当前位置:文档之家› Apoptosis induction and growth suppression by U19 Eaf2 is mediated through its ELL-binding domain

Apoptosis induction and growth suppression by U19 Eaf2 is mediated through its ELL-binding domain

The Prostate 67:146^153(2007)

Apoptosis Induction and Growth Suppression by U19/Eaf2Is Mediated Through its ELL-Binding Domain

Junghyun Hahn,1Wuhan Xiao,1Feng Jiang,1Federico Simone,3

Michael J.Thirman,3and Zhou Wang 2,4*

1

Department of Urology ,Feinberg Schoolof Medicine,Northwestern University ,Chicago,Illinois

2

Department of Molecular Pharmacologyand Biological Chemistry ,Robert H.Lurie Comprehensive Cancer Center ,

Feinberg Schoolof Medicine,Northwestern University ,Chicago,Illinois 3

Section of Hematology/Oncology ,Universityof Chicago,Chicago,Illinois

4

Department of Urology ,Universityof Pittsburgh Schoolof Medicine,Pittsburgh,Pennsylvania

BACKGROUND.U19/Eaf2is an androgen-response gene and its downregulation is frequently observed in advanced human prostate cancer.U19/Eaf2interacts

fusion partner of MLL in the (11;19)(q23;p13.1)translocation in acute myeloid Eaf2overexpression induces apoptosis and suppresses xenograft tumor growth.

METHODS.Transfection and colony formation were used to assay for apoptosis suppression of various U19/Eaf2mutants.Co-immunoprecipitation was performed interaction between the U19/Eaf2constructs and ELL.

RESULTS.The region of U19/Eaf2essential for apoptosis and growth suppression was mapped to amino acids 68–113.This region was necessary and suf?cient for binding ELL.Co-expression of U19/Eaf2and ELL in 293cells lead to signi?cant increase in cell death and growth suppression.

CONCLUSIONS.These observations argue that the interaction with ELL is essential for the induction of apoptosis and growth suppression by U19/Eaf2.Prostate 67:146–153,2007.#2006Wiley-Liss,Inc.KEY WORDS:

U19/Eaf2;ELL;apoptosis;growth suppression;prostate cancer

I NTRODUCTIO N

Androgens are essential for the development and maintenance of the prostate.The biologically active androgens,testosterone and dihydrotestosterone (DHT),function by binding to the androgen receptor (AR),a ligand-regulated transcription factor [1,2].AR binds to androgen response elements of the target genes and induces their expression,leading to cell proliferation,differentiation,or apoptosis [3,4].

U19/Eaf2was initially identi?ed as a gene upregu-lated by androgens in the rat ventral prostate [3].It is a putative transcription factor with a transactivation domain in its C-terminal region [5].Further studies revealed the role of U19/Eaf2as a potential tumor suppressor in vivo and an inducer of apoptosis upon overexpression [6].Downregulation,allelic loss,homozygous deletion,and promoter methylation of U19/Eaf2in human prostate cancer specimens are consistent with its growth inhibitory and tumor suppressive role [6].The escape from growth inhibition due to U19/Eaf2inactivation may be an essential step in prostate cancer progression.U19/Eaf2is suggested to play a role in other organs.During mouse embry-ogenesis,U19/Eaf2is developmentally regulated,with

Grant sponsor:NIH;Grant numbers:R01DK51193,P50CA90386.Feng Jiang’s present address is Howard Hughes Medical Institute and Program in Molecular Medicine,University of Massachusetts Medical School,Worcester,MA 01605.

*Correspondence to:Zhou Wang,Department of Urology,Uni-versity of Pittsburgh School of Medicine,Pittsburgh,PA 15232.E-mail:wangz2@https://www.doczj.com/doc/8b8683791.html,

Received 24January 2006;Accepted 12April 2006DOI 10.1002/pros.20481

Published online 16October 2006in Wiley InterScience (https://www.doczj.com/doc/8b8683791.html,).

?2006Wiley-Liss,Inc.

spatially regulated patterns in the developing lens, suggesting a role in lens maturation[7].Loss of U19/ Eaf2function in Xenopus resulted in loss of eyes,further providing evidence for its role in development[8].

U19/Eaf2was recently reported to interact with Eleven-nineteen Lysine rich Leukemia(ELL)in vivo[5].ELL is a gene that frequently undergoes chromosomal translocation and fuses to Mixed Lineage Leukemia(MLL)in Acute Myeloid Leukemia(AML) [9].The MLL-ELL fusion protein is capable of immor-talizing myeloid progenitors and causing AML in mice [10–12].The ELL protein was shown to function as an RNA Polymerase II transcription elongation factor that facilitates the processivity of transcription by suppres-sing transient pausing by RNA Polymerase II[13].ELL plays an essential role in animal development because ELLà/àwas reported to cause embryonic lethality in the mouse model[14].In Drosophila,mutations in ELL result in abnormal embryonic segmentation and the protein is important in early development[15,16]. Consistent with its essential role in animal develop-ment,ELL was reported to regulate proliferation, survival,and apoptosis in cultured cells[17].

ELL and the U19/Eaf2homolog EAF1co-localize in Cajal bodies[18,19],which are nuclear suborganelles involved in various functions including post-mitotic nucleolar formation,pre-mRNA splicing,feedback regulation of snRNA transcription,histone mRNA30 end processing,pre-assembly of general transcription machineries,as well as the sorting,(re)assembly,and transport of small ribonucleoproteins[20,21].Eaf1 and U19/Eaf2have also been reported to stimulate the ELL-mediated transcription elongation[22].When cotransfected,U19/Eaf2and ELL co-localize into distinct nuclear bodies and are tightly associated [5,23].ELL binding also resulted in stabilization of U19/Eaf2and enhanced transactivation by U19/Eaf2 [23].These?ndings support the importance of the interaction with ELL in the function of U19/Eaf2as a transcription factor.

In addition to the ELL binding via its N-terminus, U19/Eaf2has other interesting features.Its C-terminus contains a transactivation domain and a domain that is highly enriched in serine,aspartic acid,and glutamic acid residues that is also present in AF4and ENL[5]. This suggests that U19/Eaf2induction of apoptosis could be mediated via different mechanisms.Domain mapping of U19/Eaf2is likely to provide mechanistic insights into the U19/Eaf2-induced apoptosis.

In this report,we describe the importance of ELL in U19/Eaf2-mediated apoptosis and growth suppres-sion.Amino acids68–113of U19/Eaf2,which is required for the interaction with ELL,is suf?cient for the induction of apoptosis.Co-expression of U19/Eaf2 and ELL enhances apoptosis and growth suppression.These results suggest the essential role of ELL in the function of U19/Eaf2as an inducer of apoptosis and suppressor of cell growth.

MA TERIALS AND METH ODS

Plasmid Construction

Full length or deletion mutants of U19were ampli?ed by PCR and cloned into pEGFP-N3,pM,or pCMV-myc(Clontech,Mountain View,CA).ELL was cloned into pEGFP-N3,pDSRed2-C1,pVP16,pCMV-myc(Clontech),or pcDNA3.1(Invitrogen,Carlsbad, CA)by PCR.MLL-ELL was cloned into pcDNA3.1by PCR.

Tissue Culture and T ransfection PC3,LNCaP,DU145,HeLa,and293cells were obtained from the American Type Culture Collection (ATCC,Rockville,MD).COS-7cells were obtained from Dr.Kathleen Rundell(Northwestern University). PC3,LNCaP,and DU145cells were grown in PRMI1640medium supplemented with10%FBS,1% Penicillin/Streptomycin,and2mM L-Glutamine.COS-7,HeLa,and293cells were grown in DMEM supplemented with10%FBS and1%Penicillin/ Streptomycin.Cells were transfected with plasmid DNA using the Fugene6reagent(Roche,Indianapolis, IN)according to the manufacturer’s instructions.Stable selection of transfected cells was carried out in the presence of G418at1m g/m l.

MammalianT wo-Hybrid Assay

Various regions of U19/Eaf2were cloned into pM. ELL was cloned into pVP16.PC3cells grown in12-well culture plates were co-transfected with the U19/ Eaf2constructs,ELL,and luciferase reporter vectors pFR-Luc(Stratagene,La Jolla,CA)and pRL-TK (Promega,Madison,WI).Twenty-four hours after transfection,cells were washed once with PBS,lysed, and assayed for luciferase activity using the Dual-Luciferase Reporter Assay System(Promega)accord-ing to the manufacturer’s instructions.

Co-Immunoprecipitation and Immunoblot

COS-7cells cultured in10cm culture dishes were transfected with10m g of each plasmid DNA.Twenty-four hours after transfection,cells were washed with PBS,trypsinized and whole cell lysates were prepared by incubating in lysis buffer(50mM Tris-HCl,pH7.4; 150mM NaCl;1mM EDTA;1%Triton-X-100;1mM Na3VO4)containing protease inhibitor cocktail(Roche) for20min on ice.Cell lysates were incubated with anti-myc agarose(Sigma,St.Louis,MO)overnight at

The Prostate DOI10.1002/pros

U19/Eaf2-ELL Interaction in Apoptosis147

48C.Bound proteins were eluted by boiling in SDS loading buffer and separated by SDS–PAGE. The proteins were transferred onto a nitrocellulose membrane(Schleicher and Schuell,Keene,NH), blocked in Tris-buffered saline(TBS)containing5% nonfat milk and0.05%Tween-20,and probed with monoclonal antibodies against myc(Clontech)or GFP (Abcam,Cambridge,MA).For immunoblotting,mono-clonal antibody against b-actin and polyclonal anti-bodies against ELL or U19/Eaf2was used.

Real-Time RT-PCR

Total RNA from various cell lines was prepared using the RNeasy RNA puri?cation system(Qiagen, Valencia,CA).cDNA was synthesized from the total RNA using the SuperScript III First-Strand Synthesis System(Invitrogen).Primer pairs for the ampli?cation of U19/Eaf2,ELL and the human L19gene are as follows;ELL forward:ACTGCATCCAGCAGTATG TCTCCA,reverse:TCCGAAACTGAACCTTCTTGCC CA,U19/Eaf2forward:AGGTGAACAGGTGACCA-TAACTCTGC,reverse:GGGAGTCCTGGCTGAATTC CACATTT,L19forward:CATGAGGTATGCTCAGG CTTCAGA,reverse:AGGTACAGGCTGTGATACAT GTGG.The cDNAs and primer pairs were mixed with iQ SYBR Green Supermix(Bio-Rad,Hercules,CA)and the genes were ampli?ed by PCR.The levels of ampli?ed product were normalized to L19.

