码管的亮度适量较高,基极电阻 R11-R14 可适量取小值,本设计取基极电阻为470Ω。

图3-16数码管显示电路

3.5.3单片机控制电路

本文控制电路选用AT89C51对其外围电路进行控制,其接口电路如图3-18。由于AT89C51不具备SPI总线接口,设计中采用模拟SPI总线的方法实现与MAX6675的接口。其中P1.0 模拟SPI的数据输入端与SO相连,P1.1模拟SPI的串行时钟信号与SCK相连,P1.2 模拟SPI 的从机选择端与CS相连,电路中主机为AT89C51,从机为MAX6675。单片机的P2.0用来控制系统的超量程报警。单片机的P2.4、P2.5、P2.6、P2.7和P0口分别通过相应的电路对数码管的位码和段码惊醒控制。系统通过AT89C51的P1.1 给MAX6675 发送串行时钟,P1.0 用来接收MAX6675输出的串行温度数据,P1.2输出的低电平将MAX6675的置零,用于选通MAX6675 工作。系统配有4位数码管显示,小数点设在十位后边,可测温度为0~400℃,分辨率达到0.25℃。

图3-18单片机与其它电路接口图

4软件设计

系统软件设计主要包含主程序、温度采集转换子程序、延时子程序、超量程报警子程序、显示子程序等功能模块。主程序主要完成子程序的调用,并对温度数据进行快速的算法处理;温度采集转换子程序负责将MAX6675 转换来的温度数字量读入单片机并完成温度值的处理得到12位数字温度值;超量成报警子程序主要判断温度值是否超出测量范围;显示子程序主要将计算后的温度值进行显示。

4.1温度采集转换程序设计

采集转换程序主要是MAX6675的操作[14]。MAX6675是以SPI方式输出数据的。其过程如下:单片机使CS变低并提供时钟信号给SCK,由SO读取测量结果。CS 变低将停止任何转换过程;CS变高将启动一个新的转换过程。一个完整串行接口读操作需16个时钟周期,在时钟的下降沿读16个输出位,第1位和第15位是一伪标志位,并总为0;第14位到第3位为以MSB到LSB顺序排列的转换温度值;第1位为低以提供MAX6675器件身份码,第0位为三态。当12位全为0时,说明被测温度为0℃;12位全为1,则被测温度为1023.75℃。由于MAX6675 内部经过了激光修正,因此转换的数字量与被测温度值之间具有较好的线性关系,可由下式给出:温度值=1023.75 ×转换后的数字量/4095。下面给出相应的程序设计。

uint Re_Convert() //采集转换程序

{

uchar i;

uint P_Temp2 =0;

SCK =0;

S0 =0;

CS =0;

for(i=0;i<16;i++)//热电偶数据读取

{

SCK =1;

if(S0= =1) //输出位判断

{

P_Temp2 =P_Temp2 | 0x01;

}

delay(10); //延时

SCK =0;

delay(10);

P_Temp2 <<=1;

}

CS =1;

if(P_Temp2 & 0x0004) //断偶标志判断

{

Work_Stop =1; //工作指示灯息灭停止工作

}

P_Temp2 =(P_Temp2 & 0x7fff) >>3; //12位温度数据提取return(P_Temp2);

P_Temp2 =0;

delay(200);//数据转换时间大约需要170ms

}

4.2显示程序设计

显示子程序主要是对经过单片机处理后的温度值进行显示处理。采用四位共阳数码管显示,首先将处理后的温度数据扩大十倍,然后分别提取百位、十位、个位、小数位的数值,并使其分别在相应的数码管位上动态显示出来。百位、十位、小数位显示采用不带点的断码;个位的显示采用带点的段码,其显示效果可以精确到十分位。

热电阻的测温电路

Pt100热电阻的测温电路 [摘要] 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。 [关键字] 传感器 Pt100热电阻温度测量

目录 1 前言 (4) 1.1 传感器概况 (4) 1.2 设计目的 (7) 2 设计要求 (8) 2.1 设计内容 (8) 2.2 设计要求 (9) 3 原器件清单 (10) 4 Pt100热电阻的测温电路 (11) 4.1 总体电路图 (11) 4.2 工作原理 (11) 5 Pt100热电阻测温电路的原理及实现 (12) 5.1 测温电路的工作原理 (12) 5.2 测温电路的实现 (14) 5.3 测量结果及结果分析 (15) 6 制作过程及注意事项 (16) 6.1 制作过程 (16) 6.2 注意事项 (17) 7 总结 (18) 8 致谢 (19) 参考文献 (20)

