当前位置:文档之家› 计算机辅助设计与制造一页开卷

计算机辅助设计与制造一页开卷

计算机辅助设计与制造一页开卷

一、CAD: CAD是以设计者为主体,设计者利用计算机辅助设计系统的资源,

对产品设计进行规划、分析、综合、模拟、评价、修改、决策并形成工程文档的创造性活动。特点:提高设计效率;提高设计质量;利于成组设计;修改设计方便;设计与分析统一;易于实现产品数据的标准化;易于实现网络的协同设计;无图纸化生产的前提;为实现产品生命周期管理系统(PLM)提供基础。工作过程:1、进行功能设计,选择合适的科学原理或构造原理;2、进行产品结构的初步设计,产品的造型和外观的初步设计;3、从总图派生出零件,对零件的造型、尺寸、色彩等进行详细设计,对零件进行有限元分析,是结构与尺寸与应力相适应;4、对零件进行加工模拟,如注塑、压铸、锻压或机械加工等过程进行模拟,从模拟过程中发现制造的问题,进而提出对零件设计的修改方案;5、对产品实施运动模拟或功能模拟,对其性能做出评价、分析和优化,最终完成零件的结构设计。CAD系统的硬件:主机、输入设备(鼠标、键盘、数字化仪、扫描仪、三坐标测量仪)、输出设备(显示器、绘图仪、打印机、

快速成形机)、信息存储设备(外存、硬盘阵列、光盘、磁带机)、网络设备多媒体设备。软件:系统软件(主要用于计算机的管理、维护、控制及运行,以及对计算机程序得翻译和运行。包括操作系统、编译系统)、支撑软件、应用软件

(设计计算型、检索绘图型、交互设计型)接口:是一种能够实现两个以上系统间信息交换的程序或方法。其核心内容就是由其中一个系统(文件)读出信息,将信息写入另一个系统(文件)。数据交换标准:IGES/STEP/STEP-NC.参数化设计(将模型中的定量信息变量化,使之成为任意调整的参数。用约束来表达产品几何模型,定义一组参数来控制设计结果,从而能够通过调整参数来修改设计模型。特点:基于特征、全尺寸约束、尺寸驱动设计修改、全数据相关)。变量化设计特点:将形状约束和尺寸约束分开来处理;工程关系可以作为约束直接和几何方程耦合,然后再通过约束解算器统一解算,方程求解顺序上无所谓;解决任意约束情况下的产品设计问题,不仅可以做到尺寸驱动,也可以做到约束驱动。二、工程数据计算机处理的3种方法:工程数据程序化、建立数据文件、建立数据库。工程数据程序化(包括数表程序化和线图程序化,是将工程数据直接编写在应用程序中,可对数据进行查询,整理和计算,但是不可以对数据进行更改)、建立数据文件(无管理程序,但有一个独立的数据文件,若不带有数据文件,则不可以使用)、建立数据库(有管理程序,是最复杂,但却是最有效最方便的方式,是数据文件的特有形式)。数表程序化指将数据以数组、数据文件、拟合公式和插值公式的形式给出,并利用应用程序来处理、调用和检索查询。方法:用数组的形式程序化数表、插值(线性插值;抛物线插值;拉格朗日一元n次插值;二维数表插值)、数表拟合公式化。最小二乘法就是将离散数据(数表中的数据)近似地表示为一连续函数pn(x),

通过找出一条平滑的最佳拟合曲线来代替离散的数表数据。线图程序化1获取线图的原始公式,将其编入程序;2将线图转换成数表然后利用前面介绍的

数表程序化的方法进行程序化处理;3用曲线拟合的方法求出线图的近似公式,再将近似公式编入程序。Product Data Management,PDM(产品数据管理):以软件技术为基础,以产品为管理的核心,以数据、过程和资源为管理信息的三大要素。数据文件:顺序文件和随机文件三、图形学基础几何变换(简称图形变换)

是对一个二维或三维图形的表示和处理。从原理上讲,图形变换就是将图形上点的坐标变换成新图形上对应点的坐标。计算机绘图系统:图形输入设备(键盘;鼠标;数字化仪;图形扫描仪;数码相机)图形输出设备(图形显示器;打印机;绘图机)齐次坐标:就是用n+1维向量表示一个n维向量。

齐次坐标表示在CAD中应用表现在对一个几何形体和它的图形上几何元素的

描述。复合变换:由几个基本变换有序地结合所构成的变换成为组合变换或复合变换。计算机绘图软件的功能:窗口定义与视区;图形描述;图形编辑与变换;图形控制;图形文件处理;交互处理功能。绘图软件的类型:基本绘图指令软件、图形支撑软件、专用图形软件。图形软件标准:图形标准(

GKS PHIGS OpenGL)图形和图像编码(CGM、CGI)数据交换标准(IGES、STEP)。工程中常用的曲线:规则曲线(圆锥曲线、摆线、渐开线)自由曲线(三次参数样条曲线、圆弧样条曲线、贝塞尔(Bezier)曲线、B样条曲线、NURBS曲线)定义:通常是指不能用直线、圆弧和二次圆锥曲线描述,而只能用一定数量的离散点来描述的任意形状的曲线。为何要进行图形变换?答:被描述的对象和显示屏幕或图纸的环境是很不相同的,不仅位置不同,大多数情况下尺寸也很不相同,这就需要变化来调整这两者之间的关系。四、CAD/CAM建模中,建

模技术是将现实世界中的物体及其属性转化为计算机内部可数字化表示、分析、控制和输出的几何形体的方法。意义:建模技术是产品信息化的源头,是定义产品在计算机内部表示的数字模型、数字信息及图形信息的工具,它为产品设计分析、工程图生成、数控编程、数字化加工与装配中的碰撞干涉检查、加工仿真、生产过程管理等提供有关产品的信息描述与表达方法,是实现计算机辅助设计与制造的前提条件,也是实现CAD/CAM一体化的核心内容。几何造型:以计算机能够理解的方式,对实体进行精确的定义,赋予一定的数学描述,再以一定的数据结构形式对所定义的几何实体加以描述,从而在计算机内部构造一个实体模型。分为线框模型:利用产品形体的棱边和顶点来表示产品几何形状,描述的是产品的轮廓外形,其生成的实体模型由一系列的直线、圆弧、点及自由曲线组成。线框模型的数据结构采用表结构。计算机内部存贮物体的顶点和棱线信息;表面模型:表面建模是将物体分解成组成物体的表面、边线和顶点,用顶点、边线和表面的有限集合表示和建立物体的计算机内部模型;实体模型:实体模型是由若干表面组成的封闭体,这些表面之间具有一定的拓扑关系。区别;实体模型与表面模型的区别在于,前者构成形体的表面之间具有

一定的拓扑关系,表面的方向可以判断形体在表面的哪一侧。由于实体模型能够定义三维物体的内部结构形状,因此能完整地描述物体的所有几何信息。实体模型支持剖切、消隐、物性计算和有限元分析。实体造型的理论基础:1、形体的信息结构(六层拓扑结构:体壳面环边定点)2、正则集合运算(通过布尔运算得到。具有良好边界的形体定义称为正则形体。正则形体没有悬边、悬面或一条边有两个以上的邻面)3、欧拉检验公式符合欧拉公式的物体称为欧拉物体。V-E+F=2B-2G+L;F—面数V—顶点数E—边数B—相当于独立的、不相连接的多面体数 L—所有面上未连通的内环数(面中的空洞数)G—贯穿多面体的孔的个数(体中的空穴数);(3)实体造型的基本方法:(1)边界表示法将物体定义成由封闭的边界表边界表示法的基本思想是将物体定义成由

封闭的边界表面围成的有限空间。这样一个形体可以通过它的边界,即面。(2)结构实体表示法(Constructive Solid Geometry)简称CSG法,是一种利用一些简单形状的体素(如长方体、圆柱体、球体、锥体等),经变换和布尔运算构成复杂形体的表示模式。(3)CSG和B-Rep混合表示法是建立B-Rep和CSG法基础上,在同一CAD系统混合表示法是建立B-Rep和CSG法基础上,在同一CAD 系统中将两者结合起来形成的实体定义描述法,即在CSG二叉树的基础上,在

每个节点上加入边界法的数据结构。基础上,在每个节点上加入边界法的数

据结构。(4)空间单元表示法通过系列空间单元构成的图形表示物体特征建

模是以几何模型为基础并包括零件设计、生产过程所需的各种信息的一种产品

模型方案。特征建模的特点:1、特征引用直接体现设计意图,产品设计工作

在更高层次上展开,使产品在设计时就考虑加工、制造要求,有利于降低生产

成本2、产品设计、分析、工艺准备、加工、检验各部门之间有了共同语言,

产品的设计意图贯彻到各环节3、针对专业领域的需要建立特征库,快速声称

需要的形体4、特征建模技术着眼于更好更完整的表达产品全生命周期的技术

和生产组织、计划管理等多阶段的信息,着眼于简历CAD系统与CAX系统、

MRP系统与ERP系统的集成化信息平台特征反映设计者和制造者的意图是由

一定拓扑关系的一组实体元素构成的特定形状,它还包括附加在形状之上的工

程信息,对应于零件上的一个或多个功能,能够被固定的方法加工成形。分类:

从产品整个生命周期:设计特征、分析特征、加工特征、公差及检测特征、装

配特征等;从产品功能上为:形状特征、精度特征、技术特征、材料特征、装

配特征;从复杂程度上为:基本特征、组合特征、复合特征。STEP标准将形

状特征分:体特征、过渡特征、分布特征。几何参数模型包括两个主要概念:

几何关系和拓扑关系。约束:尺寸约束、几何约束五、Solidworks:1、设计

的两种方法:自底向上:先设计零件,再装配。自顶向下:由整体装配思路,

再逐个画零件。2、建特征应以基准面为基准。3、基准面由什么担任:系统自

带的三个基准面;所建特征的表面;用户自定义的基准面。4、自定义基准面

的方法:点+线;点+面;与平面成一定角度;垂直与曲线;与平行面等距。5、

建立特征的方法:拉伸、旋转、扫描成型、放样成型、减材料。6、零件之间

的位置关系:同轴、面面接触、平行、等距、垂直。7|如何知道零件体积重心

的位置8如何装配:通过零件之间的关系:平行,重合,相切,垂直,同轴心,

面与面的角度和距离六CAE计算机辅助工程CAE: 定义:利用计算机对设计方

案进行分析,包括工程分析、数据管理、试验、仿真等等。。有限元法的基本

思路是将一个形状复杂的连续体的求解区域分解成有限个单元组成的等效组

合体,通过将连续体离散化,把求解连续体的场变量(应力、位移、压力和温度

等)问题简化为求解有限个单元结点上的场变量值。基本思想:“化整为零,集

零为整”。有限元法是求解数理问题的一种数值计算方法。步骤:前处理:建

立有限元模型;计算:集成并求解系统方程组、施加定解条件(约束和荷载);

后处理:分类、检索、列表和显示计算结果。前置处理(几何模型生成、有限

元网格的自动生成、有限元属性数据的生成、模型检验,错误诊断与修改)包

括:选择单元类型,划分单元,确定各节点和单元的编号及坐标,材料性质…

后处理实现的主要内容(1将节点位移、单元应力或内力等力学数据,转换为

设计人员所关心和熟悉的设计参数;2对浩繁的数据进行编辑,筛选出关键的

有用数据;3利用计算机图形显示和绘图更加形象、有效地表示有限元模型和

计算结果)通常使用后置处理器自动处理分析结果,并根据操作者的要求形象

化为:变形图、应力等值线图、应应变彩色浓淡图、矢量图及振型图,…,直

观显示载荷作用下零件的变形,零件各部分的应力、应变或温度场的分布…静

态计算:1设置分析类型2定义单元及材料3建立桁架几何图形4施加负载5

分析6结果。动态计算:1设置分析类型2定义单位及截面3定义材料属性4

绘制几何图形5分格6板底端约束7振动特征值分析8结果。

Ansys Workbench 通过Static Structural-Mechanical 模块进行静力学分析。

Ansys Workbench静力学分析流程:①选择Static Structural模块②构建几何模

型③添加材料信息④设定接触选项(装配体)⑤网格划分⑥施加载荷和约束⑦

设定求解参数⑧求解⑨观察求解结果。Static Structural模块工作流程

(1Static Structural 2Engineering Data工程数据3Geometry:建立几何模型

4Model划分网格5Setup施加载荷和边界条件6Solution求解7Results结果后处

理)Ansys:固有模态和固有频率是一一对应的。振动模态:系统的每一个固有

频率都有一个对应的模态振型。模态分析步骤1:载入模型第2:指定分析标

题并设置分析范畴 3:定义单元类型4:指定材料性能5:划分网格6:进入求

解器并指定分析类型和选项7:施加边界条件.8:指定要扩展的模态数。9:进

行求解计算10:列出固有频率“Model”分支包含分析中所需的输入数据。

“Static Structural”分支包含载荷和分析有关边界条件。“Solution”分支包含

结果和求解信息。加载及约束方法1:在图形窗口选择几何体,然后在

Context Toolbar中加载和约束。2:在Context Toolbar中加载和约束,然后选中

几何体并点击“apply”。–结果:各个方向变形及总变形;应力应变分量、主

应力应变或者应力应变不变量;接触输出;支反力。

七, 二次开发定义:指在现有软件的基础上,为提高和完善软件的功能,使之

更加符合用户需要而做的软件开发工作。意义:消除基础软件的功能与用户

的要求之间存在的距离,在基础软件和用户之间建起一座“桥梁”。即对基础

软件的某些功能作一些修改和补充,使某个软件为特定的用户所应用。特点:

提高与继承性;专业性;相对简单性;实用性。开发软件应具备的功能:交互

图形处理功能;设计计算功能;参数化绘图功能;校核功能;有限元分析功能;

数据库管理功能八CAM(Computer Aided Manufacturing)计算机辅助制造:

是一项利用计算机协助人们完成产品制造的技术。广义的CAM是指借助计算

机来完成从生产准备到产品制造出来的过程中的各项活动,包括工艺过程设计

(CAPP)、工装设计、计算机辅助数控加工编程、生产作业计划、制造过程控

制、质量检测与分析等。狭义CAM:是计算机辅助机械加工(Computer Aided

Machining),明确地讲,就是自动编译数控加工的程序,它的输入信息是零件

的图形、工艺路线和工序的内容,输出信息是刀具加工时的运动轨迹和数控程

序。核心是数控编程和数控加工工艺的设计。CAM技术发展的方向:智能化、

三维化、集成化、网络化。CAM硬件系统:主机;外存储器;输入输出设备

CAM软件系统的层次结构:系统软件、支撑软件和应用软件。CAM软件系统

的基本模块组成:1三维交互造型模块2工程绘图模块3数控加工模块4设计

仿真模块5动态仿真模块。软件系统功能实现步骤:前置处理(根据所加工零

件的结构特征,结合工艺决策,生成描述加工过程的刀具轨迹信息文件。)后

置处理(根据刀轨迹信息、特定机床的性能参数要求和该机床所配置的数控系

统的特性要求生成针对该数控设备的数控加工代码。)CAM如何与CAD进行数

据共享和传递:数据格式的转换。如PARASOLID建模系统支持实体建模和通用

的单元建模和自由形状建模。许多软件使用该系统,包括MasterCAM。该格式

文件的扩展名为x_t和xmt_txt。什么叫CAD,cAM,CAPP一体化:工程

设计自动化系统通常包括:CAD、CAPP、CAM三部分组成,其集成化是CIMS(计

算机集成制造)的重要性能指标,使产品数据格式标准化,实现数据的交换与

共享。九,CAPP(Computer Aided Process Planning)(计算机辅助工艺设计)

定义:是指借助于计算机软硬件技术和支撑环境,利用计算机进行数值计算、

逻辑判断和推理等的功能来制定零件机械加工工艺过程的一种技术。意义:

CAPP是将产品设计信息转换为各种加工制造、管理信息的关键环节,是连接

CAD、CAM的桥梁。CAPP的功能:工艺决策、工艺尺寸的确定、工艺参数

的确定、工序图的生成和绘制、工时定额的计算、工序卡的输出。CAPP系统

的组成:零件的信息的获取、工艺决策、工艺数据与知识库、人机界面、工艺

文件的编辑与输出。CAPP系统按照工作原理分:检索式CAPP、派生式CAPP、

创成式...、混合式..、专家系统.。检索式基本原理:按照零件编码或图号将企

业现行各类工艺文件存入计算机数据库。设计时根据零件编码或图号,在工

艺文件库中检索类似零件的工艺文件,由工艺人员采用人机交互方式修改、编

辑。特点:检索式CAPP系统实际上是一个工艺文件数据库的管理系统,功

能较弱、自动决策能力差、开发难度小,操作方便,实用性强,与企业现有设

计工作方式相一致,得到很多企业的认可,具有很高的推广价值基于GT的

派生式基本原理:利用成组技术(GT)代码或企业现行零件图编码,根据结构和

工艺相似性将零件进行分组,然后针对每个零件组编制典型工艺(主样件工艺)

特点:派生式CAPP系统柔性差,只能针对企业具体产品零件的特点开发,

可移植性差,不能用于全新结构的零件工艺设计;工作原理简单,容易开发,

实际投入运行的系统大多是派生式系统。基于特征的派生式CAPP系统基本

思想是利用已解决问题的结果求解新问题,是基于实例的推理方法特点:用基

于特征的零件信息模型取代GT码;用样件(或实例)分类索引树来取代零件分

组;用基于特征的推理代替基于零件族矩阵的;工艺过程筛选策略;在样件的

基础上增加了实例的概念零件矩阵:将OPITZ代码用矩阵表示出来。零件的

特征矩阵:含有一定范围的零件特征的矩阵。零件族的特征矩阵:另有该零件

族所有特征的矩阵。判断一个零件是否为一个零件组成员:特征矩阵法:对

零件分组时,先将零件代码与特征矩阵进行比较,如果与零件代码各个位的数

值相对应的矩阵位置上都是1,则认为该零件与此特征矩阵相匹配,该零件就

分入这个组。Opitz编码系统:12345 6789 ABCD 前9位数字码用来传送

设计和制造信息,最后4位数ABCD用于识别生产操作类型和顺序,称辅助代

码,由各单位根据特殊需要设计安排(零件成组编码、类型码、形状码、辅助

码。)。成组技术:利用产品零件间的相似性,将零件分类成组,然后根据每组

零件所特有的相似特征为其同组零件找出相对统一的最佳处理方法,从而在不

改变原有的工艺和设备的条件下,取得提高效率、节省资源、降低成本的效率。

分组原理:零件组的划分是建立在零件相似性的基础上的,将相似的零件归为

零件族零件的相似性一般包括形状的相似性和工艺的相似性。常用的零件分组

方法:视检法、生产流程分析法和编码分组法编码分组法是通过零件编码来

分组的,也叫特征数据法或特征矩阵法。创成式CAPP系统工作原理:让计

算机模仿工艺人员的逻辑思维能力,自动进行各种决策,选择零件的加工方法,

安排工艺路线,选择机床、刀具、夹具,计算切削参数、加工时间、加工成本,

并对工艺过程进行优化。特点:创成式方法接近人类解决问题的创新思维方式;