Colony Formation Assay

Cells(293)were grown in12-well culture plates. Cells were transfected with1m g plasmid DNA. Twenty-four hours after transfection,cells in each well were expanded into3?10cm dishes.Stable transfec-tants were selected in medium containing500m g/ml G418for3weeks.After3weeks,surviving cells were washed once with PBS and stained with0.5%crystal violet in methanol.Colonies with a diameter larger than1mm were counted.

RESUL TS

Amino Acids68-113of U19/Eaf2Are Suff|cient

for the Induction of Apoptosis in PC3Cells We have recently reported that U19/Eaf2is able to induce apoptosis in prostate cancer cells upon over-expression[6].To de?ne the region of U19/Eaf2 responsible for the induction of apoptosis,we gener-ated various deletion mutants of human U19/Eaf2 tagged to enhanced green?uorescent protein(EGFP). Different regions of the U19/Eaf2cDNA were inserted into the expression vector pEGFP-N3(Fig.1B).PC3 cells were transfected with the recombinant plasmids and expression of the EGFP-fusion protein was monitored by?uorescence microscopy.To test the ability of U19/Eaf2deletion mutants to induce cell death,transfected cells were selected with high doses of G418.After3weeks of drug selection,surviving colonies were monitored for the GFP-fusion protein expression.Cells transfected with amino acids68–113 or constructs containing this region were unable to form colonies(Fig.1A,B),indicating cell death induc-tion by these constructs.Cells transfected with con-structs outside amino acids68–113were able to grow and form colonies that express the GFP-fusion proteins (Fig.1A,B),indicating that transfected cells are able to survive.We next tested whether transient overexpres-sion of amino acids68–113was suf?cient to induce apoptosis of PC3cells.Two days after transfection,cells expressing the EGFP-fusion protein were counted and categorized into dead or live cells according to their morphology,with apoptotic cells exhibiting a rounded morphology.Amino acid sequence68–113was able to induce death of over80%of transfected cells,demon-strating the importance of the region in cell death (Fig.1C).These results show that amino acids68–113of U19/Eaf2are suf?cient for the induction of apoptosis and suppression of growth in PC3cells.

Amino Acids68^113of U19/Eaf2Are

Responsible for the InteractionWith ELL U19/Eaf2and ELL have been previously reported to interact in vitro and in vivo[5].When co-transfected in PC3cells,U19/Eaf2and ELL co-localize into nuclear bodies and induce apoptosis.This raised a possibility that U19/Eaf2-induced apoptosis is associated with its ability to bind ELL.Also,amino acids68–113of U19/ Eaf2are located at the C-terminal side of the ELL interaction domain,previously mapped to amino acids 17–104within U19/Eaf2[5].To determine whether amino acids68–113of U19/Eaf2are suf?cient to interact with ELL,we performed a mammalian two-hybrid assay.Various regions of U19/Eaf2were tagged to the Gal4DNA-binding domain in the pM vector.The resulting constructs were co-transfected into PC3cells with the pVP16activation domain vector and luciferase reporter vector pFR-luc,along with pRL-TK as an internal control.Twenty-four hours after transfection, cells were harvested and the lysates were assayed for luciferase activity.All constructs harboring amino acids68–113were able to interact with ELL,as determined by an increase in luciferase activity (Fig.2).Minimal or no increase in luciferase activity was detected outside of amino acids68–113. Interestingly,the regions that interact with ELL were identical to the regions responsible for the induction of apoptosis.

The Prostate DOI10.1002/pros 148Hahn et al.

To further test the physical interaction between ELL and amino acids68–113of U19/Eaf2,we performed a co-immunoprecipitation assay.COS7cells were co-transfected with68-113-GFP and myc-ELL. Twenty-four hours after transfection,cells were har-vested and whole cell lysates were incubated with anti-myc agarose conjugate.Proteins bound to the myc-agarose were separated by SDS–PAGE and probed using a monoclonal antibody against GFP.The68-113-GFP protein coimmunoprecipitated with myc-ELL, indicating that amino acids68–113of U19/Eaf2are suf?cient for the interaction with ELL(Fig.3).

We next tested whether amino acids68–113of U19/ Eaf2were necessary for the co-localization with ELL in nuclear bodies.Full length U19/Eaf2tagged to GFP (U19-GFP)or mutant U19-GFP lacking amino acids68–113(U19del68-113-GFP)was co-transfected with RFP-ELL.Full length U19-GFP was co-localized in nuclear bodies with ELL.U19del68-113-GFP did not form nuclear bodies with RFP-ELL.U19del68–113-GFP was localized to the nucleus and cytoplasm while RFP-ELL was localized diffusely throughout the nucleus.The red?uorescence signal of RFP-ELL was much lower when co-transfected with U19del68-113-GFP compared to when co-transfected with U19-GFP.When amino acids68–113of U19/Eaf2tagged to GFP(68-113-GFP)was co-transfected with RFP-ELL,no nuclear bodies were detected,indicating that amino acids68–113are necessary but not suf?cient for the co-localization with ELL(Fig.4A).To assess whether

The Prostate DOI

10.1002/pros

Fig.1.Mappingof amino acidsequencesofU19/Eaf2essentialfor apoptosisinductionandgrowth suppression.A:Mapping thedomainofU19/ Eaf2responsibleforgrowthsuppressionofPC3cells.DifferentregionsofU19/Eaf2wereclonedintoGFPexpressionvectorsandtransfectedinto PC3cells.T ransfectedcellswere selectedwith G418for3weeks.Colonies expressing the GFP fusionproteinwerephotographedunder a fluor-escence microscope.Pictures show representative colonies.B:Schematic representation of the regions of U19/Eaf2responsible for growth suppression.Dottedredlinesindicateaminoacids68^113.C:Aminoacids68^113induceapoptosisinPC3cells.PC3cellswere transfectedwith

GFP,U19-GFP,or68-113-GFP.Percentage of deadcellswas counted3days after

transfection.

Fig.2.Mapping the regions of U19/Eaf2that interact with ELL.

Mammalian two-hybrid assay was performed to map the regions of

U19/Eaf2that interact with ELL.Indicated regions of U19/Eaf2were

cloned into pM.The entire ELL open reading frame was cloned into

p VP16.PC3cellswereco-transfectedwiththevectors andluciferase

reporter vectors.T wenty-four hours after transfection,the cells

were harvested,lysed,and luciferase activity was measured using a

luminometer.

U19/Eaf2-ELL Interaction in Apoptosis149

increased red ?uorescence signal of RFP-ELL upon co-transfection with U19-GFP was due to increased RFP-ELL protein level,Western blot was performed.Cells (293)were co-transfected with RFP-ELL,U19-GFP,or both.The RFP-ELL expression level was higher in the presence of U19-GFP,which can in part explain the increased red ?uorescence signal of RFP-ELL in the presence of U19-GFP.U19-GFP levels were signi?-cantly increased in the presence of RFP-ELL,which is consistent with our previous ?nding that ELL stabilizes U19/Eaf2[23].Thus,U19/Eaf2and ELL can increase each other’s expression levels (Fig.4B).

Co-expression of U19/Eaf2and ELL Leads to

Enhanced Death of 293Cells U19/Eaf2and ELL have been shown to be potent inducers of apoptosis,inducing death in all of the cell lines that we have transfected,including PC3,LNCaP,DU145,and HeLa,except the human embryonic kidney cell line 293.In 293cells,transfection of ELL resulted in death of 30%of cells while the effect of U19/Eaf2transfection was virtually the same as the GFP control (Fig.5A).Therefore,293cells were much less sensitive to ELL or U19/Eaf2individually and were used as a model to study the potential cooperation between the two proteins in the induction of cell death and growth suppression.

To test whether the overexpression of both proteins results in increased cell death,293cells were co-transfected with U19-GFP and https://www.doczj.com/doc/8b8683791.html,pared to cells transfected with U19-GFP or RFP-ELL alone,signi?cantly greater percentage of cell death occurred when both proteins were expressed (Fig.5B).To test the

importance of U19/Eaf2-ELL interaction in the enhanced apoptosis,we co-transfected U19/Eaf2with the MLL-ELL fusion protein,which lacks the ?rst 45amino acids of ELL,and is unable to interact with U19/Eaf2[5,9].Cells co-transfected with U19/Eaf2and MLL-ELL exhibited no signi?cant difference in cell death relative to cells transfected with U19/Eaf2or MLL-ELL alone (Fig.5C).

The Prostate DOI

10.1002/pros

Fig.3.Co-immunoprecipitation of amino acids 68^113of U 19/Eaf2and ELL.COS-7cells were co-transfected with GFP-68-113and myc-ELL.T wenty-four hours after transfection,cells were har-vested,lysed,and the lysates were incubated and precipitated with anti-myc agarose.Proteins were separated by PAGE,transferred onto a nitrocellulosemembrane andprobedwith antibodies against myc or GFP

.

Fig.4.A :Co-localization analysis of ELL with wild-type and mutant U 19/Eaf2.PC3cells were co-transfected with pEGFP-N3and pRFP-ELL (top row),pU 19-GFP and pRFP-ELL (second row),pU 19-del68-113-GFP and pRFP-ELL (third row),or p68-113-GFP andpRFP-ELL(fourthrow).Picturesweretaken24hrafter transfec-tion.U 19/Eaf2-GFP and RFP-ELL co-localize in nuclear bodies while U 19-del68-113-GFPor68-113-GFPdonotco-localizewithRFP-ELL.B :Westernblot analysis of U 19/Eaf2effecton ELL proteinlevel.PC3cellswerecotransfectedwithU 19-GFPandRFP-ELL.Cellswerehar-vested and lysed.Western blot was performed using antibodies against U 19/Eaf2or ELL.

150Hahn et al.