热电偶测温的使用原理

热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线

热电偶测温系统实验报告材料书

热电偶测温系统 实验报告书 班级:铁道自动化091班 小组成员:何俊峰、严云钧、王鹏远、倪森 瑜、康宁

目录 一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 2热电偶的补偿方法 3热电偶的实际应用 二热电偶测温系统的相关介绍 1线路原理图 2主要原件及其作用 3调试方法及其注意事项 三实验收尾及总结报告 1处理实验数据 2 实验总结

一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 (1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度 (2)分类:(S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S

热电阻的单片机测温系统

摘要 电子温度计是日常生活中最普遍的电子产品之一,常用的转换元件有热电阻、热敏电阻、热电偶等,通常我们将这些转换元件通过非电量转化电量的检测方法,结合电量和温度之间的关系,我们可以计算出其温度值。在本课题中将介绍一种利用电阻电桥失衡输出的电压转换温度的设计。在设计中,利用AT89S系列单片机作为控制器,计算铂电阻(PT100)电量与温度的转换,并在LED显示温度。 关键词:AT89S52 ADC0832 Abstract Electronic thermometer isin daily lifethe mostcommon oneof electronicproducts, and thecommoninterface element havehe at resistance,thermal resistance, thermocouple,etc., usually we will these interface element through the non-electricity into electricity d etection methods, combined with power and the relationshipbetween the temperature, we can calculate the temperature value. In this topicwill introducea kind of makeuse of the resistance br idgeunbalanced output voltage transition temperature design. In the design,the use of AT89S seriesmicrocontrolleras the controller, calculationof platinum resistance(PT100) powe rand temperatureconversion, and intheLEDdisplay temperature. ?Keyword:AT89S52 ADC0832

热电偶用于温度测量电路

全国电子专业人才设计与技能大赛电子组装、调试与开发大赛 ---------传感元器件 1.NTC 负温度系数热敏电阻 热敏电阻分为三类:正温度系数热敏电阻(PTC ),负温度系数热敏电阻(NTC ),临界温度电阻器(CTR )。 图1-39 NTC 负温度系数热敏电阻 负温度系数热敏电阻器如图1-39所示。其电阻值随温度的增加而减小。NTC 热敏电阻器在室温下的变化范围在10O ~1000000欧姆,温度系数-2%~-6.5%。 ⑴ 负温度系数热敏电阻温度方程 )(T f =ρ T B T e A /'=ρ T B T B T T Ae e S l A S l R //'===ρ 其中:l A A '= 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度 T 的函数。NTC 热敏电阻器在室温下的变化范围在10O ~1000000欧姆,温度系数-2%~-6.5%。 已知温度T 、额定温度T N 和R25即可求的热敏电阻阻值R T 。 ⑵ 负温度系数热敏电阻主要特性 电阻温度系数σ

dT dR R T T 1=σ 微分式(),可得 2T B - =σ 热敏电阻的温度系数是负值。 -----温度测量电桥应用 温度测量电桥的A 点所在的桥臂的电阻是固定的,故A U 是固定的。B 点所在的桥臂的电阻t R 随温度变化,故B U 是变动的。电阻t R 为负温度系数热敏电阻,t R =1.5K 指NTC 热敏电阻的标称电阻值R25。为了方便取2R 与t R 成比例,这里取K R R t 5.12==,同时,1311212 E E R R R A U =+= ,得Ω=7501R 。 在前面已知条件下,推导13’3P R R R +=: 约束条件:① U U U U U B A i ??+-=??-,② 13 1 E A U =。 由测量电桥平衡0=-=B A i U U U 时,得Ω==+=750113’3R R R R P 。 又由1'3 1131E R t R t R E U U U B A i +-=-=,得R p R R R ?±Ω=+=75013'3。故取K R P 11=。 温度控制电路如图3-15所示,由测量电桥、测量放大器、滞回比较器及驱动电路等组成。由于温度的不同,因而在测量电桥的A 、B 点时会产生不同的电压差,这个差值经过测量放大器放大后进入到滞回比较器的反相输入端,与比较电压U R 比较后,由滞回比较器输出信号进行加热或停止加热。 ⑴ 温度控制器电路 温度控制器电路如图3-7所示。