方便地设计出新零件的工艺规程,有很大的柔性,还可以和CAD系统以及自

动化的加工系统相连接,实现CAD/CAM的一体化。工艺决策逻辑的主要形式:

决策树:是系统工程中决策支持系统常用的方法,也是传统的系统分析和设计

的有效实用方法。决策表:将一组用语言表达的决策逻辑关系用一个表格表

达,方便计算机语言表达该决策逻辑,是计算机软件设计的基本工具。基于专

家系统的工艺决策方法:将AI(人工智能)技术应用在CAPP系统中所形成的

专家系统,也称智能化CAPP系统。CAPP专家系统特征是:知识库(由零件设

计信息和表达工艺决策的规则集组成)、推理机(根据当前的事实,通过激活

知识库的规则集得到工艺设计结果)。综合式CAPP系统将派生式与创成式结

合起来,采取派生与自动决策相结合的工作方式,也称半创成式CAPP。十一

计算机集成制造系统(CIMS)定义:是在计算机技术、信息处理技术、自动控

制技术、现代管理技术、柔性制造技术基础上,将企业的全部生产、经营活动

所需要的各种分散的自动化系统,经过新的生产管理模式,吧企业生产全部产

生过程中有段的人、技术、经营管理三要素及信息流与物料流有机地集成起来,

以获得适用于多品种、中小批量生产的高效益、高柔性、高质量的制造系统。

并行工程:集成地、并行地设计产品及其零部件和相关过程的一种系统方法。

虚拟制造技术:在计算机上模拟产品的制造和装配的全过程。

(defun c:jx() (command "limits" "" "297,210")(command "zoom" "all")

(setvar "ltscale" 5) (setq pt (getpoint "\n 输入基点p0:"))

(setq L (getdist "\n 宽L:")) (setq h (getdist "\n 平移h:"))

(setq p1 (polar pt 0 (/ L 2))) (setq p2 (polar p1 (/ pi 2) (/ L 2)))

(setq p3 (polar p2 pi L)) (setq p4 (polar p3 (* 1.5 pi) L))

(setq p5 (polar p4 0 L)) (setq p6 (polar p1 pi h))

(setq p7 (polar p6 (/ pi 2) (- (/ L 2) h))) (setq p8 (polar p7 pi (- L (* h 2))))

(setq p9 (polar p8 (* 1.5 pi) (- L (* 2 h)))) (setq p10 (polar p9 0 (- L (* 2 h))))

(setq pt1 (polar pt (* 1.5 pi) (+ (/ L 2) 3))) (setq pt2 (polar p1 pi (/ h 2)))

(setvar "lwdisplay" 1) (command "layer" "m" "a" "c" 7 "" "lw" 0.3 "" "s" "a"

"") (command "line" p2 p3 "") (command "line" p3 p4 "")

(command "line" p4 p5 "") (command "line" p5 p2 "")

(command "line" p10 p7 "") (command "line" p7 p8 "")

(command "line" p8 p9 "") (command "line" p9 p10 "")

(command "dimlinear" p4 p5 "h" pt1) (command "dimlinear" p1 p6 "h" pt2)

(princ) ) (defun c:123s () (setq han (getvar "osmode")) (setvar "osmode"

0) (setvar "ltscale" 5) (setq p0 (getpoint "\n 输入基点p0:"))

(setq h (getdist "\n 矩形边长H:")) (setq w (getdist "\n 矩形宽度w:"))

(setq r (getdist "\n 偏移量H1:")) (setq r1 r) (if (> h (* 2 r))

(princ "\n ok") ) (setq p01 (polar p0 pi (* h 0.5)))

(setq p02 (polar p01 (* pi -0.5) (* w 0.5))) (setq p03 (polar p01 (* pi 0.5) (* w

0.5))) (setq p04 (polar p03 0 h)) (setq p05 (polar p01 0 r)) (setq pc1 (polar

p01 pi 5)) (setq pc2 (polar p0 (* 0.5 pi) (+ 5 (* w 0.5))))

(setq pc3 (polar p0 (* 0.5 pi) (+ 10 (* w 0.5)))) (setvar "lwdisplay" 1)

(command "layer" "m" "a" "c" 7 "" "lw" 0.3 "" "s" "a" "")

(command "rectang" p02 "d" h w p0 "")

(while (> h (* 2 r1)) (command "offset" r1 p02 p0 "")

(setq r1 (+ r r1)) ) (command "layer" "m" "b" "c" 2 "" "lw" "default" "" "")

(command "dimlinear" p02 p03 pc1) (command "dimlinear" p03 p04 pc3)

(command "dimlinear" p01 p05 pc2) (princ) )

机械制造基础实验D打印

快速成形加工实验 班级:姓名:马骁哲学号: 一、实验目的 1、了解FDM 3D打印工艺的成形原理; 2、熟悉FDM 3D打印机的机械结构及操作方法; 3、学习3D打印软件的使用方法。 二、实验内容 1、选择适合打印的三维模型,利用FDM 3D打印机完成加工; 2、测量打印件的尺寸精度; 3、分析影响打印精度及打印效率的关键因素。 三、实验设备 1、HOFI-X1 FDM 3D打印机 2、去支撑用工具钳、工具 四、实验原理 FDM(Fused Deposition Modeling)中文全称为熔融沉积成型3D 打印技术,使用丝状材料(塑料、树脂、低熔点金属)为原料,利用电加热方式将丝材加热至略高于熔化温度,在计算机的控制下,喷头作x-y平面运动,将熔融的材料涂覆在工作台上,冷却后形成工件的一

层截面。一层成形后,喷头上移一层高度,随后开始加工下一层,由此逐层堆积形成三维工件,打印原理如图1所示。 图1 FDM三维打印技术原理图 在打印过程中,线材通过打印喷头挤出的瞬间将会快速凝固,根据材料的不同以及模型设计温度的不同,打印头的温度也不尽相同。为了防止打印零件出现翘曲变形等问题,一般还需在喷头温度升温后对打印平台进行预热处理,以此降低零件加工过程中的温度梯度。为便于零件加工完成后从打印平台上剥离,一般需在打印平台上预先置放隔层,喷头挤出的线材直接在隔层上成形。 FDM 3D打印技术的优点是材料利用率高、材料成本低、可选材料种类多、工艺简洁。缺点是精度较低、复杂构件不易制造、零件悬垂区域需加支撑、表面质量较差。该工艺适用于产品的概念建模及功能测试,适合中等复杂程度的中小原型,不适合制造大型零件。 五、实验步骤 1、熟悉打印控制软件的操作界面及主要功能模块; 2、熟悉HOFI-X1 FDM 3D打印机的主要结构及操作方法,通过USB数据线连接计算机和打印机,连接电源适配器给打印机供电,如图2所示: 图2 打印机线路连接 3、在控制软件中选择端口并连接打印机,将指导教师指定的标

