当前位置:文档之家› 宝石的光学性质

宝石的光学性质

宝石的光学性质
宝石的光学性质

1)变彩效应:是由于特殊的结构(如宝石内部有微裂隙、结构空隙、双晶面、解理面以及晶体离溶的微晶片等)使光发生干涉、衍射作用而产生一种漂浮的五彩缤纷游动的色晕。随着光源或观察的角度的变化,颜色也发生变化。

最典型的例子是欧泊

欧泊的特殊结构决定了其变彩的能力和变彩特点:

当二氧化硅的大小大于可见光波长时,可见光直接通过,不具有变彩效应,即普通的蛋白石。

当二氧化硅的大小小于可见光波长时,大部分的可见光被挡在欧泊外,仅发生瑞利散射,形成一种淡淡的蓝色乳光。

当二氧化硅的大小与可见光的波长相近或略大于时,会产生各种颜色的色斑。(色斑的存在应理解为堆积小球直径的不均匀分布)

(1)具有变彩效应宝石:

欧泊,拉长石(由于聚片双晶的片状构造引起)

合成蛋白石,塑料,玻璃,玛瑙,珠母,贝壳大理石等

(2)分类

单变彩:如月光石

多色变彩:欧泊,拉长石

(3)评价

对变彩效应的宝石,应顾及其种类、石质、变彩的式样以及变彩的颜色。

最珍贵的变彩是红色,其次为紫色,橙色,黄绿色,蓝色。

颜色越鲜艳、浓、明亮,越受人喜爱。

2)月光效应:半透明乳白色弧面型的宝石表面,随着宝石的转动,在一定的角度范围,可见到白色至蓝色的似朦胧的乳光,胜似夏夜的月光,这种现象称为月光效应。

原因:是由于折射率稍有差异的正长石和钠长石呈薄的互层生长,这种互层结构对光的散射作用以及解理面对光的反射和干涉作用的综合效果使宝石表面产生漂浮状的光彩。

颜色取决于薄层的厚度:

层厚:为白色

层薄:为蓝色或淡蓝色。

3)砂金效应:在透明或半透明的宝石内部含有大量的定向排列的赤铁矿、针铁矿或其他金属矿物薄片,随着宝石的转动能反射出红色或金色的反光,这种性质称为沙金效应。

常见宝石:日光石和人造砂金石。

4)猫眼效应:在光线的照射下,以弧面形切磨的某些宝石,表面呈现一条明亮的光带,当转动宝石时,光带随之移动或出现光带张合现象,犹如猫眼瞳孔收缩成的一条狭缝,这种效应称为猫眼效应。

(1)产生的条件:

一组密集的定向排列的包裹体或相似结构,包括:气液包体,纤维状、针状晶体,晶体生长过程中留下的管状负晶,或一些片晶,定向的解理等,他们对光的反射、折射形成。

宝石必须磨制成弧面形,并且其底面与包裹体或结构所在的平面平行。

(2)猫眼眼线的宽度与亮度受宝石折射率与弧面高度的影响。

(3)常见的具有猫眼效应的宝石:

电气石,海蓝宝石,磷灰石,金绿宝石,绿柱石,方柱石,透辉石,顽火辉石,阳起石,夕线石,石英,红柱石,柱晶石,木变石,锂辉石,月光石,红宝石,蓝宝石,石榴子石,玻璃

(4)观察:

猫眼效应观察时,应使用单一光源在宝石的顶部照明。

猫眼眼线的粗细、长短、明显程度以及是否居中均是鉴定和评价猫眼宝石的依据。

5).星光效应:在光线照射下,弧面形宝石表面呈现出两条或两条以上交叉亮线,犹如夜空闪烁的星星。

称为星光效应。每一条亮线称为星线,随着宝石的转动或光源的转动,星光将围绕宝石或灯光作反向转动。

(1)类型有:

六射星光四射星光十二射星光。

(2)产生原因:与猫眼形成机理相同。但是由于两组或两组以上的定向排列的包裹体或结构引起的。

(3)常见宝石:

一般情况下,等轴晶系、四方晶系、斜方晶系的宝石可以出现四射星光;而三方、六方晶系的宝石可以出现六射或十二射星光。但也可以出现例外。

常见星光宝石(FGA证书)种四射星光六射星光备注铁铝榴石四射六射可显示多个星

刚玉六射偶尔有12射星光

宝石的光学性质

宝石矿物的光学性质包括了透明度、光泽、颜色、色散、多色性以及一些特殊的光学效应等,它们是宝石对可见光的吸收、反射、透射、折射、干涉、散射、和衍射等作用所致,并与宝石的化学成分、晶

结构、集合体结构等密切相关,故是宝石鉴别、评价的重要内容。

宝石的透明度与光泽

透明度——是光线透过宝石的程序,它与宝石的化学成分和结构有关。宝石的透明度一般可以分为三级:

透明:通过宝石可较清晰地见到背后物体,如水晶、钻石等;

半透明:部分光线能透过晶体,但不能透视背面物体,如优质翡翠、月光石等;

不透明:光线基本不能通过,如孔雀石等。

光泽——是宝石表面反射光线的能力,它的强弱刚好与透明度相反,透明度高的宝石光泽弱。宝石的光泽可分为:

金属光泽:反射极强,有如闪亮的电镀面一般,如赤铁矿;

半金属光泽:反射较强,如磁铁矿;

金刚光泽:表面反射较玻璃为强,并有灿烂耀眼的感觉,如钻石;

玻璃光泽:只能反射小部分的光线,如玻璃、水晶、黄玉等;

油脂光泽和松脂光泽:表面像涂上油脂般的反光(如水晶的断口)和类似松脂表面的反光(如琥珀的断口);

蜡状光泽:如蛇纹石类玉石的反光;

珍珠光泽:如珍珠般反射出柔和和多彩的光线;

丝绢光泽:有如丝绢般反光,为纤维状集合体宝石(如虎睛石)所特有。

1、宝石的颜色、多色性和色散

可见光按光波的长短分解为红、橙、黄、绿、青、蓝、紫等波段,颜色就是宝石对不同波长的可见光吸收程度不同的反映。假若一颗宝石对白光中的蓝色和绿色光波吸收,则宝石呈现红色色调,它是余下的光波的

混合结果,也称为减色。要准确观察宝石的颜色,一定要在自然光或标准白色光源下进行,方可避免因光源造成的假色调。除了色调之外,宝石学上还常用到饱和度和亮度的术语:饱和度指颜色的鲜艳程度呈正比关系。如祖母绿与孔雀石同为绿色色调,但前者比后者要鲜艳得多。亮度为彩色的明亮程度,它与宝石本身的光学性质及加工质量有关。名贵的有色宝石常要求色调纯正、饱和度和亮度大。