Colony formation assay was performed to deter-mine whether co-transfection of U19/Eaf2and ELL would lead to enhanced growth suppression.Cells (293)were co-transfected with pELL-EGFP and pMyc-U19.After3weeks of G418selection,surviving colonies of cells were stained with crystal violet and counted. ELL transfection caused inhibition of colony formation, which agrees with ELL’s ability to induce some apoptosis in293cells.U19/Eaf2transfection did not inhibit colony formation,which is consistent with its inability to induce cell https://www.doczj.com/doc/8b8683791.html,pared to U19/Eaf2or ELL alone,signi?cantly fewer colonies were formed when transfected with both genes(Fig.6).This provides evidence that there is cooperative action between U19/Eaf2and ELL in suppression of growth in293cells.

Because the interaction with ELL was an important event in U19/Eaf2-induced cell death,the expression level of ELL in a cell may be one of the factors that regulate its sensitivity to U19/Eaf2-induced cell death or growth suppression.Real-time RT-PCR was per-formed to quantitate the mRNA levels of ELL and U19/ Eaf2in the various cell lines used in this study.Both U19/Eaf2and ELL were expressed at the lowest levels in293cells(Fig.7A,B).The low ELL level in293cells may contribute to the resistance of the cell against U19/ Eaf2-mediated apoptosis.

DISCUSSIO N

In this study,we provide evidence that amino acids68–113of U19/Eaf2are suf?cient to induce apoptosis in prostate cancer cells and that this region is important in ELL binding.Co-expression of U19/Eaf2 and ELL in293cells led to a decrease in cell survival compared to that of either gene alone,sug-gesting a signi?cant role of their interaction in growth suppression.

The Prostate DOI

10.1002/pros

Fig.5.Inductionof apoptosisbyoverexpressionofU19/Eaf2,ELL,orboth.A:U19/Eaf2andELLinducedeathinvariouscelllines.Indicatedcell linesweretransfectedwithU19-GFPorELL-GFP.Cellsexpressing thefusionproteinswerecounted3daysafter transfection.B:Co-expression ofU19/Eaf2andELLresultinenhancedcelldeath.Cells(293)were transfectedwithU19-GFP,RFP-ELL,orboth.Percentage ofdeadcells expres-sing both proteins was counted.*,P<0.05.C:Effect of MLL-ELL expression on U19/Eaf2-mediated cell death.Cells(293)were co-transfected with U19-GFP and MLL-ELL.Cellswere counted3days after transfection.**,P<0.01.

U19/Eaf2-ELL Interaction in Apoptosis151

U19/Eaf2consists of at least three structural/functional domains,the ELL-binding domain,transac-tivation domain and the serine,aspartic acid,and glutamic acid-rich domain,suggesting that U19could have multiple targets.To elucidate the mechanism of U19/Eaf2induction of apoptosis,we have mapped the domain within U19/Eaf2responsible for the induction of apoptosis.Amino acids 68–113of U19/Eaf2,located at the reported ELL-binding domain (amino acids 17–104),were both suf?cient and necessary for the induction of cell death.Colony formation assays further showed that the overexpression of amino acids 68–113suppresses the growth of cells.

To assess the potential involvement of ELL in the apoptotic and growth suppressive activity of U19/Eaf2,we tested whether the apoptosis-induction domain of U19/Eaf2is required for ELL binding.Our results show that amino acids 68–113,which is the region crucial for the induction of apoptosis,is also the region critical for the interaction with ELL.U19/Eaf2constructs containing amino acids 68–113were suf?-cient both for the induction of cell death and the interaction with ELL.Wild-type U19/Eaf2was able to co-immunoprecipitate to ELL while deletion of amino acids 68–113disrupted the interaction.The deletion also resulted in the loss of ability for the two proteins to co-localize in nuclear bodies.The formation of nuclear bodies is not necessary for apoptosis induction by U19/Eaf2,because amino acids 68–113,which is apoptotic,were not suf?cient for the co-localization with ELL and the formation of nuclear bodies.It is possible that other

regions of U19/Eaf2in?uence its localization into nuclear bodies.

To provide evidence that the interaction between U19/Eaf2and ELL leads to growth suppression of cells,colony formation assay was performed.Because both ELL and U19/Eaf2possess apoptotic activity in virtually all the cell lines,it was dif?cult to assay their potential cooperativeness in the induction of apoptosis.However,the human embryonic kidney cell line 293provided a useful system,as it was resistant to U19/Eaf2-induced death and partially resistant to ELL-induced death.Real-time RT-PCR results indicate that both ELL and U19/Eaf2are expressed at very low levels in this cell line,compared to all other cell lines used in our study.This may account in part for the lack of sensitivity to U19/Eaf2-mediated cell death.

The Prostate DOI

10.1002/pros

Fig.6.Colony formation (293)by transfection of U 19/Eaf2,ELL,or both.Cells (293)were co-transfected with indicated vectors.Stable transfectantswereselectedwithG418for3weeks.Surviving colonies were stained with crystal violet.Colonies with diameters over1mmwere counted.*,P <

0.05.

Fig.7.ExpressionlevelsofU 19/Eaf2andELLinculturedcells.Real-timeRT-PCRwasperformedtoquantify themRNAlevelsof(A )U 19/Eaf2or (B )ELLin LNCaP ,PC3,DU 145,HeLa,and 293cells.

152Hahn et al.

Expression of both genes resulted in signi?cant reduc-tion in surviving cells compared to either gene alone, suggesting their cooperative action in the induction of apoptosis and inhibition of cell growth.This coopera-tiveness was absent between U19/Eaf2and MLL-ELL. The MLL-ELL fusion protein,which is frequently found in Acute Myeloid Leukemia,lacks the U19/ Eaf2-interaction domain of ELL[9].It is possible that the inability of MLL-ELL to bind U19/Eaf2and mediate U19/Eaf2action contributes to the progression of Acute Myeloid Leukemia.

Our results suggest a mechanism of cell growth suppression involving two proteins that are associated with two major human cancers,prostate cancer and leukemia.In the normal prostate,androgen upregula-tion of U19/Eaf2may lead to increased interaction with ELL,leading to growth suppression and the maintenance of the prostate.The downregulation of U19/Eaf2in prostate cancer may result in reduced interaction with ELL,favoring the promotion of growth.In leukemia,MLL-ELL translocation disrupts normal interaction between ELL and U19/Eaf2,which may contribute to uncontrolled cell growth.Although links between prostate cancer and AML have not been reported,our data suggest that U19/Eaf2and ELL may play key roles in the suppression of these two types of cancers.

ACKN O WLEDGMENTS

We thank Dr.Junkui Ai and the members of the Wang laboratory for critical review of the manuscript. This study was supported by NIH R01DK51193and NIH P50CA90386Prostate Cancer SPORE.Zhou Wang is the O’Connor Family Research Professor of Urology.

REFERENCES

1.Chang CS,Kokontis J,Liao ST.Molecular cloning of human and

rat complementary DNA encoding androgen receptors.Science 1988;240:324–326.

2.Zhou ZX,Wong CI,Sar M,Wilson EM.The androgen receptor:

An overview.Recent Prog Horm Res1994;49:249–274.

3.Wang Z,Tufts R,Haleem R,Cai X.Genes regulated by androgen

in the rat ventral prostate.Proc Natl Acad Sci USA1997;94: 12999–13004.

4.Jiang F,Wang Z.Identi?cation of androgen-responsive genes in

the rat ventral prostate by complementary deoxyribonucleic acid subtraction and microarray.Endocrinology2003;144:1257–1265.

5.Simone F,Luo RT,Polak PE,Kaberlein JJ,Thirman MJ.ELL-

associated factor2(EAF2),a functional homolog of EAF1with alternative ELL binding properties.Blood2003;101:2355–2362.

6.Xiao W,Zhang Q,Jiang F,Pins M,Kozlowski JM,Wang Z.

Suppression of prostate tumor growth by U19,a novel testosterone-regulated apoptosis inducer.Cancer Res2003;63: 4698–4704.

7.Li M,Wu X,Zhuang F,Jiang S,Jiang M,Liu YH.Expression of

murine ELL-associated factor2(Eaf2)is developmentally regulated.Dev Dyn2003;228:273–280.

8.Maurus D,Heligon C,Burger-Schwarzler A,Brandli AW,

Kuhl M.Noncanonical Wnt-4signaling and EAF2are required for eye development in Xenopus laevis.EMBO J2005;24:1181–1191.

9.Thirman MJ,Levitan DA,Kobayashi H,Simon MC,Rowley JD.

Cloning of ELL,a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia.Proc Natl Acad Sci USA1994;91: 12110–12114.

10.DiMartino JF,Miller T,Ayton PM,Landewe T,Hess JL,Cleary

ML,Shilatifard A.A carboxy-terminal domain of ELL is required and suf?cient for immortalization of myeloid progenitors by MLL-ELL.Blood2000;12:3887–3893.

https://www.doczj.com/doc/8b8683791.html,vau C,Luo RT,Du C,Thirman MJ.Retrovirus-mediated gene

transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice.Proc Natl Acad Sci USA2000;97:10984–10989.

12.Luo RT,Lavau C,Du C,Simone F,Polak PE,Kawamata S,

Thirman MJ.The elongation domain of ELL is dispensable but its ELL-associated factor1interaction domain is essential for MLL-ELL-induced leukemogenesis.Mol Cell Biol2001;21: 5678–5687.

13.Shilatifard A,Lane WS,Jackson KW,Conaway RC,Conaway

JW.An RNA polymerase II elongation factor encoded by the human ELL gene.Science1996;271:1873–1876.

14.Mitani K,Yamagata T,Iida C,Oda H,Maki K,Ichikawa M,Asai

T,Honda H,Kurokawa M,Hirai H.Nonredundant roles of the elongation factor MEN in postimplantation development.

Biochem Biophys Res Commun2000;279:563–567.

15.Eissenberg JC,Ma J,Gerber MA,Christensen A,Kennison JA,

Shilatifard A.dELL is an essential RNA polymerase II elongation factor with a general role in development.Proc Natl Acad Sci USA2002;15:9894–9899.