设备故障诊断一页纸开卷考试

1.1机械设备故障诊断包括哪几个方面的内容?答:第一部分是利用各种传感器和监测仪表获取设备运行状态的信息,即信号采集。第二部分是对能够反映故障状态的特征参数和信息进行识别,利用专家的知识和经验,诊断出设备存在 的故障类型、故障部分、故障程度和产生故障的原因,这部分内容称为故障诊断。第三部分称为诊断决策,根据诊断结论,采取控制、治理和预防措施。1.2 请简述开展机械设备故障诊断的意义。答:1、可以带来很大的经济效益。①采 用故障诊断技术,可以减少突发事故的发生,从而避免突发事故造成的损失,带来可观的经济效益。②采用故障诊断技术,可以减少维修费用,降低维修成本。2、研究故障诊断技术可以带动和促进其他相关学科的发展。故障诊断涉及多 方面的科学知识,诊断工作的深入开展,必将推动其他边缘学科的相互交叉、渗透和发展。 2.1 信号特征的时域提取方法包括哪些?答:信号特征的时域提取方法包括平均值、均方根值、有效值、峰值、峰值指标、脉冲指标、裕度指标、 偏度指标(或歪度指标、偏斜度指标)、峭度指标。这些指标在故障诊断中不能孤立地看,需要相互印证。同时,还要注意和历史数据进行比较,根据趋势曲线作出判别。2.2时域信号统计指标和频谱图在机械故障诊断系统中的作用分 别是什么?答:时域信号统计指标的主要作用是用于判定机械设备是否有故障(故障隐患)、程度如何、发展趋势怎样等这类维修指导性工作。信号特征在时域中的统计指标有两类:单值函数类和分布函数类。单值函数类统计指标以简 单的1 个数值来实现判定要求,因而成为机械故障诊断系统中时域信号特征的主要指标。它们是:平均值、均方根值(有效值)、峰值指标、脉冲指标、裕度指标、歪度指标、峭度指标。其中最主要的是均方根值,它是判定是否存在故 障的重要指标。其它指标用于回答程度如何。这些指标的时间历程曲线用于回答发展趋势怎样。频谱图在机械故障诊断系统中用于回答故障的部位、类型、程度等问题。振动参数有三项:频率、幅值、初相位。相位差与各部件之间的运 动关系相关,频率与该部件的运动规律相关,振幅与该部件的运动平稳性相关。当机械状态劣化时,首先表现的是运动平稳性变坏,由此造成振动幅值的增大。关注频率与振动幅值的变化是机械故障分析工作的指导原则。2.3 在观察频 谱图作故障诊断分析时,应注意哪些要点?答:1、注意那些幅值比过去有显著变化的谱线,分析它的频率对应着哪一个部件的特征频率。2、观察那些幅值较大的谱线(它们是机械设备振动的主要因素),关注这些谱线的频率所对应的 运动零部件。3、注意与转频有固定比值关系的谱线(它们是与机械运动状态有关的状态信息),注意它们之中是否存在与过去相比发生了变化的谱线。2.4频率细化分析的基本思想是什么?请简述频谱细化的过程。答:频率细化分析的 基本思想是利用频移定理,对被分析信号进行复调制,再重新采样作傅里叶变换,可得到更高的频率分辨率。主要计算步骤如下。1、选用采样频率ωs=2π/?t 进行采样,得到N 点离散序列{x n }.假设需要细化的频带是中心频率为的一个窄 带,这里的分别是以和分别以为中心频率的窄带的左、右端点频率。2.用一个复序列.3、对{} 进行低通滤波得到离散复序列{gn }。4、对{ gn }进行重新采样,得到离散复序列{rn}。5、对重抽样后的复序列{rn}进行复数FFT 变换,即可得 到细化后中心频率为带宽为ω2 –ω1 的细化谱。2.5轴心轨迹图通常应用在什么场合?如何绘制轴心轨迹图?答:轴心轨迹图常用于分析机械转子系统状态信息。轴心运动轨迹是指轴颈中心相对于轴承座在轴线垂直平面内的运动轨迹, 简称为轴心轨迹。轴心轨迹是一平面曲线,与幅频或相频特性曲线比较,它更加直观地反映了转轴的运动情况。轴心轨迹的测量,是将两个涡流传感器安装在转轴同一截面上,彼此互成90°(因为轴心轨迹图中的x 、y 坐标是垂直的), 两路信号必须同步采样。轴心轨迹实际上是由 x 、y 方向上的位移振动信号合成的李莎茹图形,因此,如果直接把某一时刻x 、y 方向上的位移信号直接描绘在x 、y 坐标轴上,这一点就是该时刻轴心的位置,将不同时刻的轴心位置点连 接起来,就形成了轴心轨迹图。将x 、y 两个传感器所测的数值看作是轴心轨迹在x 、y 两个方向的投影,去掉其中的直流分量(平均值——代表传感器与轴颈表面的间隙),再按照(x,y)坐标值进行绘制。2.6什么是二维全息谱?全息谱 和轴心轨迹图有什么联系?振动信号的特征是通过全息谱的什么来反映的?答:将转子测量截面上水平和垂直两方向的振动信号作傅里叶变换,从中提取各主要频率分量的频率、幅值和相位。然后按照各主要频率分量分别进行合成,并 将合成结果按频率顺序排列在一张谱图上,就得到了二维全息谱。二维全息谱就是在一个平面坐标上表示出转子振动时各个频率分量下的轴心轨迹。谱图的横坐标为转子振动的阶比(即频率),对转子截面水平和垂直方向的振动信号作 FFT 谱分析,对应地提取出各主要阶比频率的幅值和相位,再将各个频率成分在水平和垂直方向上的幅值和相位进行融合,得到各频率分量对应的轨迹图形,将这些轨迹图依次放置在横坐标的相应位置上,就形成了二维全息谱。二维全息 谱包含了转子测量面处的频率、幅值和相位的全部信息。一般情况下,二维全息谱是偏心率不等的椭圆,椭圆的偏心率和长轴方向不同程度地反映了该频率成分的振动特点。2.7倒频谱和一般的功率谱相比有什么优点?答:倒频谱有以 下优点:1、倒频谱是频域函数的傅里叶逆变换,对功率谱函数取对数的目的,是使变换后的信号能量格外集中,突出幅值比较小的信号的周期,可以有效地提取和识别频谱上的周期成分,便于对原信号的识别.2、利用倒频谱分析方法可 解卷积,易于分离源信号和传递系统,利于对原信号的识别。3、倒频谱受传输途径的影响很小,便于排除因传感器安装位置的不同而带来的影响。2.8 Hilbert 变换有什么特点?简述Hilbert 变换实现解调的原理。答:Hilbert 变换有 以下特点:1、希尔伯特变换是从时域到时域的变换,它是在时域内进行的,不同于在时域和频域间进行转换的傅里叶变换。2、希尔伯特变换的结果是将原信号的相位平移了90°(负频率作+90°相移,正频率作-90°相移),所以这种 变换又称为90°移相滤波器或垂直滤波器。3、希尔伯特变换只影响原信号的相位,不会影响到原来信号的幅值。4、希尔伯特变换前后,原信号的能量不会由于相位的移动发生变化。5、由于变换只是将原信号作了90°相移,原信号与它 的希尔伯特变换构成正交副。Hilbert 变换解调原理:设一窄带调制信号其中a(t) 是缓慢变化的调制信号。令是信号x(t)的瞬时频率。设x(t)的希尔伯特变换为。则它的解析信号为:解析信号的模或信号的包络为 3.1转子产生不平衡 振动的机理是什么?不平衡故障的主要振动特征是什么?答:旋转机械的转子由于受材料的质量分布、加工误差、装配因素以及运行中的冲蚀和沉积等因素的影响,致使其质量中心与旋转中心存在一定程度的偏心距。偏心矩较大时,静 态下,所产生的偏心力矩大于摩擦力矩,表现为某一点始终回转到水平放置的转子下部(其偏心力矩小于摩擦力矩的区域内),称之为静不平衡。当偏心距较小时,不会表现出静不平衡的特征。在转子旋转时,偏心距会使转子产生一个 与转动频率同步的离心力矢量,离心力 F =me ω2从而激发转子的振动,这种现象称之为动不平衡。静不平衡的转子,由于偏心距 e 较大,会表现出更为强烈的动不平衡振动。当发生不平衡振动时,其故障特征主要表现如下:1、时域波 形为近似的等幅正弦波。2、轴心轨迹为比较稳定的圆或椭圆。3、频谱图上转子转速频率对应的振幅具有突出的峰值。4、在三维全息图中,转频的振幅椭圆较大,其它成份较小。5、转子的进动方向为同步正进动。6、转子振幅对转速变 化很敏感,转速下降,振幅将明显下降。7、除了悬臂转子之外,对于普通两端支承的转子,不平衡在轴向上的振幅一般不明显。8、振幅随转速变化明显些。3.2转子轴系不对中故障可分为哪几类?其主要故障特征有哪?答:轴系不对 中可分为三种:平行不对中、交叉不对中、组合不对中。主要故障特征如下:1、不对中所出现的最大振动往往表现在紧靠联轴节两端的轴承上。2、轴承的振动幅值随转子负荷的增大而增高。3、平行不对中主要引起径向振动,角度不对 中主要引起轴向振动。4、不对中使刚性联轴节两侧的转子振动产生相位差。5、对于刚性联轴节,平行不对中易激起2 倍转速频率的径向振动,同时也存在工频(转速频率)和多倍频的振动成分。角度不对中易激起工频轴向振动,同时 也存在多倍频振动。6、转子之间的不对中,由于在轴承不对中方向上产生了一个预加载荷,轴颈运动的轴心轨迹形状为椭圆形。随着预加载荷的增大,轴心轨迹形状将变为香蕉形、“8”字形或外圈中产生一个内圈等形状。7、在全息图 中2、4 倍频椭圆较扁,并且两者的长轴近似垂直。3.3油膜涡动与油膜振荡的形成机理是什么?油膜振荡的故障特征有哪些?油膜涡动和油膜振荡有什么区别?答:涡动就是转子轴颈在轴承内作高速旋转的同时,还环绕某一平衡中心作 公转运动。轴颈在轴承中作偏心旋转时,形成进口断面大于出口断面的油楔。油液进入油楔后压力升高,如果轴颈表面线速度很高而载荷又很小,则轴颈高速旋转,使油楔中间隙大的地方带入的油量大于从间隙小的地方带出的油量,由 于液体的不可压缩性,多余的油就要把轴颈推向前进,形成了与轴旋转方向相同的涡动运动,涡动速度就是油楔本身的前进速度。如果转子轴颈主要是油膜力的激励作用引起涡动,则轴颈的涡动角速度近似为转速的1/2,所以称为半速涡 动。油膜激励引起的半速涡动是正向涡动运动。在半速涡动刚出现的初期阶段,由于油膜具有非线性特性(即轴颈涡动幅度增加时,油膜的刚度和阻尼较线性关系增加得更快),抑制了转子的涡动幅度,使轴心轨迹为一稳定的封闭图形, 转子仍能平稳地工作。随着转速的升高,半速涡动成分的幅值逐渐增大。直至转速升高到第一临界转速的两倍附近时,涡动频率与转子一阶自振频率相重合,转子轴承系统将发生激烈的油膜共振,这种共振涡动就称为油膜振荡,振荡频 率为转子系统的一阶自振频率。如果继续升高转速,振动并不减弱,而且振动频率基本上不再随转速而升高。轴承发生油膜振荡的故障特征主要表现如下:1、油膜振荡是一种自激振动,维持振动的能量是由轴本身在旋转中产生的,它不 受外部激励力的影响。所以,一旦发生大振幅的油膜振荡后,如果继续升高转速,振幅也不会下降,而且振动频率始终为转子的一阶自振频率,转子的挠曲振型也为一阶振型,与升高后的转速不发生关系。2、高速轻载转子,发生油膜振 荡的转速总是高于转子系统的一阶临界转速2 倍以上。发生油膜振荡以后的转子主振动频率也就固定不变。3、油膜振荡是一种非线性的油膜共振,激烈的振动会激发起油膜振荡频率Ω和转速频率ω的多倍频成分以及这两个主振频率Ω和 ω的和差组合频率成分,即m ω±n Ω(m 、n 为正整数)。4、发生油膜振荡时,轴心轨迹形状紊乱、发散,很多不规则的轨迹线叠加成花瓣形状。5、发生油膜振荡时,由于转子发生激烈的自激振动,引起轴承油膜破裂,因而会同时发生 轴颈和轴瓦的碰撞摩擦,时而发生巨大的吼叫声。轴承中的油膜共振与摩擦涡动联合作用引起的转子大振动,会给轴承和迷宫密封带来严重损伤。6、转子转速一旦进入油膜共振区,升高转速,振荡频率不变,振幅并不下降。但是降低转 速,振动也并不马上消失,油膜振荡消失的转速要低于它的起始转速,具有惯性效应。7、油膜涡动和油膜振荡在全息谱上的故障特征是在分倍频区内偏心率很小的椭圆油膜涡动与油膜振荡的区别如下:1、油膜涡动与油膜振荡的发生条 件①只发生在使用压力油润滑的滑动轴承上,在半润滑轴承上不发生。②油膜振荡只发生在转速高于临界转速的设备上。2、油膜涡动与油膜振荡的信号特征①油膜涡动的振动频率随转速变化,与转速频率的关系为fn = (0.43 ~ 0.48) f 。②油膜振荡的振动频率在临界转速所对应的固有频率附近,不随转速变化。③两者的振动随油温变化明显。3、油膜涡动与油膜振荡的振动特点①油膜涡动的轴心轨迹是由基频与半速涡动频率叠加成的双椭圆,较稳定。②油膜振荡是自激 振荡,维持振动的能量是转轴在旋转中供应的,具有惯性效应。由于有失稳趋势,导致摩擦与碰撞,因此轴心轨迹不规则,波形幅度不稳定,相位突变。3.4转子发生碰摩故障时的振动特征有哪些?答:1、转子碰摩后发生转速波动,发生短暂时间的转子扭转振动。2、发生局部碰摩时,接触力和转子运动之间为非线性关系,使转子产生分数次谐波和高次谐波振动响应。频谱上除转子工频外,还存在非常丰富的高次谐波成分。3、转子的进动方向由正向进动变为反向进 动。4、较轻的局部碰摩,轴心轨迹出现小圆环内圈。随着碰摩程度的增加,内圈小圆环数增多,且形状变化不定。当发生整周摩擦时,轴心轨迹形状像花瓣形。在重摩擦转子中,往往出现0.5ω的频率成分,其轴心轨迹形状为“8”字形。 