多色性——指非均质的宝石晶体因各向异性使晶体的不同方向呈现不同的颜色这种特性,有二色性和三色性之分。如蓝宝石晶体顺其柱体处长方向呈蓝绿色,垂直延长方向呈蓝色,故为二色性;多色性强的宝石肉眼便可觉察出,但多数宝石的多色性需用特殊的仪器(如二色镜)方可观察到。

色散——指自然光斜射入某种介质中时产生的光的分解现象,如用三棱镜能将日光分解成七色一样道理。琢磨后的宝石均会造成色散现象,但产生的程度因宝石的折射率不同而有差异。每一宝石能造成色散现象的能力称为该宝石的色散度,如钻石的色散度高,能产生灿烂的光彩,十分耀眼夺目;水晶的色散度则较低。

引言宝石的概念与分类宝石的命名影响宝石价值的因素宝石的基本功用宝石的形成与产地

宝石的成分特点宝石的结构宝石的光学性质宝石力学性质宝石的化热学、电学性质宝石中的包裹体

宝石的鉴定的特点放大检查偏光仪二色镜分光仪折射仪查尔斯滤色镜热导仪比重测试紫外灯

概述天然宝石的人工优化处理方法及检测天然宝石天然玉石天然有机宝石

宝石的光学性质1、宝石的折射率:根据折射定律,宝石的折射率等于光在真空(或空气)中的传播速度与光在宝石中的传播速率之比。它是反映宝石成分、晶体结构的主要常数之一,是宝石种属鉴别的重要依据。

2、均质体与非均质体:根据光学性质的不同,宝石可分为均质体和非均质体两大类。

均质体宝石:其光学性质在各个方向上相同,即光在均质体宝石的各个方向上传播时,其速度和性质都是一样的。均质体宝石只有一个折射率(n),在折射仪上仅有一道阴影边界。例:钻石、石榴石、尖晶石、玻璃等都是均质体宝石。

非均质体宝石:其光学性质随方向而异。当光波进入非均质体宝石时,一般会分解成振动方向互相垂直、传播速度不同、折射率不等的两束偏振光,这一现象称为光的双折射。在折射仪上非均质体宝石有两道阴影边界,其最大折射率与最小折射率的差值称为双折射率(DR)。方解石因其具有极高的双折射率,肉眼即可明显地看出双重影象。锆石也因为双折射率较高,放大检查时,可明显地看到刻面棱线呈双影。

非均质体宝石又可分为:

Ⅰ、一轴晶:只有一个方向不发生双折射的晶体。如:红宝石、蓝宝石、祖母绿、碧玺、水晶。

Ⅱ、二轴晶:有两个方向不发生双折射的晶体。如:橄榄石、金绿宝石、托帕石。

3、宝石的颜色与多色性颜色:是一定波长的电磁波辐射,当这种电磁波进入人眼,剌激视神经时便产生了颜色感觉。在一般光亮条件下,视觉正常的人仅能感觉到700-400nm 范围的波谱,其颜色依次为红、橙、黄、绿、蓝、紫。

宝石本身没有颜色,我们之所以感觉它的颜色,是宝石对不同波长的可见光选择性吸收的结果,宝石所呈现的颜色是剩余光中的各种色光的混合色。

若宝石对白光中各波段的光全部吸收,则宝石呈现黑色;若白光中各波段的光全部通过宝石,未被吸收,则宝石呈现无色透明。

多色性非均质体宝石的光学性质随方向而异。

当对光波的选择性吸收或吸收总强度随着光波在晶体中的振动方向不同而发生改变时,这种现象称为宝石的多色性。

一轴晶宝石可以有二色性。如红宝石、蓝宝石、碧玺、祖母绿等;二轴晶宝石可以有三色性。如变石、坦桑石、红柱石。

4、宝石的光泽指宝石表面对可见光的反射能力。其强弱取决于宝石本身的折射率和表面光洁程度,常见的光泽种类有:

金属光泽表面所具有的一种象金属一样的光泽。如赤铁矿等。

金刚光泽由金刚石表面所显示的一种光泽类型,是非金属矿物中最强的一种光泽。如钻石。

玻璃光泽如同玻璃表面所反射的光泽,大多数宝石都具有玻璃光泽,如红宝石、祖母绿、水晶、托帕石、碧玺等。

丝绢光泽具纤维状集合体结构的宝石所表现的一种光泽。如虎睛石、猫眼石。

珍珠光泽一种柔和、多彩的光泽,常见于珍珠表面或月光石表面。

油脂光泽一些宝石的不平坦断面上或某些玉石表面呈现的一种光泽。如水晶断口上的光泽和软玉的光泽。

除此以外,常见的光泽还有树脂光泽、蜡状光泽,如下图:

5、宝石的透明度

透明度是指物体允许可见光透过的程度,肉眼鉴定中常分为以下三个级别:

透明——光线可充分通过,并能清晰地透视物体。如金刚石、水晶。

半透明——可透光,但透视物体时已很模糊。如翡翠。

不透明——不允许光线透过。如孔雀石。

6、宝石的发光性指宝石在外来能量的激发下,发出可见光的性质:

荧光:激发源撤除后,宝石立即停止发出可见光。这种发光现象称为荧光。

磷光:激发源撤除后,宝石仍能在较短的一定时间内继续发出可见光。称为磷光。

7、特殊光学效应

猫眼效应:光照下一些弧面形宝石的表面呈现一条闪亮的光带,犹如猫的眼睛,故而得名。随着光源或宝石的摆动或观察角度的改变,光带在宝石表面作反方向平行移动。

产生机理:猫眼效应的产生是宝石及其内部定向包裹体或定向结构对可见光的折射和反射作用引起的。

评价:眼线是否窄细、明亮;游动是否灵活;是否居中。

星光效应:光照下一些弧面形宝石的表面呈现一组放射状闪动的亮线,形如夜空中闪烁的星星,称为星光效应。随着宝石的转动或光源的转动,星光将在宝石表面作反向转动。

产生机理:同猫眼效应的形成机理,所不同的是含有两组或两组以上的定向包裹体或定向结构。

种类:四射星光、六射星光、12射星光(二套六射星光)