实验二十一__热电偶的原理及现象实验

热电偶的原理及现象 一、实验目的:了解热电偶测温原理。 二、基本原理:1821年德国物理学家赛贝克(T?J?Seebeck)发现和证明了两种不同材料的导体A和B组成的闭合回路,当两个结点温度不相同时,回路中将产生电动势。这种物理现象称为热电效应(塞贝克效应)。 热电偶测温原理是利用热电效应。如图21—1所示,热电偶就是将A和B二种不同金属材料的一端焊接而成。A和B称为热电极,焊接 的一端是接触热场的T端称为工作端或测量端, 也称热端;未焊接的一端处在温度T0称为自由端 或参考端,也称冷端(接引线用来连接测量仪表的图21—1热电偶 两根导线C是同样的材料,可以与A和B不同种材料)。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,并且有相应的分度表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。热电偶一般用来测量较高的温度,应用在冶金、化工和炼油行业,用于测量、控制较高的温度。 本实验只是定性了解热电偶的热电势现象,实验仪所配的热电偶是由铜—康铜组成的简易热电偶,分度号为T。实验仪有二个热电偶,它们封装在悬臂双平行梁上、下梁的上、下表面中,二个热电偶串联在一起,产生热电势为二者之和。 三、需用器件与单元:机头平行梁中的热电偶、加热器;显示面板中的F/V表(或电压表)、-15V电源;调理电路面板中传感器输出单元中的热电偶、加热器;调理电路单元中的差动放大器;室温温度计(自备)。 四、实验步骤: 1、热电偶无温差时差动放大器调零:将电压表量程切换到2V档,按图21—2示意接线,检查接线无误后合上主、副电源开关。将差动放大器的增益电位器顺时针方向缓慢转到底(增益为101倍),再逆时针回转一点点(防电位器的可调触点在极限端点位置接触不良);再调节差动放大器的调零旋钮,使电压表显示0V左右,再将电压表量程切换到200mV档继续调零,使电压表显示0V。并记录下自备温度计所测的室温tn。

基于单片机的热电偶测温系统的设计

技术创新 《微计算机信息》 (嵌入式与SOC )2009年第25卷8-2期360元/年邮局订阅号:82-946 《现场总线技术应用200例》 单片机开发与应用 基于单片机的热电偶测温系统的设计 The Design of Thermocouple Temperature Measurement System Based on SCM (西安外事学院) 荆海霞周琳勃王仁道廖娜 JING Hai-xia ZHOU Lin-bo WANG Ren-dao LIAO Na 摘要:在现代化的工业现场,常用热电偶测试高温,测试结果送至主控机。由于热电偶的热电势与温度呈非线性关系,所以必 须对热电偶进行线性化处理以保持测试精度。该系统通过高精度模/数转换器AD7705对热电偶电动势进行采样、放大,并在单片机内采用一定算法实现对热电偶的线性化处理,再通过数/模转换器AD421进行数/模转换产生4mA~20mA 电流,送主控中心。 关键词:热电偶;线性化;AD 转换;DA 转换;单片机中图分类号:TP273文献标识码:A Abstract:Thermocouple is used frequently in high-temperature test in the modernized industry scene,then the test results are deliv -ered to master control machine.As the non -linear relationship between thermoelectric potential and temperature,it must be carried out on the thermocouple linear processing in order to maintain accuracy of test.This article is for the linearization of thermocouple.The general idea is to study high-precision A/D converter AD7705,which samples and enlarges the thermoelectric potential from the thermocouple,to use a certain algorithm for the linearization processing in the microcontroller,and to convert the data to produce the 4mA-20mA current through high precision A/D converter AD421. Key words:Thermocouple;Linearization;AD conversion;DA conversion;Single-chip-micro-computer 文章编号:1008-0570(2009)08-2-0088-02 1引言 热电偶是工程上应用最广泛的温度传感器之一,它具有构造简单、使用方便、准确度、热惯性小、稳定性及复现性好、温度 测量范围宽等优点,适用于信号的远传、 自动纪录和集中控制,在温度测量中占有重要地位。但由于热电偶的热电势与温度呈 非线性关系,增加了显示与处理的复杂性;且随着工业发展、 自动化的不断加强,对温度精度要求越来越高。为了提高热电偶测量温度的精度,必须从硬件和软件两方面同时入手:硬件设计必须使用高精度A/D 和D/A 器件,软件设计必须设计出合理的满足工业要求的线性化算法,从这两方面解决热电偶测试高温的精度问题。 本文提出的系统以单片机为核心,硬件设计使用高精度模/数转换器AD7705和高精度数/模转换器AD421,分别实现对热电偶电动势的采样、放大、AD 转换和对线性化处理的数据转换,软件设计提出一种“最佳非等距离分段算法”,并在程序中 采用修正后的数据,实现热电偶的线性化处理。 试验结果表明,该系统能很好的解决热电偶测试高温的精度问题,使仪器仪表精度达到1/1000,满足工业设计要求。 2硬件电路设计 本设计是基于STC89C52单片机的硬件设计。系统总原理 框图如图1所示。 控制电路以单片机为中心,控制其他部分完成各自的功能。其中模/数转换部分采用16位高精度AD 转化器AD7705,采用自校准,提高其抗干扰能力和精度;数/模转换部分采用高 精度DA 转换器AD421,在电路设计上,采用光隔离,控制 AD421完成其功能,AD421为16位高精度数/模转换器,它将来自单片机线性化处理后的数据进行DA 转化,产生4mA-20mA 电流,送控制中心。 图1系统框图 2.1模/数转换电路 图2AD 转化电路 模/数转换电路部分,采用16位、双通道、低成本、高精度模/数转换功能的AD7705。AD7705是AD 公司推出的16位∑-Δ(电荷平衡式)A/D 转换器,包括由缓冲器和增益可编程放大器(PGA )组成的前端模拟调节电路、∑-Δ调制器及可编程数字滤波器等,能直接对来自传感器的微弱信号进行A/D 转换。此外他还具有高分辨率、宽动态范围、自校准,低功耗及优良的抗噪声性能,因此非常适用于仪表测量和工业控制等领域。使用时通过单片机控制其单双极性、增益倍数、选择通道的输入和 荆海霞:教师讲师硕士 88--