3.5旋转失速的故障特征有哪些?喘振与旋转失速的区别与联系有哪些?答:旋转失速基本特征如下:1、失速区内因为压力变化剧烈,会引起叶轮出口和管道内的压力脉动,发生机器和管道振动。2、旋转失速产生的振动基本频率,叶 轮失速在0.5~0.8 倍转速频率范围内,扩压器失速在0.1~0.25倍转速频率范围内。在振动频率上既不同于低频喘振,又不同于较高频率的不稳定进口涡流。3、压缩机进入旋转失速范围以后,虽然存在压力脉动,但是机器的流量基本上 是稳定的,不会发生较大幅度的变动。4、旋转失速引起的振动,在强度上比喘振要小,但比不稳定进口涡流要大得多。喘振和旋转失速主要区别如下:1、旋转失速的气体流动是非轴对称的,叶道中的一个或数个失速团沿叶栅圆周方向 传播,因此气流脉动是沿着压缩机叶轮圆周方向产生的。而喘振时的气流脉动是沿着机器的轴向方向形成,虽然脉动幅度很大,但是气流基本呈轴对称分布。2、旋转失速时,压缩机叶轮或扩压器周向各流道的气体流量随时间而脉动变化, 但是通过压缩机总的平均流量是不变的。而喘振时机器总的平均流量却是随时间而变化的。3、旋转失速的气流脉动频率、振幅主要与压缩机本身的叶栅几何参数及转速有关,而与压缩机管网容积的大小无关。但是喘振的频率、振幅却与 管网容积大小密切相关,管网容积越大,喘振频率越低,振幅越大,深度喘振会往往引起转子或叶片零部件的损坏。4、旋转失速频率比喘振频率高得多,但是机器内的压力脉动幅度则喘振远大于旋转失速。5、旋转失速是属于压缩机本 身工作不稳定的一种气动现象。而喘振不单独是机器本身问题,还与整个管网系统联系在一起,是整个系统的稳定性问题。6、从全息谱上看,旋转失速严重时,低频分量会不断加大,其幅值会远远超过转频分量,成为机组的主要振源。 这时,经常会伴随有喘振出现。因此,可以认为旋转失速是喘振的前兆。3.6旋转机械常见的故障有哪些?转子-轴承系统的稳定性是指什么?如何判断其稳定性?答:常见的故障有转子的不平衡、转子与联轴器的不对中、转轴弯曲、转 轴横向裂纹、连接松动、碰摩、喘振等。转子-轴承系统的稳定性是指转子在受到某种小干扰扰动后能否随时间的推移而恢复原来状态的能力,也就是说扰动响应能否随时间增加而消失。如果响应时间随时间增加而消失,则转子系统是稳 定的,反之则不稳定 4.1常见的齿轮失效形式有哪些?答:根据齿轮损伤的形貌和损伤过程或机理,故障的形式通常分为齿的断裂、齿面疲劳(点蚀、剥落、龟裂)、齿面磨损、齿面划痕等四类。4.2齿轮的特征频率计算公式是什么? 答:齿轮的特征频率主要有两个,一是啮合频率及其谐波频率,二是边频带频率。1、当转轴中心固定的齿轮,其一阶啮合频率为:fm =f1 z1=f2 z2式中,f1 ,f2 ——主动轮和从动轮的转速频率; z1,z2 ——主动轮和从动轮的齿数。2、边频带 的频率为:fm f (n=1,2,3……)其中, fr 为齿轮轴的旋转频率。4.3描述调制现象和边 频带产生的原因。答:齿轮中各种故障在运行中具体反映为一个传动误差问题。传动误差大,则齿轮在传动中发生忽快忽慢的转动,并且加剧在进入 和脱离啮合时的碰撞,产生较高的振动峰值,形成短暂时间的幅值变化和相位变化。可把齿轮的啮合频率及其各次谐波看作一个高频振荡的载波信号,把那些周期性出现的故障信号看作调制信号。不同故障会产生不同的调制形式,那些 能引起幅值变化的产生幅值调制,能引起频率或相位变化的产生频率调制。幅值调制是由于传动系统转矩的周期性变化引起的,例如齿面上载荷波动、齿距的周期性变化、轮齿负载的灵敏度不同、齿轮基圆或节圆足以与旋转中心之间的 偏心等因素,均可产生扭矩的周期性变化,这些因素反映在轮齿上是周期性的啮合力变化,时而加载,时而卸载,形成幅值调制。此外,轮齿表面的局部性缺陷(如裂纹、断齿、剥落等)和均布性缺陷(如点蚀、划痕等)也会产生幅值 调制效应。经幅值调制后的信号中,除了原有的啮合频率fm 之外,还增加了一对啮合频率与旋转频率的和频(fm +fr )与差频(fm –fr )。在频率域上,它们是以fm 为中心,以fr 为间隔距离,以幅值为对称地分布于fm 的两侧,称为边频带, 简称边带。齿轮的转速波动、因加工中分度误差而导致齿距不均匀、轮齿产生周期性的周节误差、齿轮轴偏心引起啮合速率的变化、周期性转矩(负荷)变化引起的速度变化等因素均可引起频率调制现象。还有齿面压力波动,在产生调 幅现象的同时,也会造成扭矩波动,导致角速度变化而形成频率调制。在频谱图上以载波频率fm 为中心,以调制频率fr 为间隔,形成对称分布的无限多对调制边频带。边频带是齿轮振动的一种特征频率,啮合的异常状况反映到边频带,会 造成边频带的分布和形态都发生改变,边频带包含了齿轮故障的丰富信息。4.4 边频带分析一般从哪两个方面进行?答:边频带出现的机理是齿轮啮合频率m f 的振动受到了齿轮旋转频率r f 的调制而产生,边频带的形状和分布包含了 丰富的齿面状况信息。一般从两方面进行边频带分析:一是利用边频带的频率对称性,找出fm ±nfr(n =1,2,3…)的频率关系,确定是否为一组边频带。如果是边频带,则可知道啮合频率fm 频率 fr 。二是比较各次测量中边频带振幅的变化 趋势。当边频间隔为旋转频率fr 时,可能为齿轮偏心、齿距的缓慢的周期变化及载荷的周期波动等缺陷存在,齿轮每旋转一周,这些缺陷就重复作用一次,即这些缺陷的重复频率与该齿轮的旋转频率相一致。旋转频率fr 指示出问题齿轮所 在的轴。齿轮的点蚀等均布性故障会在频谱上形成边频带,但其边频阶数少而集中在啮合频率及其谐频的两侧。齿轮的剥落、齿根裂纹及部分断齿等局部性故障产生的边频带阶数多而谱线分散。5.1 滚动轴承最常见的失效形式有哪些? 分别简要介绍失效原因。答:轴承转速小于 1r/min 时,轴承的损坏形式主要是塑性变形。转速大于 10r/min 时,轴承的损伤形式主要如下:1、疲劳剥落(点蚀)滚动体在滚道上由于反复承受载荷,工作到一定时间后,首先在接触表 面一定深度处形成裂纹(该处的切应力最大),然后逐渐发展到接触表面,使表面层金属呈片状剥落下来,形成剥落凹坑,这种现象称为疲劳剥落。疲劳剥落使轴承在工作时发生冲击性振动。在正常工作条件下,疲劳剥落是轴承失效的 主要原因。2、磨损或擦伤滚动体与滚道之间的相对运动,以及外界污物的侵入,是轴承工作面产生磨损的直接原因。润滑不良,装配不正确,均会加剧磨损或擦伤。3、锈蚀和电蚀锈蚀是由于空气中或外界的水分带入轴承中,或者机器 在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。锈蚀产生的锈斑使轴承工作表面产生早期剥落,而端面生锈则会引起保持架磨损。电蚀主要是转子带电,在一定条件下,电流击穿油膜产生电火花放电,使轴承工作表面形成密 集的电流凹坑。4、断裂轴承零件的裂纹和断裂是最危险的一种损坏形式,这主要是由于轴承超负荷运行、金属材料有缺陷和热处理不良所引起的。转速过高,润滑不良,轴承在轴上压配过盈量太大以及过大的热应力会引起裂纹和断裂。 除上述故障形式之外,还有装配不当、机械冲击和反复换向等原因会引起保持架的摩擦和断裂。保持架与内、外圈摩擦,发出噪声和振动,严重时卡死滚动体,滚动体在滚道上以滑动代替滚动,结果是摩擦发热,温度迅速升高,烧毁轴 承。此外,润滑剂不足,高速、高温、重载,将导致接触表面的胶合和回火变形。5.2滚动轴承运行时为什么会产生振动?答:引起滚动轴承振动和噪声的原因,除了外部激励因素(如转子的不平衡、不对中、流体激励、结构共振等传 动传递)之外,属于轴承本身内部原因产生的振动可分为如下三类:1、由于轴承结构本身引起的振动①滚动体通过载荷方向产生的振动;②套圈(内圈和外圈)的固有振动;③轴承弹性特性引起的振动。2、由于轴承形状和精度问题引 起的振动①套圈、滚道和滚动体波纹度引起的振动;②滚动体大小不均匀和内、外圈偏心引起的振动。3、由于轴承使用不当或装配不正确引起的振动①滚道接触表面局部性缺陷引起的振动②润滑不良,由摩擦引起的振动;③装配不正确, 轴颈偏斜产生的振动。5.3滚动轴承有哪些特征频率?其计算公式是什么?假设滚动轴承的外圈固定在轴承座上,只有内圈随轴一起以频率f 旋转,并作如下假设:①滚动体与滚道之间无滑动接触;②每个滚动体直径相同,且均匀分布 在内外滚道之间;③径向、轴向受载荷时各部分无变形。受轴向力时轴承的故障特征频率有下面的几种。各参数含义如下图所示,其中d 为滚动体的直径,Di 内环滚道的直径,Do 为外圈滚道的直径,Dm 轴承滚道直径。1、内圈旋转频率fn (轴 的转频): 2、内圈有缺陷时的故障特征频率:3、外圈有缺陷时的故障特征频率:4、滚珠有缺陷时的故障特征频率(注意这是只碰外圈(或内圈)一次的频率,如果每转一圈分别碰外圈和内圈各一次的话,则频率应该加倍):5、保持 架碰外圈时的故障特征频率: 6、保持架碰内圈时的故障特征频率: 式中,z 为滚动体的个数,β为压力角,n 为转轴的转速(r/min )。5.4 简述共振解调技术的基本原理和作用。答:共振解调法也称包络检波频谱分析法,是目前滚 动轴承故障诊断中最常用的方法之一。原理:利用轴承故障所激发的轴承元件固有频率的振动信号,经加速度传感器的共振放大,带通滤波及包络检波等信号处理,保留检波后的波形,再用频谱分析法找出故障信号的特征频率,以确定 轴承的故障元件。其过程可概括为共振响应、包络解调、频谱分析3个步骤。作用:信号经过共振放大和包络检波处理后,与原始脉冲波比较,振幅得到放大,波形在时域上得到展宽,不再是一个包含频率无线多的尖脉冲。而且包络波的 低阶频率成分所具有的能量较原始脉冲波的低阶频率成分的能量有了极大增强,所以最终获得的故障信号信噪比,比原始信号提高了几个数量级。其作用主要是提高低频故障信号的信噪比,便于识别和判断轴承故障。6.1为什么通过油 样分析可以实现机械设备的故障诊断?答:液压油和润滑油是机械设备广泛应用的两类工作油,机器运行时,在油液中携带有大量设备运行状态的信息,特别是润滑油,各摩擦副的磨损碎屑都将落入其中,并随之一起流动。这样,通过 对润滑油的采样和分析处理,就能取得设备各摩擦副的磨损状况信息,从而对设备所处工作状态作出科学的判断。通过油样分析,能取得如下几方面的信息:1、磨屑的浓度和颗粒大小反映了机器磨损的严重程度。2、磨屑的大小和形貌 反映了磨屑产生的原因,即磨损发生的机理。3、磨屑的成分反映了磨屑产生的部位,亦即零件磨损的部位。将以上三方面的信息综合起来,即可对零件摩擦副的工作状态作出比较合乎实际的判断。6.2光谱分析和铁谱分析的原理分别是 什么?试讨论这两种分析技术的优缺点。答:油样的光谱分析又称SOA 法,就是利用油样中含有金属元素的原子在高压放电或高温火焰燃烧时,原子核外的电子吸收能量从低能级轨道跃迁到较高能级的轨道,但是这样的原子能量状态是不 稳定的,电子会自动地从高能级轨道跃迁回原来能级轨道,与此同时,以发射光子的形式把吸收的能量辐射出去。不同元素的原子放出光的波长不同,称为特征波长。经过棱镜或光栅分光系统,将辐射线按一定波长顺序排列,所得到的 谱图称为光谱。测量各特征波长的谱线和强度,就可检测到该种元素存在与否及其含量多少,推断出产生这些元素的磨损发生部位及其严重程度,并依此对相应的零部件工作状态作出判断。铁谱分析方法是利用经过稀释的油液通过一块 具有高磁场梯度的玻璃片或玻璃管,将润滑油中所含的磨粒或碎屑,按其粒度大小有序地分离开来,经过光学显微观察和光密度讲计数,可对磨屑的来源、产生的原因以及零部件磨损的程度进行定性和定量分析,并及时作出机器零部件 的故障预报。铁谱技术具有较高的检测效率和较宽的磨屑尺寸检测范围,可同时给出磨损机理、磨损部位以及磨损程度等方面的信息。光谱分析可以了解润滑油中金属含量,但不能分析金属颗粒的形状、磨损类型。铁谱分析可以了解磨 损颗粒形状和类型,但不能准确掌握磨损金属含量。光谱分析法对分析油液中有色金属磨损产物比较适用,而铁谱技术对非铁磁性磨损颗粒的检测效果欠佳,不能对有色合金摩擦副实施有效监测。因此,两者可互为补充,互为参考。两 者结合,既可定性又可定量地分析润滑油中的金属含量,而且有利于分析金属颗粒的来源。6.3声发射检测机械设备故障的原理是什么?通常可用声发射技术检测哪些故障?答:由于物体发射出来的每一个声音信号,都包含着反映物体 内部缺陷性质和状态变化的信息,因此,利用检测装置接收物体的发声信号,经过处理、分析和研究,可推断出材料内部的状态变化和物体的结构变化。声发射技术检测的故障可以归纳为如下几类:1、各种压力容器、压力管道等的泄漏 检测。2、楼房、桥梁、隧道、大坝等水泥结构的裂纹开裂和扩展的连续监视。3、各种材料和结构的裂纹探测、结构完整性检测. --in UESTC

