当前位置:文档之家› 机器人运动学(精品教程)

机器人运动学(精品教程)

机器人运动学(精品教程)
机器人运动学(精品教程)

第2章 机器人位置运动学

2.1 引言

本章将研究机器人正逆运动学。当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。

实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。根据实际应用,用户可为机器人附加不同的末端执行器。显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。

2.2 机器人机构

机器手型的机器人具有多个自由度(DOF ),并有三维开环链式机构。

在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。如图2.1所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。

图2.1 具有单自由度闭环的四杆机构

如果机器人要在空间运动,那么机器人就需要具有三维的结构。虽然也可能有二维多自

由度的机器人,但它们并不常见。

机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。这是因为如果关节或连杆有丝毫的偏差,该关节之后的所有关节的位置都会改变且没有反馈。例如,在图2.2所示的四杆机构中,如果连杆AB 偏移,它将影响2O B 杆。而在开环系统中(例如机器人),由于没有反馈,之后的所有构件都会发生偏移。于是,在开环系统中,必须不断测量所有关节和连杆的参数,或者监控系统的末端,以便知道机器的运动位置。通过比较如下的两个连杆机构的向量方程,可以表示出这种差别,该向量方程表示了不同连杆之间的关系。

1122O A AB OO O B +=+ (2.1) 11O A AB BC OC ++= (2.2)

可见,如果连杆AB 偏移,连杆2O B 也会相应地移动,式(2.1)的两边随连杆的变化而改变。而另一方面,如果机器人的连杆AB 偏移,所有的后续连杆也会移动,除非1O C 有其他方法测量,否则这种变化是未知的。

为了弥补开环机器人的这一缺陷,机器人手的位置可由类似摄像机的装置来进行不断测量,于是机器人需借助外部手段(比如辅助手臂或激光束)来构成闭环系统。或者按照常规做法,也可通过增加机器人连杆和关节强度来减少偏移,采用这种方法将导致机器人重量重、体积大、动作慢,而且它的额定负载与实际负载相比非常小。

图2.2 (a)闭环机构;(b)开环机构

2.3 机器人运动学的矩阵表示

矩阵可用来表示点、向量、坐标系、平移、旋转以及变换,还可以表示坐标系中的物体

和其他运动元件。 2.3.1 空间点的表示

空间点P (如图2.3所示)可以用它的相对于参考坐标系的三个坐标来表示:

x y z P a i b j c k =++ (2.3)

其中,,,x y z a b c 是参考坐标系中表示该点的坐标。显然,也可以用其他坐标来表示空间点的 位置。

图2.3 空间点的表示

2.3.2 空间向量的表示

向量可以由三个起始和终止的坐标来表示。如果一个向量起始于点A ,终止于点B ,那么它可以表示为()()()AB x x y y z z P B A i B A j B A k =-+-+-。特殊情况下,如果一个向量起始于原点(如图2.4所示),则有:

x y z P a i b j c k =++ (2.4)

其中,,x y z a b c 是该向量在参考坐标系中的三个分量。实际上,前一节的点P 就是用连接到该点的向量来表示的,具体地说,也就是用该向量的三个坐标来表示。

图2.4 空间向量的表示

向量的三个分量也可以写成矩阵的形式,如式(2.5)所示。在本书中将用这种形式来表

示运动分量:

x y z a P b c ????=??????

(2.5) 这种表示法也可以稍做变化:加入一个比例因子w,如果x, y, z 各除以w,则得到

,,x y z

a b c 。

于是,这时向量可以写为:

x y P z w ??

??

??=??????

,其中,,x y x y

a b w w ==等等 (2.6)

变量w 可以为任意数,而且随着它的变化,向量的大小也会发生变化,这与在计算机图形学中缩放一张图片十分类似。随着w 值的改变,向量的大小也相应地变化。如果w 大于1,向量的所有分量都变大;如果w 小于1,向量的所有分量都变小。这种方法也用于计算机图形学中改变图形与画片的大小。

如果w 是1,各分量的大小保持不变。但是,如果w=0,,,x y z a b c 则为无穷大。在这种情况下,x ,y 和z (以及,,x y z a b c )表示一个长度为无穷大的向量,它的方向即为该向量所表示的方向。这就意味着方向向量可以由比例因子w=0的向量来表示,这里向量的长度并不重要,而其方向由该向量的三个分量来表示。

例2.1 有一个向量P=3i+5j+2k,按如下要求将其表示成矩阵形式:

(1)比例因子为2

(2)将它表示为方向的单位向量 解:

该向量可以表示为比例因子为2的矩阵形式,当比例因子为0时,则可以表示为方向向量,结果如下:

61042P ??????=?????? 和 3520P ??????=??????

然而,为了将方向向量变为单位向量,须将该向量归一化使之长度等于1。这样,向量的每一个分量都要除以三个分量平方和的开方:

356.16,0.487,6.16 6.16

x y P P λ=

====其中,等等和

0.4870.8110.3240unit P ??

??

?

?=??????

2.3.3 坐标系在固定参考坐标系原点的表示

一个中心位于参考坐标系原点的坐标系由三个向量表示,通常着三个向量相互垂直,称为单位向量,,n o a ,分别表示法线(normal )、指向(orientation )和接近(approach )向量(如图2.5所示)。正如2.3.3节所述,每一个单位向量都由它们所在参考坐标系着的三个分量表示。这样,坐标系F 可以由三个向量以矩阵的形式表示为:

x x x y y

y z

z

z n o a F n o a n o a ????=??????

(2.7)

图2.5 坐标系在参考坐标系原点的表示

2.3.4 坐标系在固定参考坐标系中的表示

如果一个坐标系不再固定参考坐标系的原点(实际上也可包括在原点的情况),那么该坐标系的原点相对于参考坐标系的位置也必须表示出来。为此,在该坐标系原点与参考坐标系原点之间做一个向量来表示该坐标系的位置(如图2.6所示)。这个向量由相对于参考坐标系的三个向量来表示。这样,这个坐标系就可以由三个表示方向的单位向量以及第四个位置向量来表示。

00

1x x x x y

y y y z z z z n o a p n o a p F n o a p ?????

?=??????

(2.8)

图2.6 一个坐标系在另一个坐标系中的表示

如式(2.8)所示,前三个向量是w=0的方向向量,表示该坐标系的三个单位向量,,n o a 的方向,而第四个w=1的向量表示该坐标系原点相对于参考坐标系的位置。与单位向量不同,向量P 的长度十分重要,因而使用比例因子为1。坐标系也可以由一个没有比例因子的3?4矩阵表示,但不常用。

例2.2 如图2.7所示的F 坐标系位于参考坐标系中3,5,7的位置,它的n 轴与x 轴平行,o 轴相对于y 轴的角度为45°,a 轴相对于z 轴的角度为45°。该坐标系可以表示为:

1

00300.7070.707

500.7070.70770001F ??

??-?

?=???

???