评价:各亮带是否清晰、细窄、完整;亮带交叉点是否位于弧面中心。

变彩效应:由于宝石的特殊结构对光的干涉、衍射作用产生的颜色,颜色随着光源或观察角度的变化而变化,这种现象称为变彩。

产生机理:欧泊的化学成份为SiO2.nH2O,在其结构中SiO2为近于等大的球体在空间作规则排列(短程有序),球体之间由含水的SiO2胶体充填,胶体与球体之间有微小的折射率差异,球体直径与球体之间的孔隙直径近于相等。这样,欧泊的结构就形成了最典型的天然三维光栅,SiO2球体及球体空隙分别相当于衍射单元和光栅常数,根据布拉格公式:nλ=2d.SinθⅠ.球体直径(d)及观察角度(θ)直接决定了欧泊中色斑的颜色(λ)d>>λ时:可见光直接通过,欧泊无变彩,仅显示灰白色,这是普通的蛋白石。

d<λ时:可见光中大部分光被挡于欧泊之外,欧泊中不发生光的干涉、衍射,仅发生瑞利散射,导致欧泊出现淡淡的蓝色乳光。d与白光中较短波长的光相近时,这些较短波长的光在欧泊中发生干涉、衍射,产生蓝、绿等较单一的颜色色斑。d略大于白光中的较长波长的光时,白光发生衍射和干涉,产生从紫到红的全光谱色,这时色斑颜色最为丰富。另外,在球体直径d固定的情况下,随着观察角度θ的连续改变,色斑的颜色会按照可见光谱色序发生连续变化,这样就解释了欧泊中色斑颜色的形成与变化的原因。Ⅱ.短程有序结构决定了众多色斑的形成由于欧泊属非晶质体,其小球体的规则排列仅出现在局部小区域内(即短程有序),每一规则排列的小区域构成了一个独立的三维衍射光栅,并对应宏观上的一个小色斑。由于小衍射光栅的尺寸各不相同,在同一角度观察时,各色斑的颜色也会有明显差异,呈现五彩缤纷的效果。评价:色彩是否鲜艳、丰富;色斑分布的面积;基底的深浅。

变色效应:在不同光源照射下(常用日光和白炽灯两种光源),宝石呈现明显的颜色变化,这种现象称为变色效应。

产生的前提条件:宝石的可见光吸收光谱中存在着两个明显相间分布的色光透过带,而其余色光均被较强吸收。例如:变石有两个透光区,一个是绿光区,一个是红光区。由于日光中绿光偏多,所以日光下变石呈现绿色;而白炽灯中红色光偏多,所以白炽灯下变石呈现红色。

月光效应:折射率稍有不同的钾长石和钠长石薄片平行发生的超细微结构引起光的散射、漫反射作用,形成朦胧状的蔚蓝色,即在乳白色的底色中,飘动着一点点微弱的蓝色,如同皎洁的月光,故名月光效应。

《材料物理性能》考前笔记 第四章 材料的光学性质

第四章材料的光学性质 1.光吸收的本质 光作为一种能量流,在穿过介质时,引起介质的价电子跃迁,或使原子振动而消耗能量。此外,介质中的价电子吸收光子能量而激发,当尚未退激时,在运动中与其他分子碰撞,电子的能量转变成分子的动能亦即热能,从而构成光能的衰减。即是在对光不发生散射的透明介质,如玻璃、水溶液中,光也会有能量的损失,这就是产生光吸收的原因。 2.图4.19金属、半导体和电介质的吸收率随波长的变化。 3.光的色散材料的折射率随入射光的频率的减小(或波长的增加)而减小的性质,称为折射率的色散。 4.光的散射 光通过气体、液体、固体等介质时,遇到烟尘、微粒、悬浮液滴或者结构成分不均匀的微小区域,都会有一部分能量偏离原来的传播方向而向四面八方弥散开来,这种现象称为光的散射。光的散射导致原来传播方向上光强的减弱。 5.弹性散射散射前后,光的波长(或光子能量)不发生变化的散射称为弹性散射。 σλ1 ∝s I (I s 表示散射光强度,参量σ与散射中心尺度大小a 0有关) a.Tyndall 散射当a 0>>λ时,0→σ,即当散射中心的尺度远大于光波的波长,散射光强与入射光波长无关。 B.Mie 散射当a 0λ≈时,即散射中心尺度与入射光波长可以比拟时,σ在0~4之间,具体数值与散射中心尺度有关。 C.Rayleidl 散射当a 0<<λ时,4=σ。换言之,当散射中心线度远小于入射光的波长时,散射强度与波长的4次方成反比(4 /1λ=s I )。这一关系称为瑞利散射定律。 6.非弹性散射当光束通过介质时,从侧向接收到的散射光主要是波长(或频率)不发生变化的瑞利散射光,属于弹性散射。除此之外,使用高灵敏度和高分辨率的光谱仪器,可以发现散射光中还有其他光谱成分,它们在频率坐标上对称地分布在弹性散射光的低频和高频侧,强度一般比弹性散射微弱得多,这些频率发生改变的光散射是入射光子与介质发生非弹性碰撞的结果,称为“非弹性散射”。从波动观点来看,光的非弹性散射机制乃是光波电磁场与介质内微观粒子固有振动之间的耦合,可激 发介质微观结构的振动或导致振动的淬灭,以至散射光波频率相应出现“红移”(频率降低)或“蓝移”(频率升高)。通常能产生拉曼散射的介质多由相互束缚的正负离子所组成。正负离子的周期性振动导致偶极矩与光波电磁场的相互作用引起能量交换,发生光波的非弹性散射。布里渊散射是点阵振动引起的密度起伏或超声波对光波的非弹性散射,也可以说是点阵振动的声学声子(声学摸)与光波之间能量交换的结果。 ωs R AS

纳米材料的光学特性

纳米材料的光学特性 美国著名物理学家,1965年诺贝尔物理奖获得者R.P Feynman在1959年曾经说过:“如果有一天能按人的意志安排一个个原子分子将会产生什么样的奇迹”,纳米科学技术的诞生将使这个美好的设想成为现实。 纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1~100nm)的固态材料。由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。 1 纳米材料的分类和结构 根据不同的结构,纳米材料可分为四类,即:纳米结构晶体或三维纳米结构;二维纳米结构或纤维状纳米结构;一维纳米结构或层状纳米结构和零维原子簇或簇组装。纳米材料的分类如图表1所示。纳米材料包括晶体、赝晶体、无定性金属、陶瓷和化合物。 2 纳米材料的光学性质 纳米材料在结构上与常规晶态和非晶态材料有很大差别,突出地表现在小尺寸颗粒和庞大的体积百分数的界面,界面原子排列和键的组态的较大无规则性。这就使纳米材料的光学性质出现了一些不同于常规材料的新现象。