《机械制造基础》期末考试试卷附答案

《机械制造基础》期末考试试卷附答案 一.填空题(每空2分 共40分) 1.合金结晶的基本规律,即在过冷的情况下通过 与 来完成。 2.钢的冷处理可以促使残余奥氏体继续转变为 ,提高零件的尺寸稳定性。 3.牌号ZG200-400中,字母“ZG ”表示 ,数字“400”表示 。 4.焊条由 和 两部分组成。 5.一般机械零件常见的失效形式有 、 、 三种形式。 6.基本偏差一般为 。 7.定向公差有 、 、 三个项目。 8.切削合力可分解为 、 和 三个分力。 9.卧式普通车床结构主要分为三箱一体,三箱是 、 、 。 二.选择题(每题3分 共30分) 1.表示金属材料屈服强度的符号是( ) A. s σ B. b σ C. 1σ- 2.高碳钢最佳切削性能的热处理方法是( ) A.完全退火 B.正火 C.球化退火 3.45钢属于( ) A.工具钢 B.结构钢 C.铸钢 4.下列材料中,焊接性能最差的是( ) A.低碳钢 B.高碳钢 C.铸钢 5.决定配合公差带大小和位置的是( ) A.标准公差 B.基本偏差 C.配合公差 6.下图所示游标卡尺的读数是( ) A.1.25 B.10.5 C.10.25 7.属于形状公差的是( ) A.平面度 B.平行度 C.同轴度 8.影响刀头强度和切削流出方向的刀具角度是( ) A.主偏角 B.前角 C.刃倾角