16.Khattak S,Im H,Park T,Ahnn J,Spoerel NA.dELL,a drosophila

homologue of transcription elongation factor ELL(Eleven-nineteen Lysine rich Leukemia),is required for early develop-ment.Cell Biochem Funct2002;20:119–127.

17.Johnstone RW,Gerber M,Landewe T,Tollefson A,Wold WS,

Shilatifard A.Functional analysis of the leukemia protein ELL: Evidence for a role in the regulation of cell growth and survival.

Mol Cell Biol2001;21:1672–1681.

18.Polak PE,Simone F,Kaberlein JJ,Luo RT,Thirman MJ.ELL and

EAF1are Cajal body components that are disrupted in MLL-ELL leukemia.Mol Biol Cell2003;14:1517–1528.Erratum in:Mol Biol Cell2003;May14.

19.Simone F,Polak PE,Kaberlein JJ,Luo RT,Levitan DA,Thirman

MJ.EAF1,a novel ELL-associated factor that is delocalized by expression of the MLL-ELL fusion protein.Blood2001;98:201–209.

20.Gall JG.The centennial of the Cajal body.Nat Rev Mol Cell Biol

2003;4:975–980.

21.Cioce M,Lamond AI.Cajal bodies:A long history of

discovery.Annu Rev Cell Dev Biol2005;21:105–131.

22.Kong SE,Banks CA,Shilatifard A,Conaway JW,Conaway RC.

ELL-associated factors1and2are positive regulators of RNA polymerase II elongation factor ELL.Proc Natl Acad Sci USA 2005;102:10094–10098.

23.Xiao W,Jiang F,Wang Z.ELL binding regulates U19/Eaf2

intracellular localization,stability,and transactivation.Prostate 2006;66:1–12.

The Prostate DOI10.1002/pros

U19/Eaf2-ELL Interaction in Apoptosis153

自己翻译的罗氏tunel检测细胞凋亡试剂盒说明书

罗氏tunel检测细胞凋亡试剂盒说明书 注意:Label溶液含有甲次砷酸盐和二氯化钴,严禁吸入和食入。 反应悬浮物收集于密闭、不易碎、有明确标识的容器中,按有毒废物处理。 需要自己配置的其他物品: 除上表所列试剂外,还需准备以下溶液。下表列出每步所需物品概览:

产品概述: 特异性:TUNEL 反应优先标记凋亡产生的DNA 链断裂,从而辨别凋亡与坏死、以及由抑 制细胞生长的药物或放射线产生的primary DNA 链断裂 实验干扰:假阴性:在某些型式的凋亡细胞中DNA 链断裂可能缺失或不完全。空间位阻, 如细胞外元件可能阻止TdT 到达DNA 断裂处。两种情况均能产生假阴性。 假阳性:在坏死晚期,可能产生大量的DNA 片段 DNA 链断裂也可能在具有高增殖和代谢活动的细胞中出现。两种情况均能产生 假阳性。为确认细胞死亡的凋亡型式,应认真进行每种细胞的形态学检查 凋亡过程中产生的形态学改变尤其特征形式,因此,对于可以结果进行解释时, 细胞形态评估是一项重要的参数 样本:细胞离心涂片和细胞涂片 在chamber slides 上培养的黏附细胞 冰冻或福尔马林固定、石蜡包埋样本 分析时间:2-3小时,除外培养、固定和渗透 检测次数:一个试剂盒50T

步骤和所需材料: 1 流程图: 2 样品准备 黏附细胞、细胞涂片和细胞离心涂片 需准备的其他试剂:Washing buffer:磷酸盐缓冲液(PBS) Blocking buffer封闭溶液:甲醇稀释的3% H2O2 Fixation solution固定溶液:PBS配制的4%多聚甲醛,ph ,新鲜配制 Permeabilisation solution 渗透液:%Triton1)X-100溶于%柠檬酸钠溶液 中,新鲜配制 步骤:下表描述了细胞固定、内源性过氧化物酶封闭和细胞渗透过程。 组织部分 福尔马林-包埋组织 福尔马林包埋组织的预处理:可按4种不同的方式预处理。如用蛋白酶K,不含核酸酶,浓 度、孵育时间和温度应按组织类型优化 注意:只用罗氏应用科学的蛋白酶K,因其经检测不含核酸酶, 核酸酶可导致假阳性。 另外3中替代方法在下表中描述(step 2) 需准备的其他试剂:二甲苯和乙醇(浓度:95%,90%,80%,70%,溶于双蒸水中)

细胞凋亡试验常用的方法

细胞凋亡试验常用的方法(MTT法、荧光法、DNA琼脂糖凝胶电泳法与流式细胞仪检测法) (一)药物对肿瘤细胞的抑制效应的MTT法: 用培养基将肿瘤细胞调整至2 X108个/L,在96孔板中每孔加入100ul细胞悬液于37℃、5% CO2下培养过夜。 次日每孔加入不同浓度的药物100mg/L作为试验组,设加完全培养基不加药物的阴性对照,并用功能明确的药物为阳性对照和0.5%的乙醇溶剂对照,每组均设4-6个复孔(平行孔)、37℃、5% CO2继续培养。 培养至12h、24h、48h、实验终止前4-6h加入10ulMTT(5g/L),培养4-6h后,阴性对照孔中已形成明显的蓝紫色颗粒结晶时加100ul/孔SDS-HCl终止反应,于37℃存放过夜。 用酶标仪在A570波长下测吸光度值,按下式计算抑制率 抑制率(%)=(1-试验组平均吸光度值/阴性对照组平均吸光度值)x 100%。 (二)荧光法: 选用上述最佳浓度作用于肿瘤细胞,培养细胞48h后,收货细胞用PBS洗2-3次后用0.4%多聚甲醛室温下固定30min。 弃去固定液,并用PBS洗2次后,用1%Triton X-100作用4min加入适量的0.5mg/L DAPI 荧光染色60min,用PBS冲洗3次,取10ul滴片,干燥后于荧光显微镜下检测断裂的颗粒和片状荧光。 (三)DNA琼脂糖凝胶电泳法: 1、DNA提取: 用大方瓶培养肿瘤细胞,每瓶10ml,细胞浓度为3 x 108个/ml,每隔药物浓度、作用时间均设2瓶,共分3个时间段,4个药物浓度。共培养26瓶细胞。 分别于细胞中加入不同浓度的药物,于37℃、5% CO2中分别培养12h、24h、48h,收货细胞,用PBS洗2-3次。 于-20℃将细胞冷却处理10min后将细胞收集至离心管中,加1ml细胞裂解液,再加蛋白酶K,轻轻振摇使悬液混匀,成黏糊状,50℃过夜。 冷却后加入等体积的饱和酚溶液,混合后10000r/min离心10min,吸出上层水相,移至另一离心管中,再加入等体积饱和酚溶液重复抽提一次,直到无蛋白为止。 吸上清加入氯仿/异戊醇(24:1)按上述方法再抽提一次。 吸取水相层加入1/10体积的3mol/L的醋酸钠溶液,混匀。 再加入2.5倍体积冷无水乙醇,混合置-20℃处理30min后,10000r/min离心10min,沉淀部分为提供的DNA,弃去无水乙醇后用70%乙醇漂洗2次,将离心管倒扣在吸水纸上,吸干乙醇。 加入200ulTE缓冲液融解DNA,再加入25ul的RNA酶,置37℃作用30min,置4℃冰箱保存。 2、琼脂糖凝胶电泳: TBE缓冲液配制1.8%琼脂糖凝胶。在微波炉内煮沸至琼脂糖融解,待冷却至60℃时,加入溴化乙锭,使其终浓度为0.5mg/ml,混匀后灌胶。 待凝胶固定后放入含TBE电泳液的电泳槽内,使TBE电泳液盖过凝胶。 取10-15ul提取的各组DNA样品液与上样缓冲液按4:1比例混匀后点样。 60V电泳1h,用紫外透射仪观察梯形条带。

细胞生物学实验细胞凋亡观察

实验目的: 1.了解凋亡细胞的形态学特征,加深对于细胞凋亡现象及本质的理解。 2.了解并掌握细胞凋亡检测的方法和基本原理。 实验原理: 细胞凋亡时,出现一系列形态学变化,包括凋亡细胞的染色质浓缩、边缘化,核膜裂解、染色质分割成块状,染色质的DNA出现缺口甚至断裂,出现DNA碎片,并逐渐形成凋亡小体等,经相应的染色后可以在普通光学显微镜和荧光显微镜下观察到这些变化。从而把凋亡的细胞和正常的细胞区分开来。

细胞凋亡是指细胞对环境的生理、病理性刺激信号、环境条件的变化或缓和性损伤产生的应答有序变化的死亡过程。细胞凋亡是一个主动过程,涉及一系列基因的激活、表达以及调控等的作用,它并不是病理条件下的自体损伤,而是为更好地适应生存环境的一种死亡过程。 1.细胞凋亡与细胞程序性死亡: 细胞程序性死亡的概念是指一个多细胞生物体中某些细胞的死亡是个体发育中一个预定的,并受到严格程序控制的正常组成部分。例如蝌蚪变成青蛙,其变态过程中尾部的消失伴随大量细胞死亡,高等哺乳类动物指间蹼的消失、颚融合、视网膜发育以及免疫系统的正常发育都必须有细胞死亡的参与。这些形形色色的在机体发育过程中出现的细胞死亡有一个共同特征:即散在的、逐个地从正常组织中死亡和消失,机体没有炎症反应,而且这种死亡对整个机体的发育是有利和必须的。因此认为动物发育过程中存在的细胞程序性死亡是一个发育学概念,而细胞凋亡则是一个形态学的概念,但是一般认为这两个概念可以交互使用,具有同等意义。2.细胞凋亡与坏死的区别: 虽然凋亡与坏死的最终结果极为相似,但它们的过程与表现却有很大差别。坏死是细胞受到强烈理化或生物因素作用引起细胞无序变化的死亡过程。表现为细胞胀大、胞膜破裂、细胞内容物外溢、核变化较慢、DNA降解不充分、有局部严重的炎症反应。坏死是一个被动的过程,其细胞及组织的变化与凋亡有明显的不同。