纳米材料的光学性质研究之一为其线性光学性质。纳米材料的红外吸收研究是近年来比较活跃的领域,主要集中在纳米氧化物、氮化物和纳米半导体材料上,如纳米Al2O3、Fe2O3、SnO2中均观察到了异常红外振动吸收,纳米晶粒构成的Si膜的红外吸收中观察到了红外吸收带随沉积温度增加出现频移的现象,非晶纳米氮化硅中观察到了频移和吸收带的宽化且红外吸收强度强烈地依赖于退火温度等现象。对于以上现象的解释基于纳米材料的小尺寸效应、量子尺寸效应、晶场效应、尺寸分布效应和界面效应。目前,纳米材料拉曼光谱的研究也日益引起研究者的关注。 半导体硅是一种间接带隙半导体材料,在通常情况下,发光效率很弱,但当硅晶粒尺寸减小到5nm或更小时,其能带结构发生了变化,带边向高能态迁移,观察到了很强的可见光发射。研究纳米晶Ge的光致发光时,发现当Ge晶体的尺寸减小到4nm以下时,即可产生很强的可见光发射,并认为纳料晶的结构与金刚石结构的Ge 不同,这些Ge纳米晶可能具有直接光跃迁的性质。Y.Masumato发现掺CuCl纳米晶体的NaCl在高密度激光下能产生双激子发光,并导致激光的产生,其光学增益比CuCl 大晶体高得多。不断的研究发现另外一些材料,例如Cds、CuCl、ZnO、SnO2、Bi2O3、Al2O3、TiO2、SnO2、Fe2O3、CaS、CaSO4等,当它们的晶粒尺寸减小到纳米量级时,也同样观察到常规材料中根本没有的发光观象。纳米材料的特有发光现象的研究目前正处在开始阶段,综观研究情况,对纳米材料发光现象的解释主要基于电子跃迁的选择定则,量子限域效应,缺陷能级和杂质能级等方面。 纳米材料光学性质研究的另一个方面为非线性光学效应。纳米材料由于自身的特性,光激发引发的吸收变化一般可分为两大部分:由光激发引起的自由电子-空穴对所产生的快速非线性部分;受陷阱作用的载流子的慢非线性过程。其中研究最深入的为CdS纳米微粒。由于能带结构的变化,纳米晶体中载流子的迁移、跃迁和复合过程均呈现与常规材料不同的规律,因而其具有不同的非线性光学效应。 纳米材料非线性光学效应可分为共振光学非线性效应和非共振非线性光学效应。非共振非线性光学效应是指用高于纳米材料的光吸收边的光照射样品后导致的非线性效应。共振光学非线性效应是指用波长低于共振吸收区的光照射样品而导致的光学非线性效应,其来源于电子在不同电子能级的分布而引起电子结构的非线性,电子结构的非线性使纳米材料的非线性响应显著增大。目前,主要采用Z-扫找(Z-SCAN)和DFWM技术来测量纳米材料的光学非线性。

晶体光学性质的观测分析(预习)

晶体光学性质的观测分析(预习报告) 一、实验目的 熟悉单期自晶光学性质, 晶体的消光现象, 干涉色级序 了解偏光显微镜原理及掌握其使用方法 观察晶体的类别、軸向和光性正负等过程, 估计晶片光程差 二、实验原理 折射率与光的传播方向和光矢振动方向有关的晶体称为各向异性晶体。除立方晶系的晶体外,所有的晶体都是各向异性晶体。如:方解石、水晶、KDP、LiNb03, BaTi03等都是各向异性晶体。 当光通过各向异性晶体时, 会产生双折射现象, 并表现出偏振性质。当光沿各向异性晶体传播时, 总存在一个或画个方向不发生双折射现象, 此方向称为晶体的光轴, 按晶体的光轴分,各向异性品体又可分为単轴晶和双軸晶,单轴晶只有一个光轴,如:四方晶系、六方晶系、三方晶系的晶体;而双軸晶则有西个光抽,如:正交晶系、単斜晶系、三斜晶系的晶体。其中,折射率不随入射光方向而变的称为寻常光或o光(折射率为n。),折射率随入射光方向而变的称为非寻常光或e光(折射率为ne)。o光和e光都是偏振光,并且它们的振动方向互相垂直。 光波各矢量间关系较复杂, 因此需要用一些图形来直观地表示出晶体中光波各矢量间的方向关系, 及各传插方向相对应的光速或折射率在空间的取值分布, 这些几何图形称为晶体光学示性曲面。.折射率椭球(或光率体) 就是描述晶体最常用的晶体光学示性曲面, 它是以主折射率为主值的椭球。 在偏光显微镜中,当上下偏光镜的振动面互相垂直时,称为正父偏光镜。如在正交偏光镜间不放任何介质或放入各相同晶体时, 光线无法通过正交偏光镜, 所以视域是黑暗的; 当' 在正交偏光镜间放人各相异晶体后, 由于晶体双折射效应和晶片厚度、晶抽取向的不同而产生不同的干涉现象。如图4- l -4所示:在正交偏光镜之间加入一晶片,其中PP表示起偏镜(下偏光镜) 的振动方向, AA表示检偏镜(上偏光镜)的振动方向, 00表示晶片光轴方向(00平行于晶片,垂直于透光方向)。如透过起偏镜的偏振光振幅为Aoe, 光线到达厚度为d的晶片后, 分解成振幅分别为Ae和Ao的e光和o光, e光和o光的振动方向分别平行和垂直00方向, 00与PP的夹角为a,则e光和o光的振幅分别为: Ae=Aoe cosα, Ao= Aoe sinα。再经检偏镜(上偏光镜)后, Ae和Ao在检偏镜AA方向的投影。由于各相异晶体e光和o光的折射率不同,其差值为Δn= (ne -n0),所以当它们透过厚度为d的晶片后,必产生光程差Δ=d(ne-n。)