图2.7 坐标系在空间的表示举例

2.3.5 刚体的表示

一个物体在空间的表示可以这样实现:通过在它上面固连一个坐标系,再将该固连的坐标系在空间表示出来。由于这个坐标系一直固连在该物体上,所以该物体相对于坐标系的位姿是已知的。因此,只要这个坐标系可以在空间表示出来,那么这个物体相对于固定坐标系的位姿也就已知了(如图2.8所示)。如前所述,空间坐标系可以用矩阵表示,其中坐标原点以及相对于参考坐标系的表示该坐标系姿态的三个向量也可以由该矩阵表示出来。于是有:

00

1x x x x y y y y object

z z z z n o a p n o a p F n o a p ??????=??????

(2.9) 如第1章所述,空间中的一个点只有三个自由度,它只能沿三条参考坐标轴移动。但在空间的一个钢体有六个自由度,也就是说,它不仅可以沿着X,Y ,Z 三轴移动,而且还可绕这三个轴转动。因此,要全面地定义空间以物体,需要用6条独立的信息来描述物体原点在参考坐标系中相对于三个参考坐标轴的位置,以及物体关于这三个坐标轴的姿态。而式(2.9)

给出了12条信息,其中9条为姿态信息,三条为位置信息(排除矩阵中最后一行的比例因子,因为它们没有附加信息)。显然,在该表达式中必定存在一定的约束条件将上述信息数限制为6。因此,需要用6个约束方程将12条信息减少到6条信息。这些约束条件来自于目前尚未利用的已知的坐标系特性,即:

?三个向量,,n o a 相互垂直 ?每个单位向量的长度必须为

1

图2.8 空间物体的表示

我们可以将其转换为以下六个约束方程: (1)0n o ?=

(2)0n a ?= (3)0a o ?=

(4)1n =(向量的长度必须为1) (2.10) (5)1o =

(6)1a =

因此,只有前述方程成立时,坐标系的值才能用矩阵表示。否则,坐标系将不正确。式(2.10)中前三个方程可以换用如下的三个向量的叉积来代替:

n o a ?= (2.11)

例2.3 对于下列坐标系,求解所缺元素的值,并用矩阵来表示这个坐标系。

?

0?50.707??3

??020001F ?????

?=?????? 解:

显然,表示坐标系原点位置的值5,3,2对约束方程无影响。注意在三个方向向量中只有三个值是给定的,但这也已足够了。根据式(2.10),得: 0x x y y z z n o n o n o ++= 或 (0)0.707()()x y z z n o n o ++=

0x x y y z z n a n a n a ++= 或 ()0.707()(0)

x x y z n a a n ++= 0x x y y z z a o a o a o ++= 或 (0)()

0()x y y z a a o o ++=

2221x y z n n n ++= 或 2220.7071x z n n ++= 2221x y z o o o ++= 或 22201y z o o ++= 2221x y z a a a ++= 或 22201x y a a ++=

将这些方程化简得:

0.7070y z z o n o += 0.7070

x x y n a a +=

y y a o =

220.5x z n n +=

221

y z o o += 221

x y a a +=

解这六个方程得:0.707,0,0,1,0.7070.707x z y z x y n n o o a a =±====±=-和。应注意,x x n a 和必须同号。非唯一解的原因是由于给出的参数可能得到两组在相反方向上相互垂直的向

量。最终得到的矩阵如下:

0.70700.7070.70700.707301020001F ????-??=?????? 或

0.70700.707

0.70700.707301020001F --????-??=?????? 由此可见,两个矩阵都满足约束方程的要求。但应注意三个方向向量所表述的值不是任意的,而是受这些约束方程的约束,因此不可任意给矩阵赋值。

同样,可通过n o 与叉乘并令其等于a ,即n o a ?=来求解,表示如下:

x y z x y z x

y

z

i j k

n n n a i a j a k o o o =++

或表示为:()()()y z z y x z z x x y y x x y z i n o n o j n o n o k n o n o a i a j a k ---+-=++ 将值代入方程得:

(0.707)()()z z y x z x y x y i o n o j n o k n o a i a j k

--+=++ 同时解下面这三个方程:

0.7070

z z

y x

x z y

x y o n o a n o a

n o -=-==

以此来代替三个点乘方程。联立三个单位向量长度的约束方程,便得到六个方程,求解这六

个方程,可得到相同的未知参数的解。

2.4 齐次变换矩阵

由于各种原因,变换矩阵应写成方型形式,3?3或4?4均可。首先,如后面看到的,计

算方形矩阵的逆要比计算长方形矩阵的逆容易得多。其次,为使两矩阵相乘,它们的维数必须匹配,即第一矩阵的列数必须与第二矩阵的行数相同。如果两矩阵是方阵则无上述要求。由于要以不同顺序将许多矩阵乘在一起得到机器人运动方程,因此,应采用方阵进行计算。 为保证所表示的矩阵为方阵,如果在同一矩阵中既表示姿态又表示位置,那么可在矩阵中加入比例因子使之成为4?4矩阵。如果只表示姿态,则可去掉比例因子得到3?3矩阵,或加入第四列全为0的位置数据以保持矩阵为方阵。这种形式的矩阵称为齐次矩阵,它们写为:

00

1x

x x x y

y y y z z z z n o a p n

o a p F n o a p ??????=??????

(2.12) 2.5 变换的表示

变换定义为空间的一个运动。当空间的一个坐标系(一个向量、一个物体或一个运动坐

标系)相对于固定参考坐标系运动时,这一运动可以用类似于表示坐标系的方式来表示。这

是因为变换本身就是坐标系状态的变化(表示坐标系位姿的变化),因此变换可以用坐标系来表示。变换可为如下几种形式中的一种: ?纯平移

?绕一个轴的纯旋转 ?平移与旋转的结合

为了解它们的表示方法,我们将逐一进行探讨。 2.5.1 纯平移变换的表示

如果一坐标系(它也可能表示一个物体)在空间以不变的姿态运动,那么该坐标就是纯平移。在这种情况下,它的方向单位向量保持同一方向不变。所有的改变只是坐标系原点相对于参考坐标系的变化,如图2.9所示。相对于固定参考坐标系的新的坐标系的位置可以用原来坐标系的原点位置向量加上表示位移的向量求得。若用矩阵形式,新坐标系的表示可以通过坐标系左乘变换矩阵得到。由于在纯平移中方向向量不改变,变换矩阵T 可以简单地表示为:

1000

100010

01x y z d d T d ?????

?=??????

(2.13)

图2.9 空间纯平移变换的表示

其中,,x y z d d d 是纯平移向量d 相对于参考坐标系,,x y z 轴的三个分量。可以看到,矩阵的前三列表示没有旋转运动(等同于单位阵),而最后一列表示平移运动。新的坐标系位置为:

1

000

100010

010*******x x x x x x x x x x

y y y y y y y y y y n e w z z z z z z z z z z d n o a p n o a p d d n o a p n o a p d F d n o a p n o a p d

+????????????+?

?????=?=??????+????????????