一步法TUNEL细胞凋亡检测试剂盒说明书

一步法TUNEL细胞凋亡检测试剂盒说明书 货号:T2190 规格:20次 保存:-20oC保存,荧光标记液需避光保存。 产品简介: 细胞在发生凋亡时,会激活一些DNA内切酶,这些内切酶会切断核小体间的基因组DNA。细胞凋亡时抽提DNA进行电泳检测,可以发现180-200bp的DNA ladder。基因组DNA断裂时,暴露的3’-OH可以在末端脱氧核苷酸转移酶(Terminal Deoxynucleotidyl Transferase,TdT)的催化下加上绿色荧光探针荧光素(FITC)标记的dUTP(fluorescein-dUTP),从而可以通过荧光显微镜或流式细胞仪进行检测,这就是TUNEL(TdT-mediated dUTP Nick-End Labeling)法检测细胞凋亡的原理。 一步法TUNEL细胞凋亡检测试剂盒(One Step TUNEL Apoptosis Assay Kit)为您提供了一种高灵敏度又快速简便的细胞凋亡检测方法。对于经过固定和洗涤的细胞或组织,只要经过一步染色反应,洗涤后就可以通过荧光显微镜或流式细胞仪检测到呈现绿色荧光的凋亡细胞。 TUNEL法特异性检测细胞凋亡时产生的DNA断裂,但不会检测出射线等诱导的DNA断裂(和细胞凋亡时的断裂方式不同)。这样一方面可以把凋亡和坏死区分开,另一方面也不会把射线等诱导发生DNA断裂的非凋亡细胞判断为凋亡细胞。极少数细胞凋亡时没有DNA断裂,此时不适用TUNEL法检测。在个别类型的坏死细胞中也发现TUNEL检测呈阳性。在需要严格判断细胞凋亡的情况下,最好同时检测多个凋亡指标。产品内容: 1.TdT酶100μl 2.荧光标记液900μl 3.TdT酶稀释液(选用)500μl

细胞凋亡实验步骤及注意事项

细胞凋亡实验步骤及注意事项 一、实验目的 1、掌屋凋亡细胞的形态特征 2、学会用荧光探针对细胞进行双标记来检测正常活细胞、凋亡细胞与坏死 细胞的方法 二、实验原理 细胞死亡根据其性质、起源及生物学意义区分为凋亡与坏死两种不同类型。凋亡普遍存在于生命界,在生物个体与生存中起着非常重要的作用。它就是细胞在一 定生理条件下一系列顺序发生事件的组合,就是细胞遵循一定规律自己结束生命 的自主控制过程。细胞凋亡具有可鉴别的形态学与生物化学特征。 在形态上可见凋亡细胞与周围细胞脱离接触,细胞变园,细胞膜向内皱缩、胞浆浓缩、内质网扩张、细胞核固缩破裂呈团块状或新月状分布、内质网与细胞膜进一步融合将细胞分成多个完整包裹的凋亡小体,凋亡小体最后被吞噬细胞吞噬消化。在凋亡过程中细胞内容物并不释放到细胞外,不会影响其它细胞,因而不引起炎症反应。 在生物化学上,多数细胞凋亡的过程中,内源性核酸内切酶活化,活性增加。核DNA 随机地在核小体的连接部位被酶切断,降解为180-200bp或它的整倍数的各种片断。如果对核DNA进行琼脂糖电泳,可显示以180-200bp为基数的DNA ladder(梯状带纹)的特征。 相比之下,坏死就是细胞处于剧烈损伤条件下发生的细胞死亡。细胞在坏死早期 即丧失质膜完整性,各种细胞器膨胀,进而质膜崩解释放出其中的内容物,引起炎症反应,坏死过程中细胞核DNA虽也降解,但由于存在各种长度不等的DNA片断,不能形成梯状带纹,而呈弥散状。 一些温与的损伤刺激及一些抗肿瘤药物可诱导细胞凋亡,通常这些因素在诱导凋亡的同时,也可产生细胞坏死,这取决于损伤的剧烈程度与细胞本身对刺激的敏感 程度。 三尖杉酯碱(HT)就是我国自行研制的一种对急性粒细胞白血病,急性单核白血病等有良好疗效的抗肿瘤药物。研究表明HT在0、02~5μg/ml范围内作用2小时,即可诱导HL-60细胞凋亡,并表现出典型的凋亡特征。本实验用1μg/ml HT在体外诱导培养的HL-60细胞发生凋亡,同时也有少数细胞发生坏死。用 Hoechst33342与碘化丙啶(propidium iodide,PI)对细胞进行双重染色,可以区别凋亡、坏死及正常细胞。 细胞膜就是一选择性的生物膜,一般的生物染料如PI等不能穿过质膜。当细胞坏死时,质膜不完整,PI就进入细胞内部,它可嵌入到DNA或RNA中,使坏死细胞着

淋巴细胞分离和细胞凋亡诱导及形态学观察

细胞生物学实验报告 淋巴细胞分离和细胞凋亡诱导及形态学观察lymphocyte isolation and morphological observation of apoptosis induction 2012年6月2日

淋巴细胞分离和细胞凋亡诱导及形态学观察 lymphocyte isolation and morphological observation of apoptosis induction 摘要:目的了解细胞凋亡的原理,掌握离体诱导细胞凋亡的方法,及用普通光学显微镜和荧光显微镜观察凋亡细胞的形态学变化,并从观察结果初步推断和识别凋亡细胞具体阶段。方法实验所用Hoechst 33342/PI双染检测细胞凋亡、Giemsa染色。结果实验结束后得到了染色的结果以及照片。结论所提取的淋巴细胞发生凋亡。 Abstract:Objective Understand the principles of cell apoptosis, master the methods of cell apoptosis induced by in vitro, and by ordinary optical microscopy and fluorescence microscopy observation of morphological changes of apoptotic cells and preliminary inferred from observations and identifying apoptotic cells specific stages. Method Experimental method used in,Hoechst 33342/PI double dye test and the Giemsa stain. Results Be dyed after the end of the experiment results and photos. Conclusions The extraction of lymphocyte apoptosis. 关键词:细胞凋亡、Giemsa染色、Hoechst 33342/PI双染。 Keyword:cell apoptosis、Giemsa stain、Hoechst 33342/PI double staining 1.实验原理 1.1 关于淋巴细胞的分离 外周血中淋巴细胞比重约为1.070,而红细胞和粒细胞的比重较大,为1.902左右。因此,利用相对密度为1.077±0.002的淋巴细胞分离液(称为分层液)离心,可使一定比重的细胞按相应密度梯度分布(使比重中较大的红细胞和粒细胞沉于管底,淋巴细胞浮于分层液与血浆的界面上),从而将淋巴细胞分离出来。 1.2 关于细胞凋亡 细胞凋亡又称编程性死亡或程序性死亡。细胞凋亡是多细胞生物体在发育过程中或在某些环境因子的作用下发生的受基因调控的主动的死亡方式。细胞凋亡对于多细胞生物个体的正常发育、保持自稳平衡、抵御外界各种因素的干扰及多种病理过程具有极其重要的意义,起着非常重要的作用。细胞凋亡是多种生理、病理因子参与的由凋亡相关基因启动的细胞程序性死亡过程,其中由氧应激造成大量活性氧(reactive oxygen species, ROS)的产生以及继发性细胞损伤过程在细胞凋亡中起着重要作用,如电离辐射或紫外线照射产生大量H2O2、OH-等。 细胞凋亡的诱导因子包括三大类: 1.物理因子:包括射线、较温和的温度刺激(如热激或冷激)等; 2.化学因子:包括活性氧基团和分子、重金属离子等; 3.生物因子:肿瘤坏死因子、生物毒素、抗肿瘤药物、DNA和蛋白质合成的抑制剂等。 细胞凋亡的主要特征包括: 1.染色质凝集、质膜出芽、核裂解及凋亡小体的形成。 2.DNA特异性降解成200bp或其整数倍片断,通过凝胶电泳形成梯状条带,称为DNA Ladder。 3.由于DNA特异性降解而产生大量3’-OH末端,可被末端脱氧核糖核苷酸移换酶介导的dUTP 缺口末端原位标记法(TUNEL)标记,从而产生亮绿色荧光等。

常用细胞凋亡检测方法(图)

常用细胞凋亡检测方法(图) 转载请注明来自丁香园 发布日期:2012-02-16 13:41 文章来源:丁香通 关键词:丁香园生物专题义翘神州细胞培养点击次数:951 一、细胞凋亡的形态学检测 1、光学显微镜和倒置显微镜 ①未染色细胞:凋亡细胞的体积变小、变形,细胞膜完整但出现发泡现象,细胞凋亡晚期可见凋亡小体。贴壁细胞出现皱缩、变圆、脱落。 ②染色细胞:常用姬姆萨染色、瑞氏染色等。凋亡细胞的染色质浓缩、边缘化,核膜裂解、染色质分割成块状和凋亡小体等典型的凋亡形态。 2、荧光显微镜和共聚焦激光扫描显微镜 一般以细胞核染色质的形态学改变为指标来评判细胞凋亡的进展情况。常用的DNA 特异性染料有:HO 33342 (Hoechst 33342),HO 33258 (Hoechst 33258), DAPI。三种种染料与DNA的结合是非嵌入式的,主要结合在DNA的A-T碱基区。紫外光激发时发射明亮的蓝色荧光。Hoechst是与DNA特异结合的活性染料,储存液用蒸馏水配成1mg/ml的浓度,使用时用PBS稀释,终浓度为10 ug/ml。DAPI为半通透性,用于常规固定细胞的染色。储存液用蒸馏水配成1mg/ml的浓度,使用终浓度一般为10 ug/ml。结果评判:细胞凋亡过程中细胞核染色质的形态学改变分为三期:Ⅰ期的细胞核呈波纹状(rippled)或呈折缝样(creased),部分染色质出现浓缩状态;Ⅱa期细胞核的染色质高度凝聚、边缘化;Ⅱb期的细胞核裂解为碎块,产生凋亡小体(图1)。 3、透射电子显微镜观察 结果评判:凋亡细胞体积变小,细胞质浓缩。凋亡Ⅰ期(pro-apoptosis nuclei)的细胞核内染色质高度盘绕,出现许多称为气穴现象(cavitations)的空泡结构(图2);Ⅱa期细胞核的染色质高度凝聚、边缘化;细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。 二、磷脂酰丝氨酸外翻分析(Annexin V法) 磷脂酰丝氨酸(Phosphatidylserine, PS)正常位于细胞膜的内侧,但在细胞凋亡的早期,PS可从细胞膜的内侧翻转到细胞膜的表面,暴露在细胞外环境中(图3)。Annexin-V是一种分子量为35~36KD的Ca2+依赖性磷脂结合蛋白,能与PS高亲和力特异性结合。将Annexin-V进行荧光素(FITC、PE)或biotin标记,以标记了的Annexin-V作为荧光探针,利用流式细胞仪或荧光显微镜可检测细胞凋亡的发生。 碘化丙啶(propidine iodide, PI)是一种核酸染料,它不能透过完整的细胞膜,但在凋亡中晚期的细胞和死细胞,PI能够透过细胞膜而使细核红染。因此将Annexin-V 与PI匹配使用,就可以将凋亡早晚期的细胞以及死细胞区分开来。 方法