液晶的光学特性分析

液晶的光学特性分析 光的偏振性 光矢量 麦克斯韦在电磁波理论中指出电磁波是横波,由两个相互垂直的振动矢量即电场强度E和磁场强度H来表征,由于人们从光的偏振现象认识到光是横波,而且光速的测量值与电磁波速的理论计算值相符合,所以肯定光是一种电磁波,大量试验表明:在光波中产生感光作用和生理作用的是电场强度E,所以规定E 为光矢量,我们把E的振动称为光振动,光矢量E的方向就是光振动的方向。自然光: 一个原子或分子在某一瞬间发出的光本来是有确定振动方向的光波列,但是通常的光是大量原子的无规率发射,是一个瞬息万变、无序间歇过程,所以各个波列的光矢量可以分布在一切可能的方位,平均来看,光矢量对于光的传播方向成对成均匀分布,没有任何一个方位较其它方位更占优势,这种光就叫自然光。 自然光在反射、散射或通过某些晶体时,其偏振状态会发生变化。例如阳光是自然光,但经天空漫射后是部分偏振的,一些室内的透明塑料盒,如录音带盒,在某些角度上会出现斑澜色彩,就是偏振光干涉的结果。 自然光的分解: 在自然光中,任何取向的光矢量都可分解为两个相互垂直方向上的分量,很显然,自然光可用振幅相等的两个相互垂直方向上的振动来表示。 应当指出,由于自然光中振动的无序性,所以这两个相互垂直的光振动之间没有恒定的位相差,但应注意的是不能将两个相位无关联的光矢量合成为一个稳定的偏振光,显然对应两个相互垂直振动的光强各为自然光光强的一半。 如果采用某种方法能把两个相互垂直的振动之一去掉,那就获得了线偏振光,如果只能去掉两个振动之一的一部分,则称为部分偏振光。

偏振光 线偏振光:如果光矢量在一个固定平面内只沿一个固定的方向振动,这种光称为线偏振光,也叫面偏振光或全偏振光,线偏振光的光矢量方向和传播方向构成的平面称为振动面,线偏振光的振动面是固定不变的。 部分偏振光: 这是介于偏振光和自然光之间的一种偏振光,在垂直于这种光的传播方向的平面内,各方向的振动都有,但它们的振幅不相等。 值得注意的是,这种偏振光的各方向振动的光矢量之间也没有固定的相位关系,与部分偏振光相对应,有时称线偏振光为完全偏振光。 圆偏振光和椭圆偏振光: 这两种光的特点是在垂直于光的传播方向的平面内,光矢量按一定频率旋转(左旋或右旋),如果光矢量端点的轨迹是一个圆,这种光叫圆偏振光;如果光矢

圆锥曲线的光学性质

圆锥曲线光学性质的证明及应用初探 一、 圆锥曲线的光学性质 1.1 椭圆的光学性质: 从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另 一个焦点上; (见图1.1) 椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置.例如在1F 处放置一个热源,那么红外线也能聚焦于2F 处,对2F 处的物体加热。电影放映机的反光镜也是这个原理。 证明:由导数可得切线l 的斜率0 20 20x x b x k y a y =-' ==, 而1PF 的斜率010 y k x c =+,2PF 的斜率020y k x c =- ∴l 到1PF 所成的角α'满足()()200 2 2222 2000001222 2 001000 2 00 tan 11y b x x c a y a y b x b cx k k b x y kk a b x y a cy x c a y α++++-'===+-+-+, ()00,P x y 在椭圆上,∴20tan b cy α'=,同理,2PF 到l 所成的角β'满足2 220 tan 1k k b kk cy β-'==+, ∴tan tan αβ''=,而,0, 2παβ?? ''∈ ?? ? ,∴αβ''= 1.2双曲线的光学性质 :从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2). 双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用. 1.3 抛物线的光学性质 : 从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴(如图1.3) 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 图1.3 图1.2 图1.1

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用 尹建堂 一、圆锥曲线的光学性质 圆锥曲线的光学性质源于它的切线和法线的性质,因而为正确理解与掌握其光学性质,就要掌握其切线、法线方程的求法及性质。 设P()为圆锥曲线(A、B、C不同时为零)上一定点,则在该点处的切线方程为: 。(该方程与已知曲线方程本身相比,得到的规律就是通常所说的“替换法则”,可直接用此法则写出切线方程)。 该方程的推导,原则上用“△法”求出在点P处的切线斜率,进而用点 斜式写出切线方程,则在点P处的法线方程为 。 1、抛物线的切线、法线性质 经过抛物线上一点作一条直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这一点的焦半径的夹角。如图1中。 事实上,设为抛物线上一点,则切线MT的方程可由替换法则,得 ,即,斜率为,于是得在点M处的法线方程为 令,得法线与x轴的交点N的坐标为,

所以 又焦半径 所以,从而得即 当点M与顶点O重合时,法线为x轴,结论仍成立。 所以过M的法线平分这条直线和这一点的焦半径的夹角。 也可以利用点M处的切线方程求出,则,又故 ,从而得 也可以利用到角公式来证明 抛物线的这个性质的光学意义是:“从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴”。 2、椭圆的切线、法线性质 经过椭圆上一点的法线,平分这一点的两条焦点半径的夹角。如图2中 证明也不难,分别求出,然后用到角公式即可获证。 椭圆的这个性质的光学意义是:“从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上”。 3、双曲线的切线、法线性质 经过双曲线上一点的切线,平分这一点的两条焦点半径的夹角,如图3中。仍可利用到角公式获证。

材料现代分析与测试 第六章 材料光学性能分析汇总

第六章 材料光学性能分析 第一节 透射光谱和吸收光谱 材料的光学性能主要包括对光的折射、反射、吸收、透射以及发光等诸多方面,光学性能与材料的某些应用领域密切相关,比如用作反射镜、光导纤维窗口、透镜、棱镜、滤光镜、激光探测器件等。鉴于篇幅,本章着重介绍折射率、色散、透过、吸收以及激发、发射、亮度、效率等发光性能的测试。 一、基本概念 光作为一种能量流,在穿过介质时,能引起介质的价电子跃迁或影响原子的振动而消耗能量。 即使在对光不发生散射的透明介质如玻璃或水溶液中,光也会有能量的损失,即光的吸收。 1.吸收光谱 设有一厚度为x 平板材料,入射光强度设为I 0,通过此材料后光强度为I ′。选取其中一薄层,并认为光通过此薄层的吸收损失-dI 正比于此处光强度 I 和薄层厚度dx ,即: 则可得到光强度随厚度呈指数衰减规律,即朗伯特定律: α为物质对光的吸收系数,单位为cm-1。 α的大小取决于材料的性质和光的波长。对于相同波长的光波,α越大,光被吸收得越多,能透过的光强度就越小。 α随入射光波长(或频率)变化的曲线,叫作吸收光谱。 2.透射光谱 透光性是表征材料被光穿透能力的高低,透光性的好坏可用透过率指标T 来衡量。 透过率T 是指光通过材料后,透过光强度占入射光强度的百分比。剩余光强度应是从初始入射光强度I 0中扣除造成光能衰减的表面上的反射损失、试样中的散射损失和吸收损失等。 一般地,反射、吸收和透过的关系可用下式表示: dI I dx α-=??'0x I I e α-=?2(1)exp() T R d α=--?