(2.14)

这个方程也可用符号写为:

(,,)new x y z old F Trans d d d F =? (2.15) 首先,如前面所看到的,新坐标系的位置可通过在坐标系矩阵前面左乘变换矩阵得到,后面将看到,无论以何种形式,这种方法对于所有的变换都成立。其次可以注意到,方向向量经过纯平移后保持不变。但是,新的坐标系的位置是d 和P 向量相加的结果。最后应该注意到,齐次变换矩阵与矩阵乘法的关系使得到的新矩阵的维数和变换前相同。

例2.4 坐标系F 沿参考坐标系的x 轴移动9个单位,沿z 轴移动5个单位。求新的坐标系位置。

0.5270.5740.62850.3690.8190.43930.76600.64380

001F -????

?

?=??-??

?? 解:由式(2.14)或式(2.15)得:

(,,)new x y z old F Trans d d d F =?=(9,0,5)old

Trans F ? 和 10

090.5270.5270.628501000.3690.8190.439300150.76600.6438000100010.5270.5740.628140.3690.8190.43930.76600.643130

001F -????

?????

???

=?????

-????????-?????

?=??

-??

??

2.5.2 绕轴纯旋转变换的表示

为简化绕轴旋转的推导,首先假设该坐标系位于参考坐标系的原点并且与之平行,之后将结果推广到其他的旋转以及旋转的组合。

假设坐标系(,,n o a )位于参考坐标系(,,x y z )的原点,坐标系(,,n o a )绕参考坐标系的x 轴旋转一个角度θ,再假设旋转坐标系(,,n o a )上有一点P 相对于参考坐标系的坐标为

,,x y z P P P ,相对于运动坐标系的坐标为,,n o a P P P 。当坐标系绕x 轴旋转时,坐标系上的点P 也随坐标系一起旋转。在旋转之前,P 点在两个坐标系中的坐标是相同的(这时两个坐标系位置相同,并且相互平行)。旋转后,该点坐标,,n o a P P P 在旋转坐标系(x ,y ,z )中保持不变,但在参考坐标系中,,x y z P P P 却改变了(如图2.10所示)。现在要求找到运动坐标系旋转后P 相对于固定参考坐标系的新坐标。

让我们从x 轴来观察在二维平面上的同一点的坐标,图2.10显示了点P 在坐标系旋转前后的坐标。点P 相对于参考坐标系的坐标是,,x y z P P P ,而相对于旋转坐标系(点P 所固连的坐标系)的坐标仍为,,n o a P P P 。

由图2.11可以看出,x P 不随坐标系统x 轴的转动而改变,而y P 和z P 却改变了,可以证明:

120340cos sin sin cos x n

y a z a P P P l l P P P l l P P θθθθ

==-=-=+=+ (2.16)

写成矩阵形式为:

1

00

0cos sin 0sin cos x n y o z a P P P P P P θθθ

θ??????

??????=-??????????????????

(2.17)

图2.10 在坐标系旋转前后的点的坐标

图2.11 相对于参考坐标系的点的坐标和从x 轴上观察旋转坐标系

可见,为了得到在参考坐标系中的坐标,旋转坐标系中的点P (或向量P )的坐标必须左乘旋转矩阵。这个旋转矩阵只适用于绕参考坐标系的x 轴做纯旋转变换的情况,它可表示为:

(,)xyz noa P Rot x P θ=? (2.18) 注意在式(2.17)中,旋转矩阵的第一列表示相对于x 轴的位置,其值为1,0,0,它表示沿x 轴的坐标没有改变。

为简化书写,习惯用符号C θ表示cos θ以及用S θ表示sin θ。因此,旋转矩阵也可写为:

10

0(,)00Rot x C S S C θθ

θθθ??

??=-??????

(2.19) 可用同样的方法来分析坐标系绕参考坐标系y 轴和z 轴旋转的情况,可以证明其结果为:

10

0(,)00Rot x C S S C θθθθ

θ????=-?????? 和 10

0(,)00Rot x C S S C θθθθ

θ??

??=-??????

(2.20) 式(2.18)也可写为习惯的形式,以便于理解不同坐标系间的关系,为此,可将该变换

表示为u

R T (读作坐标系R 相对于坐标系U (Universe )的变换),将noa P 表示为R

P (P 相对于

坐标系R ),将

xyz

P 表示为u

P (P 相对于坐标系U ),式(2.18)可简化为:

u u R R P T P =? (2.21) 由上式可见,去掉R 便得到了P 相对于坐标系U 的坐标。

例2.5 旋转坐标系中有一点P ()234T

,此坐标系绕参考坐标系x 轴旋转90度。求旋转后该点相对于参考坐标系的坐标,并且用图解法检验结果。

解:

由于点P 固连在旋转坐标系中,因此点P 相对于旋转坐标系的坐标在旋转前后保持不变。该点相对于参考坐标系的坐标为:

1

00

100220cos sin 001340sin cos 01043x n y o z a P P P P P P θθθθ????????????

????????????=-=-=-????????????????????????????????????

如图2.12所示,根据前面的变换,得到旋转后P 点相对于参考坐标系的坐标为2,-4,

3.

图2.12 相对于参考坐标系的坐标系旋转

2.5.3 复合变换的表示

复合变换是由固定参考坐标系或当前运动坐标系的一系列沿轴平移和绕轴旋转变换所组成的。任何变换都可以分解为按一定顺序的一组平移和旋转变换。例如,为了完成所要求的变换,可以先绕x 轴旋转,再沿,,x y z 轴平移,最后绕y 轴旋转。在后面将会看到,这个变换顺序很重要,如果颠倒两个依次变换的顺序,结果将会完全不同。

为了探讨如何处理复合变换,假定坐标系(,,n o a )相对于参考坐标系(,,x y z )依次进行了下面三个变换:

(1)绕x 轴旋转α度;

(2)接着平移[]123l l l (分别相对于,,x y z 轴); (3)最后绕y 轴旋转β度。

比如点noa P 固定在旋转坐标系,开始时旋转坐标系的原点与参考坐标系的原点重合。随着坐标系(,,n o a )相对于参考坐标系旋转或者平移时,坐标系中的P 点相对于参考坐标系也跟着改变。如前面所看到的,第一次变换后,P 点相对于参考坐标系的坐标可用下列方程进行计算。

1,(,)xyz noa

P Rot x P α=? (2.22)

其中,1,xyz P 是第一次变换后该点相对于参考坐标系的坐标。第二次变换后,该点相对于参考坐标系的坐标是:

2,1,(1,2,3)(1,2,3)(,)

x y z x y z

n o a

P T r a n s l l l P T r a n s l l l R o t x P

α

=?=?? 同样,第三次变换后,该点相对于参考坐标系的坐标为:

3,2,(,)(,)(1,2,3)(,)xyz xyz xyz noa

P P Rot y P Rot y Trans l l l Rot x P ββα==?=???