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统

毕业论文 基于单片机的热电偶测温系统 摘要 热电偶传感器是目前接触式测温中应用最广的热电式传感器,在工业用温度传感器中占有及其重要的地位。本文设计了基于单片机的热电偶测温系统,该测温系统由温度测量电路、运算放大电路、A/D转换电路及显示电路组成,以AT89C51单片机为主控单元。文中首先介绍了热电偶的测温原理,热电偶冷端补偿方法,结构形式,及其特点等,另外简答介绍了硬件平台中相关模块的功能及用法。另外对硬件电路包括温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件及温度采集电路、温度转换电路、数码管显示电路做了详细的介绍及说明。 关键词温度传感器热电偶热时间常数冷端补偿

The thermocouple temperature measurement system based on single chip microcomputer ABSTRACT Thermocouple sensor is currently the most widely used in non-contact temperature measurement of thermoelectric sensors, in the industry with a temperature sensor and its important status. This paper designed the thermocouple temperature measurement system based on single chip microcomputer, the temperature measurement system composed of temperature measuring circuit, operational amplifier circuit, A/D conversion circuit and display circuit, AT89C51 single chip processor as the main control unit. This paper first introduces the principle of thermocouple temperature measurement, the thermocouple cold junction compensation method, structure form, and its characteristics, etc., in the hardware platform are introduced another short answer function and usage of related modules. In addition to hardware circuit including temperature conversion chip MAX6675, K type thermocouple, 89 c51, digital tube and other components and temperature acquisition circuit, temperature conversion circuit, digital tube display circuit made detailed introduction and description. KEY WORDS Temperature sensor Thermocouple Thermal time constant Cold junction compensation