9.四爪卡盘的四个爪的运动是( ) A.同步 B.连续 C.独立 10.为减小工件已加工表面的粗糙度,在刀具方面常采取的措施是( ) A.减小前角 B.增大主偏角 C.减小后角 三.判断题(对的打√,错的打×。每题2分共20分) 1.金属材料在拉伸试验中都经历弹性变形、屈服、冷变形强化、缩颈与断裂四个变形阶段( ) 2.钢的淬透性取决于其临界冷却速度,临界冷却速度越小,淬透性越好( ) 3.碳钢中只有铁、碳两种元素( ) 4.铸件在凝固和冷却过程中,固态收缩只引起铸件外部尺寸的改变( ) 5.一般来说,若材料的强度极限高,则疲劳强度也越大( ) 6.孔轴的加工精度越高,则其配合精度也越高( ) 7.使用的量块数越多,组合出的尺寸越准确( ) 8.R z参数由于测量点不多,在反映微观几何形状高度方面的特性不如Ra参数充分( ) 9.粗加工时积屑瘤的存在增大了刀具的实际工作前角( ) 10.切断刀有两个主切削刃,一个副切削刃( ) 四.问答题(10分) 1.指出下列工件淬火后的回火方式,并说明原因 (1)45钢小轴 (2)60钢弹簧 (3)T12钢锉刀

机械制造基础习题答案

工程材料 一、判断题1.冲击韧性就是试样断口处单位面积所消耗的功。(√)2.一般来说,金属材料的强度越高,则其冲击韧性越低。(√) 3.一般来说,材料的硬度越高,耐磨性越好。(√) 4.HBW是洛氏硬度的硬度代号。(×) 5.金属材料的使用性能包括力学性能、铸造性能。(×) 6.硬度实验中,布氏硬度测量压痕的深度。(×) 7.硬度实验中,洛氏硬度测量试样表面压痕直径大小。(×) 8.断后伸长率和断面收缩率越大,表示材料的塑性越好。(√) 9.布氏硬度用于测量淬火后零件的硬度。(×) 10.洛氏硬度用于测量退火后零件的硬度。(×) 11.晶体缺陷的共同之处是它们都能引起晶格畸变。(√) 12.理想晶体的内部都或多或少地存在有各种晶体缺陷。(×) 13.室温下,金属晶粒越细,则强度越高,塑性越低。(×) 14.纯金属结晶时形核率随过冷度的增大而不断增加。(×) 15.金属型浇注比砂型浇注得到的铸件晶粒粗大。(×) 16.(×)。晶粒粗大铸成薄壁件与铸成厚壁件 17.厚大铸件的表面部分与中心部分晶粒粗大。(×) 18.α-Fe属于面心立方晶格晶格类型。(×) 19.金属Cu、Al都是面心立方晶格。(√) 20.金属实际结晶温度小于理论结晶温度。(√) 21.在铁碳合金平衡结晶过程中,只有成分为0.77%C的合金才能发生共析反应。(×) 22.一般来说,金属中的固溶体塑性较好,而金属间化合物的硬度较高。(√) 23.铁素体和奥氏体都是碳在α-Fe中的间隙固溶体。(×) 24.奥氏体是硬度较低、塑性较高的组织,适用于压力加工成形。(√) 25.渗碳体是硬而脆的相。(√) 26.铁和碳以化合物形式组成的组织称为莱氏体。(×) 27.铁素体是固溶体,有固溶强化现象,所以性能为硬而脆。(×)28.钢铆钉一般用高碳钢制作。(×) 29.金属在固态下由于温度的改变而发生晶格类型转变的现象,称为同素异构转变。(√) 30.纯铁在770℃时发生同素异构转变。(×) 31.表面淬火既能改变钢的表面化学成分,也能改善心部的组织与性能。(×). 32.共析钢加热奥氏体后,冷却时所形成的组织主要取决于钢的加热温度。(×) 33.低碳钢或高碳钢件为便于进行机械加工,可预先进行球化退火。(×)

重庆大学机械制造基础实验资料

目录 ●课题研究的背景及意义 (3) ●课题研究现状分析 (3) ●课题研究方案介绍 (4) ●实验结果 (15) ●数据处理 (14) ●实验总结 (16)

课题的研究背景及意义 背景: 高速切削加工作为模具制造中最为重要的一项先进制造技术,是集高效、优质、低耗于一身的先进制造技术。在常规切削加工中备受困扰的一系列问题,通过高速切削加工的应用得到了解决。近年来,由于变频控制的广泛应用,使得以高速电主轴为主导的高速切削技术迅速成为科学研究的焦点,从而进一步推动了高速加工技术的发展。 高速加工保证了加工精度,同时又提高了加工速度,因此,许多高级的制造业对此都很急需。目前,高速加工已具备广阔的发展前景,以及一定的发展条件。比如,航空航天业以及模具加工制造业就是高速加工的两个重要应用领域。航空制造业虽然在20年前就进行铝件的高速加工,但一直未得到重视,随着科技的发展,产品的多样化小批量切削加工大量增加,保证高效率切削加工的同时达到高精度是高速加工的重要发展倾向。世界各大机床制造国如美国、德国、日本等对此进行了大量研究,并不断的推出高技术的高精度高速加工机床。近年来,国内高速电主轴研究已有较快发展,但与国外发达国家相比,还存在较大差距,因此,进一步研究高性能的主轴产品具有重大意义,本课题便是在此背景下进行的。 意义: 随着高速加工的迅速发展,对数控机床电主轴的要求也越来越高,从电主轴的结构特点分析,电动机的定子直接安装电主轴内,这对电动机的散热极其不利,热量积聚所引起的主轴热变形将严重降低机床的加工精度,所以,温升是衡量主轴高速性能的一个重要指标,过高的温度会影响主轴的旋转精度。严重时会使轴承烧伤,所以主轴的热性能是制约其提高转速的重要因素之一。 课题研究现状分析 国际上Bernd Manns和Jay.f.tu建立了一个高速电主轴的热模型,此模型从功率分配角度来研究主轴的热源和散热,从而对主轴的传热机制进行理论计算和实际测验。Chi-Wei.Lin等研究了在高速运转状态下主轴轴承所产生的离心力和陀螺力矩对轴承温升的影响,并因此建立高速电主轴轴承的热-机-动力学模型,定量描述了热变形引起的轴承预紧力对轴承整体刚度和整个主轴动态性能的影响。以及高速旋转离心力和陀螺力矩的影响和主轴单元动态性能对切削区的影响。Creighton等描述了一种可以因热导致的加工误差的主轴的热位移补偿方法,该方法本质上是简单的,且容易应用在使用较少投资的工业环境里。 国内的相关研究也有一定进展,蒋兴奇等考虑轴承载荷和变形的非线性特性以及热摩擦影响下,建立了主轴热变形和固有频率的计算模型。何晓亮等将高速电主轴的轴承、轴承座和主轴作为一个整体,运用节点网络法建立

机械制造基础期末复习资料(精修版)