可见,每次变换后该点相对于参考坐标系的坐标都是通过用每个变换矩阵左乘该点的坐

标得到的。当然,矩阵的顺序不能改变。同时还应注意,对于相对于参考坐标系的每次变换,矩阵都是左乘的。因此,矩阵书写的顺序和进行变换的顺序正好相反。

例2.6 固连在坐标系(,,n o a )上的点P ()732T

经历如下变换,求出变换后该点相对于参考坐标系的坐标。

(1)绕z 轴旋转90度;

(2)接着绕y 轴旋转90度; (3)接着再平移[4,-3,7]。 解:

表示该变换的矩阵方程为:

(4,3,7)(,90)100

40

01001

00760103010010003400171

00000

102100

001000100

0111xyz noa P Trans Rot y P =-=

-??????????

??????????-???

??

?????

???=??????????

-???

??

???????????????

从图2.13可以看到,(,,n o a )坐标系首先绕z 轴旋转90度,接着绕y 轴旋转,最后相对于参考坐标系的,,x y z 轴平移。坐标系中的P 点相对于,,n o a 轴的位置如图所示,最后该点在

,,x y z 轴上的坐标分别为4+2=6,-3+7=4,7+3=10。请确认也能从图中理解上述结果。

图2.13 三次顺序变换的结果

例 2.7 根据上例,假定(,,n o a )坐标系上的点()732T

P 经历相同变换,但变换按如下不同顺序进行,求出变换后该点相对于参考坐标系的坐标。 (1)绕z 轴旋转90度;

(2)接着平移[4,-3,7]; (3)接着再绕y 轴旋转90度。 解:

表示该变换的矩阵方程为:

(,90)(4,3,7)(,90)0010100401007901000103100034100000170010210

0010001000111xyz noa P Rot y Trans Rot z P =-=

-??????????

??????????-??????????

???=??????????

--??????????

??????????

不难发现,尽管所有的变换与例2.6完全相同,但由于变换的顺序变了,该点最终坐标与前例完全不同。用图2.14可以清楚地说明这点,这时可以看出,尽管第一次变换后坐标系的变化与前例完全相同,但第二次变换后结果就完全不同,这是由于相对于参考坐标系轴的

平移使得旋转坐标系()

,,n o a 向外移动了。经第三次变换,该坐标系将绕参考坐标系y 轴旋转,因此向下旋转了,坐标系上点P 的位置也显示在图中。

请证明该点相对于参考坐标系的坐标为7+2=9,-3+7=4和-4+3=-1,它与解析的结果相同。

图2.14 变换的顺序改变将改变最终结果

2.5.4 相对于旋转坐标系的变换

到目前为止,本书所讨论的所有变换都是相对于固定参考坐标系。也就是说,所有平移、旋转和距离(除了相对于运动坐标系的点的位置)都是相对参考坐标系轴来测量的。然而事实上,也有可能做相对于运动坐标系或当前坐标系的轴的变换。例如,可以相对于运动坐标系(也就是当前坐标系)的n 轴而不是参考坐标系的x 轴旋转90度。为计算当前坐标系中的点的坐标相对于参考坐标系的变化,这时需要右乘变换矩阵而不是左乘。由于运动坐标系中的点或物体的位置总是相对于运动坐标系测量的,所以总是右乘描述该点或物体的位置矩阵。

例2.8 假设与例2.7中相同的点现在进行相同的变换,但所有变换都是相对于当前的运动坐标系,具体变换出如下。求出变换完成后该点相对于参考坐标系的坐标。 (1)绕a 轴旋转90度;

(2)然后沿,,n o a 轴平移[4,-3,7]; (3)接着绕o 轴旋转90度。

解:

在本例中,因为所作变换是相对于当前坐标系的,因此右乘每个变换矩阵,可得表示该坐标的方程为:

(,90)(4,3,7)(,90)01001

0040

0107010000103010036001000171

0002000

010

010

00

111xyz noa P Rot a Trans Rot o P =-=-??????????

??????????-?

????

????????=??????????-?

???????????????????

如所期望的,结果与其他各例完全不同,不仅因为所作变换是相对于当前坐标系的,而且也因为矩阵顺序的改变。下面的图展示了这一结果,应注意它是怎样相对于当前坐标来完成这个变换的。

同时应注意,在当前坐标系中p 点的坐标7,3,2是变换后得到相对于参考坐标系的坐标0,6,0的。

图2.15 相对于当前坐标系的变换

例2.9 坐标系B 绕x 轴旋转90°,然后沿当前坐标系a 轴做了3英寸的平移,然后在绕z 轴旋转90,最后沿当前坐标系o 轴做5英寸的平移。

(a)写出描述该运动的方程。

(b)求坐标系中的点p (1,5,4)相对于参考坐标系的最终位置。 解:

在本例中,相对于参考坐标系以及当前坐标系的运动是交替进行的。 (a)相应地左乘或右乘每个运动矩阵,得到:

u

B T =Rot (z,90)Rot(x,90)Trans(0,0,3)Trans(0,5,0)

(b)带入具体的矩阵并将它们相乘,得到:

01001

010001

00010

0000100100010500100

1000

0130

01000

010

00100010

001U

U B B P T P -????????????????-?

????

??

?=?=????????

?

????

??

?

????????

00

17100101010000

1??????=?????

?

2.6 变换矩阵的逆

正如前面所提到的,在机器人分通过析中有很多地方要用到矩阵的逆,在下面的例子中

可以看到一种涉及变换矩阵的情况。在图2.16中,假设机器人要在零件p 上钻孔而须向零件

p 处移动。机器人基座相对于参考坐标系u 的位置用坐标系R 来描述,机器人手用坐标系H 来描述,末端执行器(即用来钻孔的钻头的末端)用坐标系E 来描述,零件的位置用坐标系P 来描述。钻孔的点的位置于参考坐标系U 可以通过两个独立的路径发生联系:一个是通过该零件的路径,另一个是通过机器人的路径。因此,可以写出下面的方程:

U

U R H

U

P

E

R H E P E T T T T T T == (2.24)

这就是说,该零件中点E 的位置可以通过从U 变换到P ,并从P 变换到E 来完成,或者从U

变换到R ,从R 变换到H ,再从H 变换到E 。

图2.16 全局坐标系、机器人坐标系、手坐标系、零件坐标系及末端执行器坐标系

事实上,由于在任何情况下机器人的基座位置在安装时就是已知的,因此变换U R T (坐标系R 相对于坐标系U 的变换)时已知的。比如,一个机器人安装在一个工作台上,由于它被紧固在工作台上,所以它的基座的位置时已知的。即使机器人时可移的或放在传送带上,因为控制

器始终掌控着机器人基座的运动,因此它在任意时刻的位置也是已知的。由于用于末端执行器的任何器械都是已知的,而且其尺寸和结构也是已知的,所以H E T (机器人末端执行器相对于机器人手的变换)也是已知的。此外,U P T (零件相对于全局坐标系的变换)也是已知的,还必须要知道将在其上面钻孔的零件的位置,该位置可以通过将该零件放在钻模上,让后用照相机,视觉系统,传送带,传感器或其他类似仪器来确定。最后需要知道零件上钻孔的位置,所以P E T 也是已知的。此时,唯一未知的变换就是R H T (机器人手相对于机器人基座的变换)。因此,必须找出机器人的关节变量(机器人旋转关节的角度以及滑动关节的连杆长度),以便将末端执行器定位在要钻孔的位置上。可见,必须要计算出这个变换,它指出机器人需要完成的工作。后面将用所求出的变换来求解机器人关节的角度和连杆的长度。