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统 一设计简述 本文设计了基于单片机的热电偶测温系统,介绍了热电偶的测温原理,热电偶冷端补偿方法,简单设计了硬件电路,信号放大电路采用放大器LTC2053将热电偶的输出mv型号放大,再经过ICL7109转换器转换为12位的数字信号,输入给单片机,驱动数码管显示电路显示4位温度值。扩展部分有键盘电路和报警电路。软件部分设计了转换器和键盘及显示电路。 关键字:热电偶;LTC2053放大器;ICL7109转换器;数码管 二设计内容 随着人们生活水平的提高,人们对家用电子产品的智能化、多功能化提出了更高的要求,而电子技术的飞速发展使得单片机在各种家用电子产品领域中的应用越来越广泛。 把以单片机为核心,开发出来的各种测量及控制系统作为家用电子产品的一个组成部分嵌入其中,使其更具智能化、拥有更多功能、便于人们操作和使用,更具时代感,这是家用电子产品的发展方向和趋势所在。有的家用电器领域要求增加显示、报警和自动诊断等功能。这就要求我们的生产具有自动控制系统,自动控制主要是由计算机的离线控制和在线控制来实现的,离线应用包括利用计算机实现对控制系统总体的分析、设计、仿真及建模等工作;在线应用就是以计算机代替常规的模拟或数字控制电路使控制系统“软化”,使计算机位于其中,并成为控制系统、测试系统及信号处理系统的一个组成部分,这类控制由于计算机要身处其中,因此对计算机有体积小、功耗低、价格廉以及控制功能强有很高的要求,为满足这些要求,应当使用单片机。 2热电偶测温原理 1.1热电效应 将两种不同成分的导体组成一闭合回路,如图1所示。

图1 当闭合回路的两个接点分别置于不同的温度场中时,回路中将产生一个电势,该电势的方向和大小与导体的材料及两接点的温度有关,这种现象称为“热电效应”。 1.2接触电势 A和B两种不同材料的导体接触时,由于电子的扩散运动,A与B两导体的接触处产生了电位差,称为接触电势。接触电势的大小与导体材料、接点的温度有关,与导体的直径、长度及几何形状无关。 对于温度分别为t和t0的两接点,可得下列接触电势公式:(温度为t时的接触电势,温度为t0时的接触电势) e AB(T0)=U At0 - U Bt0 1.3温差电动势 将某一导体两端分别置于不同的温度场t、t0中,在导体内部,热端自由电子具有较大的动能,向冷端移动,这样,导体两端便产生了电势,这个电势称为温差电势。 导体A、B在两端温度分别为t和t0时形成的电势 e A(t,t0)=U At–U At0 e B(t,t0)=U Bt–U Bt0 1.4热电偶的电势 将由A和B组成的热电偶的两接点分别放在t和t0中,热电耦的电势为: E AB(t,t0)=e AB(t)-e AB(t0)-e A(t,t0)- e B(t,t0) 由于接触电势比温差电势大的多,可将温差电势忽略掉,则热电偶的电势为 E AB(t,t0)= e AB(T)- e AB(T0) (AB的顺序表示电势的方向;当改变脚注的顺序时,电势前面的符号(正、负号)也应随之改变) 综上所述,可以得出以下结论: 热电偶热电势的大小,只与组成热电偶的材料和两接点的温度有关,而与热电偶的形状尺寸无关,当热电偶两电极材料固定后,热电势便是两接点电势差。 1.5热电偶的基本定律

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

第一章摘要 本文所要设计的是基于运算放大器的具有冷端补偿的热电偶测温。 所要设计包括三部分,热电偶,冷端补偿,运算放大器。热电偶选用的为K型热电偶,补偿采用是桥式补偿电路,运算放大器则用的是运放比例较大而输出阻抗比较小的仪器仪表放大器。 第二章引言 在工业生产过程中,温度是需要测量和控制的重要参数之一,在温度测量中,热点偶的应用极为广泛,它具有结构简单,制作方便,测量围广,精度高,惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子,管道的气体或液体的温度及固体的表面温度。热电偶作为一种温度传感器,热电偶通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可以直接测量各种生产中从0℃到1300℃围的液体蒸汽和气体介质以及固体的表面温度。 第三章电路结构设计 3.1热电偶的工作原理 热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体(称为热电偶丝材或热电极)组成闭合回路,当接合点两端的温度不同,存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端(也称为测量端),温度较低的一端为自由端(也称为补偿端),自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电

热电偶测温原理

热电偶测温原理 教育知识 热电偶测温原理与检定 前言 热电偶是热电效应理论的具体应用,它在温度测量中得到了广泛的应用。热电偶具有结构简单,容易制造,使用方便和测量精度高等优点。 本论文阐述了热电偶的测温原理、热电偶的安装使用方法以及热电偶检定等方面,特别重点讨论了热电偶的测温原理和检定方法,以便能重点突出本论文的写作目的及观点。通过撰写此论文,使自己能更进一步地掌握和熟悉这些关于热电偶的知识点,为以后在工作岗位上的实践和对热电偶进一步的讨论中打下坚实而有力的基础。 撰写人:王彭 2006年1月12日 摘要:热电偶的测温原理是将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 关键词:原理,使用,检定,实例 热电偶测温原理与检定 第一章热电偶测温原理及正确使用 第一节热电偶的测温原理 在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。尽管如此,热电偶