T——透过率;R——反射系数;α——吸收系数; d——试样厚度,单位cm。 透过率T随波长变化的曲线即称为透射光谱曲线。 透射光谱曲线可用分光光度计来测定。 光强的大小用光透过试样照到光电管上产生的电流的大小来表示。 某个波长的光通过空气(作为空白样)后的光强设为I0,再通过一定厚度的试样后的光强设为I′,即可通过I′/ I0得到针对该波长的透过率Tλ,如此依次测得其他各波长的透过率就可得到透过率T随波长变化的透射光谱。 二、光谱测试 1.测试仪器:分光光度计 图6-1 721型分光光度计的光学系统示意图 1—光源2, 8—聚光透镜3—反射镜4—狭缝5, 12—保护玻璃6—准直镜7—色散棱镜9—比色皿10—玻璃试样11—光门13—光电管 2.透射光谱测试 由光源发出的连续辐射光线,经过聚光透镜汇聚到反射镜,转角90°反射至狭缝内。由此入射到单色器内准直镜的焦面上,被反射后,以一束平行光射向色散棱镜(棱镜背面镀铝),光在棱镜中色散,入射角在最小偏角时,入射光在铝面上反射后按原路返回至准直镜,再反射回狭缝,经聚光透镜再次聚光后进入比色皿中,透过试样到光电管。光电管所产生的电流大小表示试样的透过率,直接从微安表读出,从而可得T—λ曲线,即透射光谱。

第六章 材料光学性能分析

第六章 材料光学性能分析 一、教学目的 理解并掌握各光学性能、光谱的概念,掌握各光谱仪的测试方法和光谱分析方法。了解光谱仪的结构和测试原理。 二、重点、难点 重点:固体发光原理、荧光光谱测试技术。 难点:荧光光谱测试技术。 三、教学手段 多媒体教学 四、学时分配 6学时 第一节 透射光谱和吸收光谱 材料的光学性能主要包括对光的折射、反射、吸收、透射以及发光等诸多方面,光学性能与材料的某些应用领域密切相关,比如用作反射镜、光导纤维窗口、透镜、棱镜、滤光镜、激光探测器件等。鉴于篇幅,本章着重介绍折射率、色散、透过、吸收以及激发、发射、亮度、效率等发光性能的测试。 一、基本概念 光作为一种能量流,在穿过介质时,能引起介质的价电子跃迁或影响原子的振动而消耗能量。 即使在对光不发生散射的透明介质如玻璃或水溶液中,光也会有能量的损失,即光的吸收。 1.吸收光谱 设有一厚度为x 平板材料,入射光强度设为I 0,通过此材料后光强度为I ′。选取其中一薄层,并认为光通过此薄层的吸收损失-dI 正比于此处光强度 I 和薄层厚度dx ,即: 则可得到光强度随厚度呈指数衰减规律,即朗伯特定律: α为物质对光的吸收系数,单位为cm-1。 d I I d x α-=??' 0x I I e α-=?

α的大小取决于材料的性质和光的波长。对于相同波长的光波,α越大,光被吸收得越多,能透过的光强度就越小。 α随入射光波长(或频率)变化的曲线,叫作吸收光谱。 2.透射光谱 透光性是表征材料被光穿透能力的高低,透光性的好坏可用透过率指标T 来衡量。 透过率T 是指光通过材料后,透过光强度占入射光强度的百分比。剩余光强度应是从初始入射光强度I 0中扣除造成光能衰减的表面上的反射损失、试样中的散射损失和吸收损失等。 一般地,反射、吸收和透过的关系可用下式表示: T ——透过率;R ——反射系数;α——吸收系数; d ——试样厚度,单位cm 。 透过率T 随波长变化的曲线即称为透射光谱曲线。 透射光谱曲线可用分光光度计来测定。 光强的大小用光透过试样照到光电管上产生的电流的大小来表示。 某个波长的光通过空气(作为空白样)后的光强设为I 0,再通过一定厚度 的试样后的光强设为I ′,即可通过I ′/ I 0得到针对该波长的透过率Tλ,如此依次测得其他各波长的透过率就可得到透过率T 随波长变化的透射光谱。 二、光谱测试 1.测试仪器:分光光度计 图6-1 721型分光光度计的光学系统示意图 1—光源 2, 8—聚光透镜 3—反射镜 4—狭缝 5, 12—保护玻璃 6—准直镜 7—色散棱镜 9—比色皿 10—玻璃试样 11—光门 13—光电管 2.透射光谱测试 2 (1)exp() T R d α=--?

晶体光学性质地观测分析报告林兰凤

晶体光学性质的观测分析 学号:10329056 姓名:林兰凤 班别:10光信息二班 合作人:陈蕾清 实验日期:2012/11/08, 2012/11/15 一、实验目的 1. 熟悉单轴晶体光学性质,晶体的消光现象,干涉色级序; 2. 了解偏光显微镜原理及掌握其使用方法; 3. 观测晶体的类别,轴向和光性正负等过程,估计晶片光程差。 二、实验仪器 XP-201型透射显微镜:光源,起偏镜,聚光镜,旋转载物台,物镜,补偿器插口,检偏镜,勃氏镜,目镜。 三、实验原理 (一)晶体双折射、光率体。 折射率与光的传播方向及光矢振动方向有关的晶体称为各向异性晶体。光通过各向异性晶体时会出现双折射现象,并表现出偏振性质。在各向异性晶体中总是存在一个或两个方向不会不会发生双折射现象,称为晶体的光轴。据此又可将晶体分为单轴晶跟双轴晶。其中,折射率不随入射方向而改的成为o 光或寻常光,折射率随入射方向而改的成为e 光或非寻常光。o 、e 光都是偏振光。 可以用几何图形直观地表示晶体中光波各矢量间的方向关系,及各传播方向相对应的光速或折射率在空间的取值分布,这类图形称为晶体光学示性曲面。光率体就是最常见的晶体光学示性曲面,它是以主折射率为主值的椭球。单晶体中e o n n 的称为正光性单轴晶,反之称为负光性单轴晶。