不能像在代数方程中那样来计算这个矩阵,即不能简单的用方程的右边除以方程的左边,而应该用合适的矩阵的逆并通过左乘或右乘来将它们从左边去调。因此有:

1111()()()()()()U U R H H U U P H R R H E E R P E E T T T T T T T T T ----= (2.25)

由于1()()1U U R R T T -=和1()()1H H E E T T -=,式(2.25)的左边可简化为R H T ,于是得:

11R

U U P H H R P E E T T T T T --= (2.26)

该方程的正确性可以通过认为E

H T 与1

()H E T -相同来加以检验。因此,该方程可重写为:

11R

U U P H R U P E R H R P E E U P E H H T T T T T T T T T T --=== (2.27)

显然为了对机器人运动学进行分析,需要能够计算变换矩阵的逆。

我们来看看关于x 轴的简单旋转矩阵的求逆计算情况。关于x 轴的旋转矩阵是:

1

00(,)00R o t x C S S C θθθθθ????=-??

????

(2.28) 必须采用一下的步骤来计算矩阵的逆:

?计算矩阵的行列式; ?将矩阵转置;

?将转置矩阵的每个元素用它的子行列式(伴随矩阵)代替; ?用转换后的矩阵除以行列式。 将上面的步骤用到该旋转,得到:

221()01C S θθ?=++=

1

00(,)00T R o t x C S S C θθθθθ????=??

??-??

现在计算每一个子行列式(伴随矩阵)。例如,元素2,2的子行列式是0C C θθ-=,元素1,1的子行列式221C S θθ+=。可以注意到,这里的每一个元素的子行列式与其本身相同,因此有:

m i n (,)(,)T T or Rot x Rot x

θθ= 由于原旋转矩阵的行列式为1,因此用min (,)T or Rot x θ矩阵除以行列式仍得出相同的结果。因此,关于x 轴的旋转矩阵的逆的行列式与它的转置矩阵相同,即:

1(,)(,)T Rot x Rot x θθ-= (2.29)

当然,如果采用附录A 中提到的第二种方法也能得到同样的结果。具有这种特征的矩阵称为酉矩阵,也就是说所有的旋转矩阵都是酉矩阵。因此,计算旋转矩阵的逆就是将该矩阵转置。可以证明,关于y 轴和z 轴的旋转矩阵同样也是酉矩阵。

应注意,只有旋转矩阵才是酉矩阵。如果一个矩阵不是一个简单的旋转矩阵,那么它也许就不是酉矩阵。

以上结论只对简单的不表示位置的3×3旋转矩阵成立。对一个齐次的4×4变换矩阵而言,它的求逆可以将矩阵分为两部分。矩阵的旋转部分仍是酉矩阵,只需简单的转置;矩阵的位置部分是向量P 分别与,,n o a 向量点积的负值,其结果为:

0001x x

x x y

y y y z z z z n o a p n o a p F n o a p ??????=?????? (2.30) 0

1x y z x

y z x y z n n n P n o o o P o F a a a P a ??

-???-???

=??-???????

如上所示,矩阵的旋转部分是简单的转置,位置的部分由点乘的负值代替,而最后一行

(比例因子)则不受影响。这样做对于计算变换矩阵的逆是很有帮助的,而直接计算4×4矩阵的逆是一个很冗长的过程。 例2.10 计算表示1(,40)Rot x ?-的矩阵

解:绕x 轴旋转40°的矩阵为:

1

00000.7660.643

0(,40)00.6430.76600

001Rot x ???

??-?

?=???

???

其矩阵的逆是:

11

00000.7660.6430(,40)00.6430.76600001Rot x ?-????

?

?=??-????

需注意的是,由于矩阵的位置向量为0,它与,,n o a 向量的点积也为零。

例2.11 计算如下变换矩阵的逆。

0.500.86630.86605201050

001T ????-?

?=??

??

??

解:

根据先前的计算,变换矩阵的逆是:

10.50.8660(30.520.86650)001(302051)0.8660.50(30.86620.550)0001T --?+?+???

??-?+?+??

?=??--?+?-+?????

0.50.8660 3.200150.8660.50 1.5980001-????-?

?=??--???

? 可以证明1

TT -是单位阵。

例2.12 一个具有六个自由度的机器人的第五个连杆上装有照相机,照相机观察物体并测定它

相对于照相机坐标系的位置,然后根据以下数据来确定末端执行器要到达物体所必须完成的运动。

5

0013010010050001cam

T -????-?

?=??

-?

??? 501

001000001400

01H T -?????

?=?????? 0012100201040

00

1cam

obj

T ??????=??

???? 1

00010000130

1

H E T ??????=?????? 解:

参照式(2.24),可以写出一个与它类似的方程,它将不同的变换和坐标系联系在一起。

5555R

H E R cam H E obj cam obj

T T T T T T T ???=??

由于方程两边都有5R T ,所以可以将它消去。除了E obj T 之外所有其他矩阵都是已知的,所以:

151555E

H cam E H cam obj E H cam obj H cam obj

T T T T T T T T T --=???=???

110000

10000130

001H

E T -?????

?=??

-???? 511

100100000140

01H T -????-??=??

-???? 将矩阵及矩阵的逆代入前面的方程,得:

10000

100001

30012010010000100100200130

014100

5010400

010

01000

10

001E

obj

T -????????????????--???

??

???=????????---?????

???????????

1002010100140

001E

obj

T --??????=??

--??

??

2.7 机器人的正逆运动学

假设有一个构型已知的机器人,即它的所有连杆长度和关节角度都是已知的,那么计算机器人手的位姿就称为正运动学分析。换言之,如果已知所有机器人关节变量,用正运动学方程就能计算任一瞬间机器人的位姿。然而,如果想要将机器人的手放在一个期望的位姿,就必须知道机器人的每一个连杆的长度和关节的角度,才能将手定位在所期望的位姿,这就叫做逆运动学分析,也就是说,这里不是把已知的机器人变量代入正向运动学方程中,而是要设法找到这些方程的逆,从而求得所需的关节变量,使机器人放置在期望的位姿。事实上,逆运动学方程更为重要,机器人的控制器将用这些方程来计算关节值,并以此来运行机器人到达期望的位姿。下面首先推导机器人的正运动学方程,然后利用这些方程来计算逆运动学方程。

对正运动学,必须推导出一组与机器人特定构型(将构件组合在一起构成机器人的方法)有关的方程,以使得将有关的关节和连杆变量代入这些方程就能计算出机器人的位姿,然后可用这些方程推出逆运动学方程。