材料 1.什么叫合金?他们各自常用的判别指标有哪些?了解拉伸曲线,常见力学性能指标的名称及含义? 所谓合金,就是由两种或两种以上的金属元素,或金属元素与非金属元素融合在一起形成具有金属特性的物质。 金属材料的力学性能有哪些指标? 主要指标有强度,塑性,硬度,冲击韧度等。 什么叫强度(塑性、韧性、硬度)? (1)所谓强度,是指金属材料在静载荷作用下抵抗变形和断裂的能力.(2)金属发生塑性变形但不破坏的能力称为塑性.(3)硬度是衡量金属材料软硬程度的指标,是指金属抵抗局部弹性变形,塑性变形,压痕或划痕的能力.(4)金属材料在冲击载荷的作用下,抵抗破坏的能力称为冲击韧度. 他们各自常用的判别指标有哪些? 强度的判别指标有1,在弹性变形范围内的最大载荷F,2,,最小屈服载荷Fs,3,最大载荷Fb. 塑性的判别指标有伸长率,断面收缩率。 硬度的判别指标有布氏硬度HBW,洛氏硬度HRC,维氏硬度HV。冲击韧度的判别指标有冲击韧度值。 2.什么叫结晶? 一切物质从液态到固态的转变过程,统称为凝固。若凝固后的固态物质是晶体,则这种凝固过程又称为结晶。 什么叫过冷现象? 在实际生产中,金属的实际结晶温度T1总是低于理论结晶温度T0,这种现象称为过冷现象。理论结晶温度与实际结晶温度的差值,称为过冷度,用ΔT表示,即ΔT = T0 - T1。 常见金属的晶格结构有哪些? 1),体心立方晶格。2),面心立方晶格。3),密排六方晶格。 什么叫同素异构转变?(纯铁的冷却(同素异构转变)曲线)? 金属在在固态下随温度的改变,由一种晶格类型转变为另一种晶格类型的变化,称为金属的同素异构转变。 3、什么叫钢的热处理? 钢的热处理是指钢在固态下,采用适当方式进行加热,保温和冷却,以改变钢的内部组织结构,从而获得所需性能的一种工艺方法。 热处理可分为哪些种类? 普通热处理:退火、正火、淬火、回火。表面热处理:表面淬火:感应淬火、火焰淬火、激光淬火、接触电阻加热淬火化学热处理:渗碳、渗氮、碳氮共渗、渗金属. 退火(概念:将钢加热到适当温度,保温一定时间,然后缓慢冷却的热处理工艺称为退火。特点:缓慢冷却分类及常用钢类:完全退火(亚共析成分的碳钢和合金钢)、等温退火(合金钢和大型碳钢)、球化退火(共析、过恭喜碳钢及合金工业钢)、均匀退火(高合金钢)、去应力退火。)正火(概念:正火是将钢加热到Ac3或者Accm以及30~500C,保温适当的时间后,在静止的空气中冷却的热处理工艺。特点:冷却速得稍快,过冷度较大。)淬火(概念:将钢加热到Ac3或者Ac1以上某温度,保温一定时间,然后以适当速度冷却而获得马氏体或贝氏体组织的热处理工艺。目的:为了得到马氏体组织,再经回火,是刚得到需要的使用性能,以充分发挥材料的潜能)。回火(概念:钢件淬火后,在加热到Ac1点一下某一温度,保温一定时间,然后冷却到室温的热处理工艺。目的:1.获得共建所需要的性能,2.消除淬火冷却应力,降低钢的脆性。3.稳定工件组织和尺寸。)分类及常用钢类:低温回火(高碳钢)中温回火(各种弹性元件)高温回火(结构零件)调质:工业上常把淬火和高温回火相结合的热处理工艺称为“调质” 表面热处理的目的? 表面热处理是通过对工件表面的加热、冷却而改变表层力学性能的金属热处理工艺,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能 常见的化学热处理有哪些? 化学热处理方法有渗碳(有液体、固体、气体渗碳)、渗氮、碳氮共渗、渗金属、离子镀、化学气相沉积、TD处理、PQP处理等 什么叫铸铁的石墨化? 铸铁中石墨的形成过程称为石墨化过程。铸铁组织形成的基本过程就是铸铁中石墨的形成过程 影响石墨化因素有哪些? 化学成分的影响,冷却速度的影响,铸铁的过热和高温静置的影响。 根据C在铸铁中的存在形式,铸铁常分为哪几类? 根据C在铸铁中的存在形式,铸铁常分为:白口铸铁、灰铸铁、球墨铸铁、蠕墨铸铁、可锻铸铁。 其中常见的灰口铸铁有哪几种?能够解释常见钢、铸铁的牌号? 常见的有:灰铸铁、球墨铸铁、蠕墨铸铁、可锻铸铁、合金铸铁。 铸铁的石墨化过程:铸铁组织中石墨的形成过程成为铸铁的石墨化过程。石墨的存在形式:灰铸铁中石墨呈片状;球墨铸铁中的石墨呈球状;可锻铸铁中的石墨呈团絮状;蠕墨铸铁中的石墨呈蠕虫状。 Q235-A F 普通碳素钢。2)T8A 优质碳素工具钢T1碳素工具钢3)45 优质碳素钢40Cr合金结构钢4)H62焊条钢5)HT200灰口铸铁QT400-18 球墨铸铁6)W18Cr4V高速工具钢7)GCr15轴承钢 能够画出铁碳相图,并能分析亚共析钢、共析钢、过共析钢结晶过程中的组织转变情况。

机械制造基础试题及答案

机械制造基础 一、判断题 1、钢的正火的硬度、强度比退火低。(3) 4、通过热处理可以有效地提高灰铸铁的力学性能。(3) 5、焊件开坡口的目的在于保证焊透,增加接头强度。(√) 6、基本尺寸就是要求加工时要达到的尺寸。(3) 7、采用包容要求时,若零件加工后的实际尺寸在最大、最小尺寸之间,同时形状误差等于尺寸公差,则该零件一 定合格。(√) 8、图样上所标注的表面粗糙度符号、代号是该表面完工后的要求。(√) 9、切削用量是切削速度、进给量和背吃刀量三者的总称。(√) 10、刀具耐用度为刀具两次刃磨之间的切削时间。(√) 11、切削液具有冷却、润滑、清洗、防锈四种作用。(√) 12、在车削加工中,车刀的纵向或横向移动,属于进给运动。(√) 13、根据工件的加工要求,不需要限制工件的全部自由度,这种定位称为不完全定位。(√) 14、固定支承在装配后,需要将其工作表面一次磨平。(√) 15、冲击韧性值随温度的降低而减小。(√) 16、正火的冷却速度比退火稍慢一些。(3) 17、碳钢的含碳量一般不超过1. 3%。(√) 18、一般情况下,焊件厚度小于4mm 时,焊条直径等于焊件厚度。(√) 19、从制造角度讲,基孔制的特点就是先加工孔,基轴制的特点就是先加工轴。(3) 20、为了实现互换性,零件的公差规定越小越好。(3) 21、Ra 值越大,零件表面越粗糙。(√) 22、切削用量主要是指切削速度和进给量。(3) 23、提高表面质量的主要措施是增大刀具的前角与后角。(3) 24、就四种切屑基本形态相比较,形成带状切屑时切削过程最平稳。(√) 25、用分布于铣刀圆柱面上的刀齿进行的铣削称为周铣。(√) 26、过定位在机械加工中是不允许的。(3) 27、通过热处理可以有效地提高灰铸铁的力学性能。(3) 28、焊件开坡口的目的在于保证焊透,增加接头强度。(√) 29、基本尺寸就是要求加工时要达到的尺寸。(3) 30、采用包容要求时,若零件加工后的实际尺寸在最大、最小尺寸之间,同时形状误差等于尺寸公差,则该零件一 定合格。(√) 31、图样上所标注的表面粗糙度符号、代号是该表面完工后的要求。(√) 32、切削用量是切削速度、进给量和背吃刀量三者的总称。(√) 33、刀具耐用度为刀具两次刃磨之间的切削时间。(√) 34、切削液具有冷却、润滑、清洗、防锈四种作用。(√) 35、在车削加工中,车刀的纵向或横向移动,属于进给运动。(√) 36、根据工件的加工要求,不需要限制工件的全部自由度,这种定位称为不完全定位。(√) 37、固定支承在装配后,需要将其工作表面一次磨平。(√)

机械制造基础实验指导

实验一材料的金相显微组织观察 1.1 实验目的 1、了解金相显微镜的结构及原理; 2、熟悉金相显微镜的使用与维护方法; 1.2 金相显微镜的原理、构造和操作方法 金相分析是研究工程材料内部组织结构的主要方法之一,特别是在金属材料 研究领域占有很重要的地位。而金相显微镜是进行金相分析的主要工具,利用金 相显微镜在专门制备的试样上观察材料的组织和缺陷的方法,称为金相显微分 析。显微分析可以观察,研究材料的组织形貌、晶粒大小、非金属夹杂物在组织 中的数量和分布情况等问题,及可以研究材料的组织结构与其化学成分之间的关 系,确定各类材料经不同加工工艺处理后的显微组织,可以判别材料质量的优劣 等。 1、金相显微镜的工作原理 显微镜的简单基本原理如图1.1所示。它包括两个透镜:物镜和目镜。对着 被观测物体的透镜,成为物镜;对着人眼的透镜,成为目镜。被观测物体AB, 放在物镜前较焦点F1略远一点的地方。物镜使AB形成放大倒立的实像A1B1,目镜再把A1B1放大成倒立的虚像A’1B’1,它正在人眼明视距离处,即距人眼 图1.1 显微镜成像光学简图图1.2 物镜的孔径角 250mm处,人眼通过目镜看到的就是这个虚像A’1B’1。显微镜的主要性能有: ①显微镜的放大倍数:它等于物镜与目镜单独放大倍数的乘积,即物镜放 大倍数M =A1B1/AB;目镜放大倍数M目=A’1B’1 /A1B1;显微镜的放大倍数M 物 =A’1B’1 /AB=M物×M目。 ②显微镜的鉴别率:指显微镜能清晰地分辨试样上两点间的最小距离d的 能力,d值越小,鉴别率就越高。它是显微镜的一个重要性能,取决于物镜数值 孔径A和所用光线的波长λ,可用如下的式子表示:

相关主题
文本预览
相关文档 最新文档