图1 单轴晶光率体的三种中心截面 图1给出了单轴晶光率体的三种中心截面。圆截面:垂直光轴的圆,半径为o n ;主截面:包含光轴的椭圆截面,它的一个半径为o n ,与光轴垂直,另一个半径为e n ,与光轴平行。O 光振动方向必垂直于主截面,e 光的振动方向则平行主截面;任意截面:是一个椭圆,截面法向N 与光轴成 角。 (二)正交偏光干涉: 在偏光显微镜中,当上下偏光镜的振动面互相垂直时,称为正交偏光镜。如在正交偏光镜间不放入任何介质或放入各相同性晶体时,光线无法通过正交偏光镜,所以视域是黑暗的;当放入各相异性晶体时,由于晶体双折射效应和晶片厚度、晶轴取向的不同而产生不同的干涉现象。 图2 正交偏光镜间的干涉现象 由光学知识:如图2所示:当在正交偏光镜之间加入一各相异性晶体时,一束波长为λ的光波经正交偏光镜和晶片后,会变成大小相等而振动方向相反,频率相同,位相差恒定的 两束光(o 光和e 光),它们满足干涉条件,由平面波叠加原理,其合成光波振幅为:

晶体光学性质的观测分析

晶体光学性质的观测分析 实验人:吴家燕学号:15346036 日期:2017.10.26 一.实验目的 1.熟悉单轴晶体光学性质,晶体的消光现象,干涉色级序; 2.了解偏光显微镜原理并掌握其使用方法; 3.观察晶体的类别,轴向和光性正负等过程,估计晶片的光程差 二.实验仪器 透射偏光显微种类很多,但基本原理都大同小异。下图为本实验所用的XP-201型透射偏光显 微镜的构造图,主要结构包括: 1.光源:卤素灯12V/20W,亮度可调节。 2.起偏镜:用于产生偏振光,可转动调节方向。 3.聚光镜:位于物台下面,有一组透镜组成,可以把来自下偏光镜的平行光聚敛成锥形偏光,聚光镜连有手柄,可根据需要旋入或旋出光路。 4.旋转载物台:用于放置观察样品,可360度旋转。

5.物镜:由四个放大倍数分别我为4x,10x,40x,60x 的物镜,物镜的前镜片与样品之间的距离称为工作距离物镜的工作距离随着放大倍数的增加而减小,所以用高倍物镜时要特别小心,应先将物镜调至最低,然后逐步升高对焦。 6.补偿器插口:用于插入补偿器。 7.检偏镜:摆动式,可移出光路,进行单偏光观察。 8.勃氏镜:位于目镜与上偏光镜之间,为一小凸透镜,与目镜联合组成一望远镜,勃氏镜可左右移动,分别移入、移出光路。 9.目镜:目镜中装有十字丝和刻度尺。 三.实验原理 (一)晶体的双折射和光率体 折射率与光的传播方向和光矢振动方向有关的晶体称为各向异性晶体。除立方晶系的晶体外,所有的晶体都是各向异性晶体。 当光通过各向异性晶体时,会产生双折射现象,并表现出偏振性质。当光沿各向异性晶体传播时,总存在一个或两个方向不发生双折射现象,此方向称为晶体的光轴,按晶体的光轴分,各向异性晶体又可分为单轴晶和双轴晶,单轴晶只有一个光轴;而双轴晶则有两个光轴。其中,折射率不随入射光方向而变的称为寻常光或o 光(折射率为n o ),折射率随入射光方向而变的称为非寻常光或e 光(折射率为n e )。o 光和e 光都是偏振光,并且它们的振动方向互相垂直。o 光的振动方向垂直于包含光轴和o 光波法线所组成的平面,e 光的振动方向则平行于包含光轴和e 光波法线所组成的平面。 折射率椭球(或光率体)是描述晶体光学性质最常用的晶体光学示性曲面,它是以主折射率为主值的椭球。在主轴坐标系,折射率椭球可以表示为: 1232322222121=++n X n X n X (1) 1. 立方晶系(高级晶族) 1230n n n n === 120 232221=++n X X X (2) 2.单轴晶(中级晶族) 图1

材料的光学性能复习思考题

材料光学性能复习思考题 一.名词解释与比较: 瑞利散射与喇曼散射,色散,折射与双折射,反射、漫反射与全反射,散射,偏振光与线偏振光,弹性散射与非弹性散射 镜面反射: 发生于高度平整界面,反射方向一致。 漫反射:发生于不平整界面,反射方向不一致。 二.思考题 如何理解乳浊?气孔、晶粒度如何影响材料对光波的散射?论述时需解释原因。书本117 乳浊,指吸收系数低,透明物质的强散射造成不透明。。。晶粒度越大,散射越大,气孔引起散射损失 制备白色颜料时如何选材? 什么是双折射?晶体产生双折射的条件是什么? 元素离子半径,原子或离子排列的紧密程度及外加应力如何影响材料的折射率? 有色散的材料的折射率随入射光波长变化的一般规律是什么? 当光线以很小的入射角达到介质界面时,反射系数(即反射能量与入射能量之比)遵循什么规律?书本108页 制备透明陶瓷的材料的折射率与双折射率有什么基本要求?为什么? 无机非金属材料与金属材料在吸光性上有何区别,为什么? 廷德尔散射、米氏散射和瑞利散射:是弹性散射,散射光波与入射光波长相同。 喇曼散射和布里渊散射:非弹性散射:散射光波长与入射光不同 5色散:材料的折射率随入射光波长而变化的现象,通常情况下,随波长增加,折射率减小偏振光:光的电场矢量在不同方向的振动强度不同的光称为偏振光。 双折射:光通过非均质晶体时,通常会分解成两束传播方向不同的偏振光,这种现象称为双折射现象。原因是在该晶体内不同振动方向的光波的折射率不同。 双折射导致光线在多晶材料内部不断散射,透明性下降,高双折射率致制备透明陶瓷困难。两相的相对折射率越高,散射越强烈 散射原因:①多晶体,②分散得很细的两相体系,③两相的相对折射率越高,散射越强烈。折射率影响因素:①大离子得到高折射率的材料。②均质体只有单一折射率。非均质体有两个折射率,发生双折射现象,沿着晶体堆积密度大的方向折射率大。 ③拉应力方向n小,垂直于拉应力方向n大,压应力方向n大。 ④同质异构体中,高温型折射率低,低温型折射率高。 8. 1)金属材料的光透过性 射入金属中的光线被吸收,金属不透明。与被吸收的光同样波长的光波又可从表面反射出来,形成金属特有的光泽。所以,金属的颜色是反射光线的颜色 2)非金属材料的光透过性 ①介质吸收光波的规律透过的光的强度与入射强度的关系有:x为光透过的厚度 ②非金属材料的禁带宽度大于3.1eV时,超过了可见光光子的能量,不可能吸收可见光,表现为透明。 ③在红外区的吸收是因为离子的弹性振动与光子辐射发生谐振而被吸收。因为振动能相对较