根据第一章中的相关内容,要确定一个刚体在空间的位姿,须在物体上固连一个坐标系,然后描述该坐标系的原点位置和它三个轴的姿态,总共需要六个自由度或六条信息来完整地定义该物体的位姿。同理,如果要确定或找到机器人手在空间的位姿,也必须在机器人手上固连一个坐标系并确定机器人手坐标系的位姿,这正是机器人正运动学方程所要完成的任务。换言之,根据机器人连杆和关节的构型配置,可用一组特定的方程来建立机器人手的坐标系和参考坐标系之间的联系。图2.17所示为机器人手的坐标系、参考坐标系以及它们的相对位姿,两个坐标系之间的关系与机器人的构型有关。当然,机器人可能有许多不同的构型,后面将会看到将如何根据机器人的构型来推导出与这两个坐标系相关的方程。

为使过程简化,可分别分析位置和姿态问题,首先推导出位置方程,然后再推导出姿态方程,再将两者结合在一起而形成一组完整的方程。最后,将看到关于Denavit-Hartenberg 表示法的应用,该方法可用于对任何机器人构型建模。

用平面二连杆机器人为例贯穿运动学、雅可比、动力学、轨迹规划甚至控制与编程分析

一、平面二连杆机器人手臂运动学 平面二连杆机械手臂如图1所示,连杆1长度1l ,连杆2长度2l 。建立如图1所示的坐标系,其中,),(00y x 为基础坐标系,固定在基座上,),(11y x 、),(22y x 为连体坐标系,分别固结在连杆1和连杆2上并随它们一起运动。关节角顺时针为负逆时针为正。 图1平面双连杆机器人示意图 1、用简单的平面几何关系建立运动学方程 连杆2末段与中线交点处一点P 在基础坐标系中的位置坐标: ) sin(sin )cos(cos 2121121211θθθθθθ++=++=l l y l l x p p (1) 2、用D-H 方法建立运动学方程 假定0z 、1z 、2z 垂直于纸面向里。从),,(000z y x 到),,(111z y x 的齐次旋转变换矩阵为: ?? ??? ???????-=100 010000cos sin 00sin cos 1 111 01θθ θθT (2) 从),,(111z y x 到),,(222z y x 的齐次旋转变换矩阵为: ?? ??? ???????-=100 010000cos sin 0sin cos 2 212212 θθ θθl T (3) 从),,(000z y x 到),,(222z y x 的齐次旋转变换矩阵为:

? ???? ???????+++-+=?? ??? ? ? ?? ???-?????????????-=?=10000100sin 0)cos()sin(cos 0)sin()cos( 1000010 000cos sin 0sin cos 1000 010000cos sin 00sin cos 1121211121212212 2111 1120102θθθθθθθθθθθθθθθθ θθl l l T T T (4) 那么,连杆2末段与中线交点处一点P 在基础坐标系中的位置矢量为: ? ?? ? ? ???????=????????????++++=? ? ? ?? ? ?????????????? ?? ???+++-+=?=110)sin(sin )cos( cos 10010000100sin 0)cos()sin(cos 0)sin()cos( 212112121121121211121212 020p p p z y x l l l l l l l P T P θθθθθθθθθθθθθθθθ (5) 即, ) sin(sin )cos(cos 2121121211θθθθθθ++=++=l l y l l x p p (6) 与用简单的平面几何关系建立运动学方程(1)相同。 建立以上运动学方程后,若已知个连杆的关节角21θθ、,就可以用运动学方程求出机械手臂末端位置坐标,这可以用于运动学仿真。 3、平面二连杆机器人手臂逆运动学 建立以上运动学方程后,若已知个机械臂的末端位置,可以用运动学方程求出机械手臂二连杆的关节角21θθ、,这叫机械臂的逆运动学。逆运动学可以用于对机械臂关节角和末端位置的控制。对于本例中平面二连杆机械臂,其逆运动学方程的建立就是已知末端位置 ),(p p y x 求相应关节角21θθ、的过程。推倒如下。 (1)问题 ) sin(sin )cos(cos 2121121211θθθθθθ++=++=l l y l l x p p 已知末端位置坐标),(p p y x ,求关节角21θθ、。 (2)求1θ

机器人运动学(培训教材)

第2章机器人位置运动学 2.1 引言 本章将研究机器人正逆运动学。当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。 实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。根据实际应用,用户可为机器人附加不同的末端执行器。显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。 2.2 机器人机构 机器手型的机器人具有多个自由度(DOF),并有三维开环链式机构。 在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。如图2.1所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。

图2.1 具有单自由度闭环的四杆机构 如果机器人要在空间运动,那么机器人就需要具有三维的结构。虽然也可能有二维多自由度的机器人,但它们并不常见。 机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。这是因为如果关节或连杆有丝毫的偏差,该关节之后的所有关节的位置都会改变且没有反馈。例如,在图2.2所示的四杆机构中,如果连杆AB 偏移,它将影响2O B 杆。而在开环系统中(例如机器人),由于没有反馈,之后的所有构件都会发生偏移。于是,在开环系统中,必须不断测量所有关节和连杆的参数,或者监控系统的末端,以便知道机器的运动位置。通过比较如下的两个连杆机构的向量方程,可以表示出这种差别,该向量方程表示了不同连杆之间的关系。 1122O A AB OO O B +=+ (2.1) 11O A AB BC OC ++= (2.2) 可见,如果连杆AB 偏移,连杆2O B 也会相应地移动,式(2.1)的两边随连杆的变化而 改变。而另一方面,如果机器人的连杆AB 偏移,所有的后续连杆也会移动,除非1O C 有其他方法测量,否则这种变化是未知的。 为了弥补开环机器人的这一缺陷,机器人手的位置可由类似摄像机的装置来进行不断测 量,于是机器人需借助外部手段(比如辅助手臂或激光束)来构成闭环系统。或者按照常规做法,也可通过增加机器人连杆和关节强度来减少偏移,采用这种方法将导致机器人重量重、