凯基TUNEL细胞凋亡原位检测试剂盒

凯基TUNEL细胞凋亡原位检测试剂盒(通用)(BIOTIN标记POD法,适用于细胞、组织样本) 使用说明书 一、TUNEL制品说明 凯基TUNEL细胞凋亡检测试剂盒是用来检测细胞在凋亡过程中细胞核DNA 的断裂情况,其原理是生物素(biotin)标记的dUTP在脱氧核糖核苷酸末端转移酶(TdT Enzyme)的作用下,可以连接到凋亡细胞中断裂的DNA的3‘-OH末端,并可与连接了的辣根过氧化酶的链霉亲和素(Streptavidin-HRP)特异结合,在辣根过氧化酶底物二氨基联苯胺(DAB)的存在下,产生很强的颜色反应(呈深棕色),特异准确地定位正在凋亡的细胞,因而在普通显微镜下即可观察和计数凋亡细胞;由于正常的或正在增殖的细胞几乎没有DNA的断裂,因而没有3'-OH 形成,很少能够被染色。 本试剂盒适用于组织样本(石蜡包埋、冰冻和超薄切片)和细胞样本(细胞涂片)的凋亡原位检测。 本试剂盒特点 ●操作简便:使用Ready-to-Use型试剂,并配有Proteinase K 和DAB。 ●高灵敏度:可以单一检出初期的凋亡细胞。 ●高特异性:能特异性染色凋亡细胞。 ●快速操作:整体操作约需3小时。 ●用途广泛:可应用于组织切片、细胞样本等。 ●方便观察:使用光学显微镜观察实验结果。 ●高正确性:有阳性对照片的制备方法,可以确认试剂盒的有效性

使用注意事项 1.使用前请认真阅读本说明书,提前准备好相关试剂。 2.因本试剂盒中组分均为微量,使用前请离心集液。 3.为避免试验误差、降低试剂的损耗,建议使用精密度高的进口微量移液枪及枪头。 4. TdT 酶反应液最好在使用前根椐样本数量集中配制,再分别滴加于各样本片上,避免每个样本单独配制而产生的试剂损耗。 5. 为防止样本脱落,请使用硅烷(Silane)处理的载玻片或采用多聚赖氨酸铺片。 6. 固定好的样本可以在-20℃的70%乙醇中放置30分钟或至过夜,以改善细胞的渗透性。 7. 使用PBS清洗细胞样本时,不要直接加在细胞样本上,以防止细胞样本的脱落。 8. 进行PBS清洗时,以5分钟清洗3次为标准。 9. DAB为固体粉末,使用前加入PBS配制成20×DAB(10 mg/ml)后,按说明书显色使用。 二、TUNEL试剂盒组分 试剂盒以外自备仪器和试剂

细胞凋亡检测方法

细胞凋亡检测方法 一、细胞凋亡的形态学检测 1 光学显微镜和倒置显微镜 (1)未染色细胞:凋亡细胞的体积变小、变形,全面皱缩,细胞膜完整但出现发泡现象,细胞凋亡晚期可见凋亡小体,凋亡小体为数个圆形小体围绕在细胞周围。贴壁细胞出现皱缩、变圆、脱落。 (2)染色细胞: 姬姆萨(Giemsa)染色、瑞氏染色等:正常细胞核色泽均一;凋亡细胞染色质浓缩、边缘化,核膜裂解、染色质分割成块状和凋亡小体等典型的凋亡形态;坏死细胞染色浅或没染上颜色。 苏木素-伊红(HE)染色:细胞核固缩碎裂、呈蓝黑色、胞浆呈淡红色(凋亡细胞),正常细胞核呈均匀淡蓝色或蓝色,坏死细胞核呈很淡的蓝色或蓝色消失。 2 荧光显微镜和共聚焦激光扫描显微镜 一般以细胞核染色质的形态学改变为指标来评判细胞凋亡的进展情况。 常用的DNA特异性染料有:Hoechst 33342,Hoechst 33258,DAPI。三种染料与DNA 的结合是非嵌入式的,主要结合在DNA的A-T碱基区。紫外光激发时发射明亮的蓝色荧光。 Hoechst是与DNA特异结合的活性染料,能进入正常细胞膜而对细胞没有太大细胞毒作用。Hoechst 33342在凋亡细胞中的荧光强度要比正常细胞中要高。 DAPI为半通透性,用于常规固定细胞的染色。 PI和Hoechst33342双标:PI、Hoechst33342均可与细胞核DNA(或RNA)结合。但PI不能通过正常细胞膜,Hoechst则为膜通透性荧光染料,故细胞在处于坏死或晚期调

亡时细胞膜被破坏,这时可为PI着红色。正常细胞和中早期调亡细胞均可被Hoechst着色,但是正常细胞核的Hoechst着色的形态呈圆形,淡兰色,内有较深的兰色颗粒;而调亡细胞的核由于浓集而呈亮兰色,或核呈分叶,碎片状,边集。故PI着色为坏死细胞;亮兰色,或核呈分叶状,边集的Hoechst着色的为调亡细胞。 凋亡细胞体积变小,细胞质浓缩。细胞凋亡过程中细胞核染色质的形态学改变分为三期:Ⅰ期的细胞核呈波纹状(rippled)或呈折缝样(creased),部分染色质出现浓缩状态;Ⅱa期细胞核的染色质高度凝聚、边缘化;Ⅱb期的细胞核裂解为碎块,产生凋亡小体(图1)。 3 透射电子显微镜观察 凋亡细胞体积变小,细胞质浓缩。凋亡Ⅰ期(pro-apoptosis nuclei)的细胞核内染色质高度盘绕,出现许多称为气穴现象(cavitations)的空泡结构(图2);Ⅱa期细胞核的染色质高度凝聚、边缘化;细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。 二、磷脂酰丝氨酸外翻分析(Annexin V法) 磷脂酰丝氨酸(Phosphatidylserine, PS)正常位于细胞膜内侧,但在细胞凋亡早期,PS可从细胞膜内侧翻转到细胞膜表面,暴露在细胞外环境中。磷脂酰丝氨酸的转位发生在凋亡早期阶段,先于细胞核的改变、DNA断裂、细胞膜起泡。体内的吞噬细胞可通过识别

一步法TUNEL细胞凋亡检测试剂盒红色TRITC标记荧光检

一步法 TUNEL 细胞凋亡检测试剂盒(红色 TRITC 标记荧光检测法,通用型) 说明书修订日期:2018.07.31 Catalog No.:KGA7061 / KGA7062 / KGA7063 Storage:-20℃ for 12 months,避光 For Research Use Only(科研专用) 一、TUNEL 检测原理 凯基一步法 TUNEL 细胞凋亡检测试剂盒(TRITC红色荧光标记,通用型)提供一种高灵敏度又快速简便的细胞凋亡检测方法,可检测细胞在凋亡过程中细胞核 DNA 的断裂情况,其原理是红色荧光素(Tetramethylrhodamine,TRITC)标记的 dUTP 在脱氧核糖核苷酸末端转移酶(TdT Enzyme)的作用下,可以连接到凋亡细胞中断裂 DNA 的3′-OH 末端,可用荧光显微镜检测。由于正常的或正在增殖的细胞几乎没有 DNA 的断裂,因而没有3′-OH 形成,很少能够被标记。 本试剂盒适用于组织样本(石蜡包埋、冰冻和超薄切片)和细胞样本(细胞涂片或爬片)的凋亡原位检测。 对于经过固定和洗涤的细胞或组织,只要经过一步染色反应,洗涤后就可以通过荧光显微镜检测到凋亡细胞。 二、TUNEL 试剂盒组分 运输及保存条件: 2-8℃低温运输,收到后-20℃避光保存,保质期一年。 实验前准备: 实验前按说明书准备好相应试剂与器具,多聚甲醛、二甲苯、乙醇、1×PBS pH 7.4、H2O2、Triton X-100、甲醇、多聚赖氨酸铺载玻片(细胞样本)、盖玻片、染色缸、温盒、量筒等。 三、操作步骤 各个样本请用免疫组化笔做好标记,另外加 2 张样本切片分别用于阳性片和阴性片制备并做好标记。 在每步反应或浸洗的间隙时,配制下一步即用的工作液。