光学材料特性

光学材料特性

光学材料特性表: 有色玻璃牌号玻璃名称代号玻璃牌号透紫外线玻璃ZWB ZWB1 ZWB2 透红外玻璃HWB HWB1 HWB2 HWB3 HWB4 紫色玻璃ZB ZB1 ZB2 ZB3 蓝色(青色)玻璃QB QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8 QB9 QB10 QB11 QB12 QB13 QB14 QB15 QB16 QB17 QB18 QB19 QB20 QB22 绿色玻璃LB LB1 LB2 LB3 LB4 LB5 LB6 LB7 LB8 LB9 LB10 LB11 LB12 LB13 LB14 LB15 LB16黄色(金色)玻璃JB JB1 JB2 JB3 JB4 JB5 JB6 JB7 JB8 橙色玻璃CB CB1 CB2 CB3 CB4 CB5 CB6 CB7 红色玻璃HB HB1 HB2 HB3 HB4 HB5 HB6 HB7 HB8 HB9 HB10 HB11 HB12 HB13 HB14 HB15 HB16 防护玻璃FB FB1 FB2 FB3 FB4 FB5 FB6 FB7 中性(暗色)玻璃AB AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10透紫外线白色玻璃BB BB1 BB2 BB3 BB4 BB5 BB6 BB7 BB8

无色光学玻璃类型 玻璃类型玻璃牌号代号名称代号名称FK氟冕玻璃QF轻火石玻璃 QF轻冕玻璃F火石玻璃 K冕玻璃BaF钡火石玻璃 PK磷冕玻璃ZBaF重火石玻璃 BaK钡冕玻璃ZF重火石玻璃 ZK重冕玻璃LaF褴火石玻璃 LaK镧冕玻璃ZLaF重镧火石玻璃 TK特冕玻璃TiF钛火石玻璃 KF冕火石玻璃TF特种火石玻璃 光学晶体主要性能参数 品种n d n F-n C透过率/μmτ0.2μmτ5μm LiF 1.392120.003950.11-8.000.94 n0:1.37774 MgF2 0.003550.11-9.100.850.93 ne:1.38954 CaF2 1.433820.004550.11-11.000.850.94 SrF2 1.437980.006190.16-11.500.94 BaF2 1.474430.005780.13-14.000.750.93 NaCl 1.544270.012700.25-22.000.90 KCl 1.490250.011140.20-27.500.91 KBr 1.560000.016680.20-60.000.90 CsI 1.787460.20-60.000.83 KRS-5 2.617480.50-45.000.68

半导体的光学性质

半导体的光学性质 如果用适当波长的光照射半导体,那么电子在吸收了光子后将由价带跃迁到导带,而在价带上留下一个空穴,这种现象称为光吸收。半导体材料吸收光子能量转换成电能是光电器件的工作基础。光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: ()01x x I I r e α-=- 式中,x I 表示距离表面x 远处的光强;0I 为入射光强;r 为材料表面的反射率;α为材料吸收系数,与材料、入射光波长等因素有关。 1 本征吸收 半导体吸收光子的能量使价带中的电子激发到导带,在价带中留下空穴,产生等量的电子与空穴,这种吸收过程叫本征吸收。 要发生本征光吸收必须满足能量守恒定律,也就是被吸收光子的能量要大于禁带宽度g E ,即g h E ν≥,从而有: 00 1.24g g g E h hc E m eV E νλμ≥?≤=? 其中h 是普朗克常量,ν是光的频率.c 是光速,ν0:材料的频率阈值,λ0:材料的波长阈值,下表列出了常见半导体材料的波长阀值。 几种重要半导体材料的波长阈值 电子被光激发到导带而在价带中留下一个空穴,这种状态是不稳定的,由此产生的电子、空穴称为非平衡载流子。隔了一定时间后,电子将会从导带跃迁回价带,同时发射出一个光子,光子的能量也由上式决定,这种现象称为光发射。光发射现象有许多的应用,如半导体发光管、半导体激光器都是利用光发射原理制成的,只不过其中非平衡载流子不是由光激发产生,而是由电注入产生的。发光管、激光器发射光的波长主要由所用材料的禁带宽度决定,如半导体红色发光管是由GaP 晶体制成,而光纤通讯用的长波长(1.5μm )激光器则是由Ga x In 1-x As 或Ga x In 1-x As y P 1-y 合金制成的。

纳米材料光学性质

纳米材料的特性 美国著名物理学家,1965年诺贝尔物理奖获得者R.P Feynman 在1959年曾经说过:“如果有一天能按人的意志安排一个个原子分子将会产生什么样的奇迹”,纳米科学技术的诞生将使这个美好的设想成为现实。 纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1~100nm)的固态材料。由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。 固体材料的光学性质与其内部的微结构,特别是电子态、缺陷态和能级结构有密切的关系。 纳米结构材料在结构上与常规的晶态和非晶态体系有很大的差别,表现为:小尺寸、能级离散性显著、表(界)面原子比例高、界面原子排列和键的组态的无规则性较大等。这些特征导致纳米材料的光学性质出现一些不同于常规晶态和非晶态的新现象。 1、宽频带强吸收性 大块金属具有不同的金属光泽,表明它们对可见光中的各种波长的光的反射和吸收能力不同。当尺寸减小到纳米级时,各种金属纳米粒子

几乎都呈黑色,它们对可见光的反射率极低,而吸收率相当高。例如,Pt纳米粒子的反射率为1%,Au纳米粒子的反射率小于10%。 纳米SiN、SiC以及Al2O3粉等对红外有一个宽频强吸收谱。 不同温度退火下纳米Al2O3材料的红外吸收谱 纳米材料的红外吸收谱宽化的主要原因: (1)尺寸分布效应:通常纳米材料的粒径有一定的分布,不同的颗粒的表面张力有差异,引起晶格畸变程度的不同,这就导致纳 米材料键长有一个分布,造成带隙的分布,这是引起红外吸收 宽化的原因之一。 (2)界面效应:界面原子的比例非常高,导致不饱和键、悬挂键以及缺陷非常多,界面原子除与体相原子能级不同外,相互之间 也可能不同,从而导致能级分布的展宽,与常规大块材料不同,

相关主题
文本预览
相关文档 最新文档