平面并联机器人的运动学和动力学研究

平面2自由度并联机器人的运动学 和动力学研究 林协源1刘冠峰1 (1.广东工业大学广州) 摘要:本文面向高速高精LED电子封装设备设计了一种高速高精2自由度平面并联机构(2-PPa并联机器人)。该机构由一个动平台和两个对称分布的完全相同的支链组成,每个支链中都有一个移动副(驱动关节)和一个由平面平行四边形组成的特殊转动动副。首先推导出该机器人的运动学模型包括正反解;其次结合焊线机实际工艺要求提出多项机构性能指标对该机构的几何参数进行多目标优化;然后基于Euler-Lagrange 方程建立该机器人的动力学方程,最后通过算例分析两个移动副在动平台按照一定轨迹运动时其速度、加速度和驱动力的变化规律。这些为接下来研究该机器人的动态性能和系统解耦控制等都具有重要意义。 关键词:2自由度平面并联机器人运动学动力学 Kinematic and Dynamic Analysis of a Planar Two-degree-freedom Parallel Manipulator LIN Xieyuan1LIU Guanfeng1 (1.Guangdong University of Technology Guangzhou ) Abstract:In this paper,a type of planar 2-DOF parallel manipulator is proposed for uses in design of high- speed and high-accuracy LED packaging machines. The manipulator consists of a moving platform and two identical subchains. Each subchain is made of a prismatic joint (actuator) and a parallelogram with four passive revolute joints. We first derive the kinematic model of the manipulator. Then, we determine the optimal geometric parameters of the manipulator by solving a multi-goal optimization problem based on performance indices. We compute the dynamic equation use Euler-Lagrange formulation and use it to analyze the relationship between velocity, acceleration and driving torque of joints. This analysis is important for further study of the dynamic performance and the decoupling control methods for the manipulator. Key words:2-DOF Planar parallel manipulator Kinematics Dynamics 0 前言 在电子、包装和食品等轻工业场合中,机器人只需要3到4个自由度即可满足使用要求。串联机器人由于自身具有较大的质量和惯性,很难应用到需要高速高负载能力的场合。并联机器人很好的弥补了串联机器人这方面的不足。所以,近年来少自由度并联机器人的研究相当热门。其中3自由度并联机器人的研究已是相当深入[1-4]。在Z方向只需要较小的操作位移时,末端搭载一个1或2自由度的串联机构的2自由度并联机器人相对应3或4自由度的并联机器人会显得更加经济适用。 清华大学曽提出过两种平面2-DOF并联机器人:一种是PRRRP(P表示移动副,R 表示转动副)并联机器人,其中两移动副运动方向平行,且机器人的末端姿态是可变的[5];一种是2-PPa(Pa表示平行四边形机构)并联机器人,同样,该机器人的移动副运动方向也平行,不过其末端姿态不可变[6]。文章[6]中的并联机器人最后应用在了立式机床上。同样的2-PPa并联机器人,上海交通大学将其应用在高速高精度的场合

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

用平面三连杆机器人为例贯穿运动学、雅可比、动力学、轨迹规划甚至控制与编程

精心整理 一、平面二连杆机器人手臂运动学 平面二连杆机械手臂如图1所示,连杆1长度1l ,连杆2长度2l ,连杆3长度为3l 。建立如图1所示的坐标系,其中,),(00y x 为基础坐标系,固定在基座上,),(11y x 、),(22y x 、33(,)x y 为连体坐标系,分别固结在连杆1、连杆2、连杆3上并随它们一起运动。关节角顺时针为负逆时针为正。 1 θ 图11112123123p p x y 2、用D-H 方法建立运动学方程 假定0z 、1z 、2z 垂直于纸面向外。从),,(000z y x 到),,(111z y x 的齐次旋转变换矩阵为: ?? ??? ???????-=100 010000cos sin 00sin cos 1 11101 θθ θθT (2)

从),,(111z y x 到),,(222z y x 的齐次旋转变换矩阵为: ?? ??? ???????-=100 010000cos sin 0sin cos 2 212212θθ θθl T (3) 从222(,,)x y z 到333(,,)x y z 的齐次旋转变换矩阵为: 33212cos sin 0l T θθ-????=从(003T =003P =结论:(6)与用简单的平面几何关系建立运动学方程(1)相同。 补充:正解用于仿真,逆解用于控制 建立以上运动学方程后,若已知个连杆的关节角123θθθ、、,就可以用运动学方程求出机械手臂末端位置坐标,这可以用于运动学仿真。 3、平面二连杆机器人手臂逆运动学 二、平面二连杆机器人手臂的速度雅可比矩阵 速度雅可比矩阵的定义:从关节速度向末端操作速度的线性变换。现已二连杆平面机器人为例推导速度雅可比矩阵。 上面的运动学方程两边对时间求导,得到下面的速度表达式:

SCARA机器人的运动学分析

电子科技大学 实验报告 学生姓名: 一、实验室名称:机电一体化实验室 二、实验项目名称:实验三SCARA 学号: 机器人的运动学分析 三、实验原理: 机器人正运动学所研究的内容是:给定机器人各关节的角度,计算机器人末端执行器相对于参考坐标系的位置和姿态问题。 各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学方程) 为: n x o x a x p x 0T40T1 11T2 22T3 d3 n y o y a y p y ( 1-5)3T4 4= o z a z p z n z 0001 式 1-5 表示了 SCARA 手臂变换矩阵0 T4,它描述了末端连杆坐标系{4} 相对基坐标系 {0} 的位姿,是机械手运动分析和综合的基础。 式中: n x c1c2c4s1 s2 c4 c1 s2s4s1 c2 s4,n y s1c2 c4c1 s2 c4s1 s2 s4c1c2 s4 n z0 , o x c1c2 s4s1 s2 s4 c1 s2 c4s1c2c4 o y s1c2 s4c1 s2 s4s1 s2 c4c1c2c4 o z0 , a x0 , a y0 , a z1 p x c1 c2 l2s1s2l 2c1l 1, p y s1c2 l 2 c1 s2 l 2 s1l1, p z d3 机器人逆运动学研究的内容是:已知机器人末端的位置和姿态,求机器人对应于这个位置和姿态的全部关节角,以驱动关节上的电机,从而使手部的位姿符合要求。与机器人正运动学分析不同,逆问题的解是复杂的,而且具有多解性。

1)求关节 1: 1 A arctg 1 A 2 l 12 l 22 p x 2 p y 2 arctg p x 式中:A p x 2 ; p y 2l 1 p y 2 2)求关节 2: 2 r cos( 1 ) arctg ) l 1 r sin( 1 式中 : r p x 2 p y 2 ;arctg p x p y 3). 求 关节变 量 d 3 令左右矩阵中的第三行第四个元素(3.4)相等,可得: d 3 p z 4). 求 关节变 量 θ 4 令左右矩阵中的第二行第一个元素(1.1,2.1 )相等,即: sin 1 n x cos 1n y sin 2 cos 4 cos 2 sin 4 由上式可求得: 4 arctg ( sin 1 n x cos 1 n y )2 cos 1 n x sin 1 n y 四、实验目的: 1. 理解 SCARA 机器人运动学的 D-H 坐标系的建立方法; 2. 掌握 SCARA 机器人的运动学方程的建立; 3. 会运用方程求解运动学的正解和反解; ( 1-8) ( 1-9) ( 1-10 )