实验14-细胞凋亡的诱导和检测

实验14 细胞凋亡的诱导和检测 20世纪60年代人们注意到细胞存在着两种不同形式的死亡方式:凋亡(apoptosis)和坏死(necrosis)。细胞坏死指病理情况下细胞的意外死亡,坏死过程细胞膜通透性增高,细胞肿胀,核碎裂,继而溶酶体、细胞膜破坏,细胞容物溢出,细胞坏死常引起炎症反应。 细胞凋亡apoptosis一词来源于古希腊语,意思是花瓣或树叶凋落,意味着生命走到了尽头,细胞到了一定时期会像树叶那样自然死亡。凋亡是细胞在一定生理或病理条件下遵守自身程序的主动死亡过程。凋亡时细胞皱缩,表面微绒毛消失,染色质凝集并呈新月形或块状靠近核膜边缘,继而核裂解,由细胞膜包裹着核碎片或其他细胞器形成小球状凋亡小体凸出于细胞表面,最后凋亡小体脱落被吞噬细胞或邻周细胞吞噬。凋亡过程中溶酶体及细胞膜保持完整,不引起炎症反应。细胞凋亡时的生化变化特征是核酸切酶被激活,染色体DNA被降解,断裂为50~300 kb长的DNA片段,再进一步断裂成180~200bp整倍数的寡核苷酸片断,在琼脂糖凝胶电泳上呈现“梯状”电泳图谱(DNA Ladder)。细胞凋亡在个体正常发育、紫稳态维持、免疫耐受形成、肿瘤监控和抵御各种外界因素干扰等方面都起着关键性的作用。 1.细胞凋亡的检测方法 凋亡细胞具有一些列不同于坏死细胞的形态特征和生化特征,据此可以鉴别细胞的死亡形式。细胞凋亡的机制十分复杂,一般采用多种方法综合加以判断,同时不同类型细胞的凋亡分析方法有所不同,方法选择依赖于具体的研究体系和研究目的(表?)。

形态学观察方法:利用各种染色法可观察到凋亡细胞的各种形态学特征: (1)DAPI时常用的一种与DNA结合的荧光染料。借助于DAPI染色,可以观察细胞核的形态变化。 (2)Giemsa染色法可以观察到染色质固缩、趋边、凋亡小体形成等形态。 (3)吖啶橙(AO)染色,荧光显微镜观察,活细胞核呈黄绿色荧光,胞质呈红色荧光。凋亡细胞核染色质呈黄绿色浓聚在核膜侧,可见细胞膜呈泡状膨出及凋亡小体。 (4)吖啶橙(A())/溴化乙啶(EB)复染可以更可靠地确定凋亡细胞的变化,AO只进入活细胞,正常细胞及处于凋亡早期的细胞核呈现绿色;EB只进入死细胞,将死细胞及凋亡晚期的细胞的核染成橙红色。 (5)台盼蓝染色对反映细胞膜的完整性,区别坏死细胞有一定的帮助,如果细胞膜不完整、破裂,台盼蓝染料进入细胞,细胞变蓝,即为坏死。如果细胞膜完整,细胞不为台盼蓝染色,则为正常细胞或凋亡细胞。使用透射电镜观察,可见凋亡细胞表面微绒毛消失,核染色质固缩、边集,常呈新月形,核膜皱褶,胞质紧实,细胞器集中,胞膜起泡或出“芽”及凋亡小体和凋亡小体被临近巨噬细胞吞噬现象。 (6)木精-伊红(HE)染色是经典的显示细胞核、细胞质的染色方法,染色结果清晰。发生凋亡的细胞经HE染色后,其细胞大小的变化及特征性细胞核的变化:染色质凝集、呈新月形或块状靠近核膜边缘,晚期核裂解、细胞膜包裹着核碎片“出芽”凸出于细胞表面形成凋亡小体等均可明显显示出来。 DNA凝胶电泳:细胞发生凋亡或坏死,其细胞DNA均发生断裂,细胞小分子 质量DNA片段增加,高分子DNA减少,胞质出现DNA片段。但凋亡细胞DNA断裂点均有规律的发生在核小体之间,出现180~200 bp DNA片段,而坏死细胞的DNA断裂点为无特征的杂乱片段,利用此特征可以确定群体细胞的死亡,并可与坏死细胞区别。

TUNEL法检测细胞凋亡

细胞在发生凋亡时,会激活一些DNA内切酶,这些内切酶会切断核小体间的基因组DNA。基因组DNA 断裂时,暴露的3'-0H 可以在末端脱氧核苷酸转移酶(Terminal Deox yn ucleotidyl Tran sferase,TdT)的催化下加上荧光素(FITC)标记的dUTP(fluorescein-dUTP),从而可以通过荧光显微镜或流式细胞仪进行检测,这就是TUNEL 法检测细胞凋亡的原理。 TUNEL法特异性检测细胞凋亡时产生的DNA断裂,但不会检测出射线等诱导的DNA断裂(和细胞凋亡时的断裂方式不同)。这样一方面可以把凋亡和坏死区分开,另一方面也不会把 射线等诱导发生DNA断裂的非凋亡细胞判断为凋亡细胞。 针对问题2(TUNEL法的实验原理是什么?): 基本原理:对不同组织切片先增加细胞膜通透性,然后让rTDT和bio标记的dUTP进入细 胞内,在rTDT的辅助下dUTP与核断裂的DNA 3 -0H结合,再用HRP标记的链霉亲和素与dUTP 上的biot in 结合(每个链霉亲和素至少可以再结合3个biot in 分子),最后用DAB 过氧化氢与SP上的辣根过氧化物酶HRP发生氧化、环化反应,形成苯乙肼聚合物而呈现棕褐色,最终通过计数每张切片上不同视野中TUNEL阳性细胞的比例来判断细胞凋亡发生情 况。■ 1. TUNEL工作原理:简单说就是一一TUNEL细胞凋亡检测试剂盒是用来检测细胞在凋亡过程中细胞核DNA的断裂情况。 其原理是;生物素(biot in )标记的dUTP在脱氧核糖核苷酸末端转移酶(TdT En zyme)的 作用下,可以连接到凋亡细胞中断裂的DNA的3' - 0H末端,并可与连接了的辣根过氧化酶的 链霉亲和素(Streptavidin-HRP )特异结合,在辣根过氧化酶底物二氨基联苯胺(DAB的存在下,产生很强的颜色反应(呈深棕色),特异准确地定位正在凋亡的细胞,因而在普通 显微镜下即可观察和计数凋亡细胞;由于正常的或正在增殖的细胞几乎没有DNA的断裂,因而没有3'-0H形成,很少能够被染色。 针对问题3 (TUNEL实验中几个关键步骤是什么?): 1. 充分脱蜡和水化。脱蜡可以先60度20min,再用二甲苯两次5~10min ;而水化用梯度乙 醇从高浓度到低浓度浸洗,这些以便后面的结合反应充分、均匀; 2. 把握好细胞通透的时间。一般根据切片的厚薄,选择蛋白酶k的孵育时间,常用10~30min, 几um切片用短时间;几十um切片用长时间,通过摸索达到既不脱片,有能够使后面的酶和 抗体进入胞内。 3. 适当延长TUNEL反应液的时间。一般是37度1h,你也可以根据你的凋亡损伤程度,选择更长的时间,可长至2h,但要结合你最终的背景着色。 4. DAB显色条件的选择。一般DAB反应10分钟左右,结合镜下控制背景颜色,最长不超过 30min;我不喜欢用promega公司提供的DAB液(桃红色),不利于辨认棕褐色。 5. PBS的充分清洗。我个人认为,在TUNEL反应后和酶标反应后的清洗应十分严格,可增加 次数达5次,因为这些清洗直接决定最后切片的非特异性着色。 6. 此外,内源性POD的封闭也十分关键。对于肝脏、肾脏等血细胞含量多的组织,我的经 验是适当延长封闭时间和升高过氧化氢的浓度,可以达到很好的封闭效果,且不影响最终的 特异性染色。 针对问题5.细胞通透的原理、通透剂的浓度、孵育时间及其配制方法? 1. 蛋白酶K是消化膜蛋白,从而起打孔作用,增加

细胞凋亡的几种检测方法

细胞凋亡的几种检测方法 1、形态学观察方法 (1)HE(苏木精—伊红染色法)染色、光镜观察:凋亡细胞呈圆形,胞核深染,胞质浓缩,染色质成团块状,细胞表面有“出芽”现象。 (2)丫啶橙(AO)染色,荧光显微镜观察:活细胞核呈黄绿色荧光,胞质呈红色荧光。凋亡细胞核染色质呈黄绿色浓聚在核膜内侧,可见细胞膜呈泡状膨出及凋亡小体。 (3)台盼蓝染色:如果细胞膜不完整、破裂,台盼蓝染料进入细胞,细胞变蓝,即为坏死。如果细胞膜完整,细胞不为台盼蓝染色,则为正常细胞或凋亡细胞。此方法对反映细胞膜的完整性,区别坏死细胞有一定的帮助。

(4)透射电镜观察:可见凋亡细胞表面微绒毛消失,核染色质固缩、边集,常呈新月形,核膜皱褶,胞质紧实,细胞器集中,胞膜起泡或出“芽”及凋亡小体和凋亡小体被临近巨噬细胞吞噬现象。 2、DNA凝胶电泳 细胞发生凋亡或坏死,其细胞DNA均发生断裂,细胞内小分子量DNA片断增加,高分子DNA减少,胞质内出现DNA片断。但凋亡细胞DNA断裂点均有规律的发生在核小体之间,出现180-200bpDNA片断,而坏死细胞的DNA断裂点为无特征的杂乱片断,利用此特征可以确定群体细胞的死亡,并可与坏死细胞区别。正常活细胞DNA 电泳出现阶梯状(LADDER)条带;坏死细胞DNA电泳类似血抹片时的连续性条带 3、酶联免疫吸附法(ELISA)核小体测定

凋亡细胞的DNA断裂使细胞质内出现核小体。核小体由组蛋白及其伴随的DNA片断组成,可由ELISA法检测。 检测步骤 1、将凋亡细胞裂解后高速离心,其上清液中含有核小体; 2、在微定量板上吸附组蛋白体’ 3、加上清夜使抗组蛋白抗体与核小体上的组蛋白结合‘ 4、加辣过氧化物酶标记的抗DNA抗体使之与核小体上的DNA结合’ 4、加酶的底物,测光吸收制。 用途 该法敏感性高,可检测5*100/ml个凋亡细胞。可用于人、大鼠、小鼠的凋亡检测。该法不需要特殊仪器,