仍在工业生产和科研活动中起着举足轻重的作用。下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。 一、塞贝克效应和塞贝克电势 热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1—1)中,如果对接点a加热,那么,a,b两接点的温度就会不同,温度不同,就会有电流产生,使得接在电路中的电流表发生偏转。这一现象现今称为温差电效应或塞贝克效应,相应的电势称为温差热电势或塞贝克电势,它在热电偶回路中产生的电流称为热电流。A、B称为热电极,接点a是用焊接的方法连接一起的,测温时,将它置于被测温度场中,称为测量端或者工作端,接点b一般要求恒定在某一温度称为参考端或自由端。 A A T a b T0 图1—1塞贝克效应示意图 不同的导体材料的电子密度不同,即使相同的导体材料,温度不同,其电子密度也不相同,当异质金属A、B组成闭合回路,由于接点a、b的温度不同(设T>T0),则同一导体温度高的地方自由电子密度大,温度低的地方自由电子密度小,即NA,T>NA,T0;NB,T>NB,T0。由于两金属导体的自由电子密度不同(设NA,T>NB,T;NA,T0>NB,T0),所以在闭合回路中,自由电子密度大的要向自由电子密度小的区域扩散,这样在回路中就产生了“净”电荷流动,即回路中有电动势eAB,这就是产生塞贝克电动势原因。实验证明,当热电极材料一定后,则热电势仅与两接点的温度有关,即: dEAB(T,T0)=SABdT (1—1) 式中:SAB——热电势率或塞贝克系数,其随热电极材料和两接点温度而定。 当两接点的温度分别为T,T0时,回路的热电势为: EAB(T,T0)= SABdT=eAB (T)- eAB (T0) (1—2) 式中:eAB (T),eAB (T0)——接点a,b的分热电势或分塞贝克电势 式(1—2)中角标A、B表示不同的热电极材料,按正极写在前,负极写在后的顺序排列。当温度T>T0时,eAB(T)与总电动势的方向一致,eAB (T0)与总热电动势的方向相反。如果接点的分热电势角标颠倒,它不会改变分热电势的大小,而改变热电势的方向,即: eAB (T0)=- eBA(T0) (1—3) 代入式(1—2)得: EAB(T,T0)= eAB (T)+ eBA(T0) (1—4) 由此可知,热电偶回路的总热电动势的大小仅与热电极的材料和两接点的温度有关,与热电极中间温度分布无关。 对于已定的热电偶,当其参考端温度T0恒定时,eAB(T0)为一常数,则热电势EAB(T,T0)仅是测量端温度的函数,即:

智能热电偶测温系统设计

摘要 温度是表征物体冷热程度的物理量。在工农业生产和日常生活中,对温度的测量控制始终占据着重要地位。温度传感器应用范围之广、使用数量之大,也高居各类传感器之首。 本文使用温度传感器设计了一个完整的测温系统。该系统所采用的温度传感器为热电偶,A/D转换器件为ADC0809,微型计算机采用的是MCS-51单片机。系统将温度变换、显示和控制集成于一体,用软件实现系统升、降温的调节,控制采用了模糊控制原理对系统进行控制。 设计的系统所满足的技术指标:测温范围为500—800℃,响应时间为小于等于1s,误差范围为-5℃—+5℃。 关键词:热电偶A/D转换模糊控制 ABSTRACT Temperature is the physical quantity of symptom object cold hot level. In the daily life and production of industry and agriculture, occupy important position all along for the measure control of temperature. Temperature sensor application broad scope and use big quantity, also hold the head of each kind of sensor high. This paper uses temperature sensor and has designed , is a and complete to measure warm system. The temperature sensor adopted by this system is thermocouple, the converter of A/D is ADC0809, what personal computer adopt is that MCS-51 only flat machine. System alternates temperature , shows and controls to be more integrated than one body , realizes system with software to rise , cool down regulation, control has adopted vague control principle as system controls. The technical index of design satisfied by system: Measure warm scope is 500 —

相关主题
文本预览
相关文档 最新文档