细胞凋亡的检测(含图片) 陈英玉

细胞凋亡的检测 细胞凋亡与坏死是两种完全不同的细胞凋亡形式,根据死亡细胞在形态学、生物化学和分子生物学上的差别,可以将二者区别开来。细胞凋亡的检测方法有很多,下面介绍几种常用的测定方法。 一、细胞凋亡的形态学检测 根据凋亡细胞固有的形态特征,人们已经设计了许多不同的细胞凋亡形态学检测方法。 1 光学显微镜和倒置显微镜 (1)未染色细胞:凋亡细胞的体积变小、变形,细胞膜完整但出现发泡现象,细胞凋亡晚期可见凋亡小体。 贴壁细胞出现皱缩、变圆、脱落。 (2)染色细胞:常用姬姆萨染色、瑞氏染色等。凋亡细胞的染色质浓缩、边缘化,核膜裂解、染色质分割 成块状和凋亡小体等典型的凋亡形态。 2 荧光显微镜和共聚焦激光扫描显微镜 一般以细胞核染色质的形态学改变为指标来评判细胞凋亡的进展情况。 常用的DNA特异性染料有:HO 33342 (Hoechst 33342),HO 33258 (Hoechst 33258), DAPI。三种染料与DNA的结合是非嵌入式的,主要结合在DNA的A-T碱基区。紫外光激发时发射明亮的蓝色荧光。 Hoechst是与DNA特异结合的活性染料,储存液用蒸馏水配成1mg/ml的浓度,使用时用PBS稀释成终浓度为2~5mg/ml。 DAPI为半通透性,用于常规固定细胞的染色。储存液用蒸馏水配成1mg/ml的浓度,使用终浓度一般为0.5 ~1mg/ml。 结果评判:细胞凋亡过程中细胞核染色质的形态学改变分为三期:Ⅰ期的细胞核呈波纹状(rippled)或呈折缝样(creased),部分染色质出现浓缩状态;Ⅱa期细胞核的染色质高度凝聚、边缘化;Ⅱb期的细胞核裂解为碎块,产生凋亡小体(图1)。

(完整)常见细胞凋亡检测的方法与注意事项

(完整)常见细胞凋亡检测的方法与注意事项 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)常见细胞凋亡检测的方法与注意事项)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)常见细胞凋亡检测的方法与注意事项的全部内容。

常见细胞凋亡检测的方法与注意事项 大家常把细胞凋亡和细胞坏死混淆,其实两者是不同的细胞死亡形式,大家可以在死亡细胞的形态、生化和分子指标上将二者区分开来,细胞凋亡检测的方法不少,这里就总结下几种常用的检测方法. 细胞凋亡检测更多详情,点击查看不可不知的细胞检测方法——MTT 一、细胞凋亡的形态学检测 根据凋亡细胞固有的形态特征,人们已经设计了许多不同的细胞凋亡形态学检测方法。 1 光学显微镜和倒置显微镜 (1) 未染色细胞:凋亡细胞的体积变小、变形,细胞膜完整但出现发泡现象,细胞凋亡晚期可见凋亡小体。 贴壁细胞出现皱缩、变圆、脱落. (2)染色细胞:常用姬姆萨染色、瑞氏染色等.凋亡细胞的染色质浓缩、边缘化,核膜裂解、染色质分割 成块状和凋亡小体等典型的凋亡形态。 2 荧光显微镜和共聚焦激光扫描显微镜 一般以细胞核染色质的形态学改变为指标来评判细胞凋亡的进展情况。 常用的DNA特异性染料有:HO 33342 (Hoechst 33342),HO 33258 (Hoechst 33258), DAPI。三种染料与DNA的结合是非嵌入式的,主要结合在DNA的A-T碱基区。紫外光激发时发射明亮的蓝色荧光。 Hoechst是与DNA特异结合的活性染料,储存液用蒸馏水配成1mg/ml的浓度,使用时用PBS稀释成终浓度为2~5mg/ml。 DAPI为半通透性,用于常规固定细胞的染色。储存液用蒸馏水配成1mg/ml的浓度,使用终浓度一般为0.5 ~1mg/ml。 结果评判:细胞凋亡过程中细胞核染色质的形态学改变分为三期:Ⅰ期的细胞核呈波纹状(rippled)或呈折缝样(creased),部分染色质出现浓缩状态;Ⅱa期细胞核的染色质高度凝聚、边缘化;Ⅱb期的细胞核裂解为碎块,产生凋亡小体(图1)。 3 透射电子显微镜观察 结果评判:凋亡细胞体积变小,细胞质浓缩。凋亡Ⅰ期(pro—apoptosis nuclei)的细胞核内染色质高度盘绕,出现许多称为气穴现象(cavitations)的空泡结构(图2);Ⅱa期细胞核的染色质高度凝聚、边缘化;细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。 图2

植物凋亡细胞的形态学观察

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 植物凋亡细胞的形态学观察 实验二植物凋亡细胞的形态学观察一、实验目的 1、掌握细胞凋亡的概念、生物学意义。 2、掌握细胞凋亡与细胞坏死的区别。 3、掌握诱导和观察细胞凋亡的方法。 二、实验原理(一)概念凋亡(apoptosis) 一词来自希腊语, apo 指分离, ptosis 指落下。 凋亡的原意是枯萎的树叶或花瓣自然凋落。 1972 年澳大利亚昆士兰大学的 kerr 等人在许多组织中发现了一种散在的自发的细胞死亡现象,认为这是一种不同于细胞坏死的细胞生理性死亡,并首次提出了细胞凋亡的新概念。 多细胞生物在发生、发展过程中,为了保持正常的生理机能,一部分的细胞发生自发性细胞死亡,这种细胞死亡是被细胞内一系列相关的分子所调控,并伴随有典型的形态学改变,这种现象被称为细胞凋亡。 细胞坏死是细胞受到化学因素(如强酸、强碱、有毒物质)、物理因素(如热、辐射)和生物因素(如病原体)等环境因素的伤害,引起细胞死亡的现象。 细胞凋亡和细胞坏死的区别区别细胞凋亡细胞坏死起因生理或病理性病理性变化或剧烈损伤范围少数散在细胞大片组织或成群细胞细胞膜保持完整破损染色质凝聚在核膜下呈半月 1 / 4

状呈絮状细胞器无明显变化肿胀、内质网崩解细胞体积固缩变小肿胀变大凋亡小体有无基因组 DNA 有控降解,电泳图谱呈梯状随机降解,电泳图谱呈涂抹状蛋白质合成有无调节过程受基因调控被动进行(二)生物学意义①清除无用的、多余的细胞。 无用的细胞大多在发育早期阶段即发生凋亡。 如果发育过程中某些细胞产生过多,也会发生凋亡。 例如,人胚胎肢芽发育过程中指(趾) 间组织,通过细胞凋亡机制被清除而形成指(趾) 间隙。 ②清除受损、突变或衰老的细胞。 受损不能修复的细胞通过凋亡而被清除。 受病毒感染的细胞通过凋亡使DNA发生降解,整合于其中的病毒 DNA也随之破坏,阻止了病毒复制。 (三)主要特征凋亡细胞的主要特征是: ①染色质聚集、分块、位于核膜上,胞质凝缩,最后核断裂,细胞通过出芽的方式形成许多凋亡小体;②凋亡小体内有结构完整的细胞器,还有凝缩的染色体,可被邻近细胞吞噬消化,因始终有膜封闭,没有内溶物释放,故不会引起炎症;③凋亡细胞中仍需要合成一些蛋白质,但是在坏死细胞中 ATP 和蛋白质合成受阻或终止;④核酸内切酶活化,导致染色质 DNA 在核小体连接部位断裂,形成约 200bp 整数倍的核酸片段,凝胶电泳图谱呈梯状; ⑤凋亡通常是生理性变化,而细胞坏死是病理性变化。

TUNEL染色检测细胞凋亡

TUNEL法检测细胞凋亡实验原理和方法 细胞凋亡中染色体DNA的断裂是个渐进的分阶段的过程,染色体DNA首先在内源性的核酸水解酶的作用下降解为50-300kb的大片段。然后大约30 ﹪的染色体DNA在Ca2和Mg2依赖的核酸内切酶作用下,在核小体单位之间被随机切断,形成180~200bp核小体DNA多聚体。DNA双链断裂或只要一条链上出现缺口而产生的一系列DNA的3’-OH末端可在脱氧核糖核苷酸末端转移酶(TdT)的作用下,将脱氧核糖核苷酸和荧光素、过氧化物酶、碱性磷酸化酶或生物素形成的衍生物标记到DNA的3’-末端,从而可进行凋亡细胞的检测,这类方法一般称为脱氧核糖核苷酸末端转移酶介导的缺口末端标记法(TUNEL)。由于正常的或正在增殖的细胞几乎没有DNA的断裂,因而没有3’-OH形成,很少能够被染色。低分子量的DNA分离后,也可使用DNA聚合酶进行缺口翻译(nick translation),使低分子量的DNA标记或染色,然后分析凋亡细胞。TUNEL或缺口翻译法实际上是分子生物学与形态学相结合的研究方法,对完整的单个凋亡细胞核或凋亡小体进行原位染色,能准确的反应细胞凋亡最典型的生物化学和形态特征,可用于石蜡包埋组织切片、冰冻组织切片、培养的细胞和从组织中分离的细胞的细胞凋亡测定,并可检测出极少量的凋亡细胞,灵敏度远比一般的组织化学和生物化学测定法要高,因而在细胞凋亡的研究中已被广泛采用。 一、过氧化物酶标记测定法 原理:脱氧核糖核苷酸衍生物地高辛[(digoxigenin)-11-dUTP]在TdT酶的作用下,可以掺入到凋亡细胞双链或单链DNA的3-OH末端,与dATP形成异多聚体,并可与连接了报告酶(过氧化物酶或碱性磷酸酶)的抗地高辛抗体结合。在适合底物存在下,过氧化物酶可产生很强的颜色反应,特异准确的定位出正在凋亡的细胞,因而可在普通光学显微镜下进行观察。 毛地黄植物是地高辛的唯一来源。在所有动物组织中几乎不存在能与抗地高辛杭体结合的配体,因而非特异性反应很低。抗地高辛的特异性抗体与脊椎动物甾体激素的交叉反应不到1%,若此抗体的Fc部分通过蛋白酶水解的方法除去后,则可完全排除细胞Fc受体非特异性的吸附作用。 本方法可以用于福尔马林固定的石蜡包埋的组织切片、冰冻切片和培养的或从组织中分离的细胞凋亡测定。

相关主题
文本预览
相关文档 最新文档