4-RCRP并联机器人运动学分析与仿真

电气与自动化 孙德智?等 4-RCRP并联机器人运动学分析与仿真 Machine Building Automation?Jun2014?43(3):165~167 作者简介:孙德智(1989-)?男?江苏盐城市人?硕士研究生?研究方向:并联机器人全域性能分析及优化?4-RCRP并联机器人运动学分析与仿真 孙德智?郭钢?余伟 (南京理工大学机械工程学院?江苏南京210094) 摘一要:以4-RCRP并联机器人为研究对象?介绍4-RCRP机器人的结构特点?分析了该机器人的运动学特征?求出了该位置的正反解?然后运用UG软件对该机器人进行建模?最后运用 ADAMS软件进行了运动学仿真验证? 关键词:并联机器人?运动学分析?运动学仿真 中图分类号:TP242一一文献标志码:A一一文章编号:1671 ̄5276(2014)03 ̄0165 ̄03 KinematicAnalysisandSimulationof4 ̄RCRPParallelManipulator SUNDe ̄zhi?GUOGang?YUWei (SchoolofMechanicalEngineering?NanjingUniversityofScienceandTechnology?Nanjing210094?China) Abstract:Thispapertakesthe4 ̄RCRPparallelmanipulationasobjectofstudy?introducesitsmechanismcharacteristics?analyzes thekinematiccharacteristicsandobtainsthesolutionsofboththeinverseanddirectkinematics.Thenitbuildsits3DmodelwithUGsoftware?finallysimulatesandverifiesthekinematicfunctionswithADAMSsoftware. Keywords:parallelmanipulator?kinematicsanalysis?kinematicssimulation 0一引言 并联机构具有高刚度二高精度和高承载能力等优点 而成为人们研究的热点[1]?4 ̄RCRP并联机器人与广泛 应用的SCARA串联机器人一样?可以实现空间的三维移 动与绕z轴的转动?以该机器人为基础可以设计出多种用途的空间并联机器人二并联虚拟轴机床二微动机器人等? 利用虚拟样机可以代替物理样机对产品进行创新设计二测试和评估?从而缩短开发周期?降低成本?改进产品设计品质[2]?为了有效地求解4 ̄RCRP并联机器人运动学问题?利用虚拟样机技术对其进行运动学建模?并加以仿真?以验证其运动学求解的正确性? 1一4 ̄RCRP并联机器人机构简介 4 ̄RCRP并联机器人由4条对称的R ̄C ̄R ̄P链二一个 定平台以及一个动平台组成?图1所示? 2一4-RCRP并联机器人的位置分析 机器人的位置分析是求解机构的输入与输出构件之间的位置关系?可由几何关系求解其位置正逆解?如图 2?定平台特征尺寸OAi =R(i=1?2?3?4)?动平台特征尺寸O Bi =r?点O 在O-xyz坐标系的坐标(x?y?z)就是动平台的三个移动自由度?动坐标系O -x y z 相对于定平台坐标系O-xyz的姿态就反映了动平台的姿态?F是动平台的转动自由度?可以用矩阵[T]表示? 各支链坐标系 图1一4-RCRP并联机器人模型 A 2′ 图2一在o-xyz坐标系的投影 561

六自由度机器人运动分析及优化

本 科 毕 业 论 文(设 计) 题目(中文 学学 完 成 日 期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要 ...................................................................................................................... I Abstract ............................................................................... 错误!未定义书签。 1 绪论 (1) 1.1课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (3) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (5) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3 3.3.1动量矩定理---------------------------------------------------------------6 3.3.2能量守恒定理--------------------------------------6 3.3.3牛顿—欧拉方程------------------------------------7 3.3.4达朗贝尔原理--------------------------------------8 3.3.5拉格朗日方程--------------------------------------9 4 六自由度机器人运动分析 (8) 4.1运动分析的软件背景---------------------------------------3 4.2运用solidworks建立六度机器人机械臂三维模型--------------9 4.3运用Solidworks对进行运动学分析-------------------------4 5 结论 (14)

并联机器人发展现状与展望

并联机器人发展现状与展望 引言 并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。本文根据掌握的大量并联机器人文献,对其分类和应用做了简要分析和概括,并对其在运动学、动力学、机构性能分析等方面的主要研究成果、进展以及尚未解决的问题进行了阐述。 1并联机构的发展概况 (一)并联机构的特点 并联机构是一种闭环机构,其动平台或称末端执行器通过至少2个独立的运动链与机架相联接,必备的要素如下:①末端执行器必须具有运动自由度;②这种末端执行器通过几个相互关联的运动链或分支与机架相联接;③每个分支或运动链由惟一的移动副或转动副驱动。 与传统的串联机构相比,并联机构的零部件数目较串联构造平台大幅减少,主要由滚珠丝杠、伸缩杆件、滑块构件、虎克铰、球铰、伺服电机等通用组件组成。这些通用组件可由专门厂家生产,因而其制造和库存备件成本比相同功能的传统机构低得多,容易组装和模块化。 除了在结构上的优点,并联机构在实际应用中更是有串联机构不可比拟的优势。其主要优点如下: (1)刚度质量比大。因采用并联闭环杆系,杆系理论上只承受拉、压载荷,是典型的二力杆,并且多杆受力,使得传动机构具有很高的承载强度。 (2)动态性能优越。运动部件质量轻,惯性低,可有效改善伺服控制器的动态性能,使动平台获得很高的进给速度与加速度,适于高速数控作业。 (3)运动精度高。这是与传统串联机构相比而言的,传统串联机构的加工误差是各个关节的误差积累,而并联机构各个关节的误差可以相互抵消、相互弥补,因此,并联机构是未来机床的发展方向。 (4)多功能灵活性强。可构成形式多样的布局和自由度组合,在动平台上安装刀具进行多坐标铣、磨、钻、特种曲面加工等,也可安装夹具进行复杂的空间装配,适应性强,是柔性化的理想机构。 (5)使用寿命长。由于受力结构合理,运动部件磨损小,且没有导轨,不存在铁屑或冷却液进入导轨内部而导致其划伤、磨损或锈蚀现象。 并联机构作为一种新型机构,也有其自身的不足,由于结构的原因,它的运动空间较小,而串并联机构则弥补了并联机构的不足,它既有质量轻,刚度大,精度高的特点,又增大了机构的工作空间,因此具有很好的应用前景,尤其是少自由度串并联机构,适应能力强,且易于控制,是当前应用研究中的一个新热点。 (二)并联机构的分类 从运动形式来看,并联机构可分为平面机构和空间机构;细分可分为平面移动机构、平面移动转动机构、空间纯移动机构、空间纯转动机构和空间混合运动机构, 另可按并联机构的自由度数分类:

机器人机械臂运动学分析(仅供借鉴)

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

机器人学第六章(机器人运动学及动力学)

第六章 机器人运动学及动力学 6.1 引论 到现在为止我们对操作机的研究集中在仅考虑动力学上。我们研究了静力位置、静力和速度,但我们从未考虑过产生运动所需的力。本章中我们考虑操作机的运动方程式——由于促动器所施加的扭矩或作用在机械手上的外力所产生的操作机的运动之情况。 机构动力学是一个已经写出很多专著的领域。的确,人们可以花费以年计的时间来研究这个领域。显然,我们不可能包括它所应有的完整的内容。但是,某种动力学问题的方程式似乎特别适合于操作机的应用。特别是,那种能利用操作机的串联链性质的方法是我们研究的天然候选者。 有两个与操作机动力学有关的问题我们打算去解决。向前的动力学问题是计算在施加一 组关节扭矩时机构将怎样运动。也就是,已知扭矩矢量τ,计算产生的操作机的运动Θ、Θ 和Θ 。这个对操作机仿真有用,在逆运动学问题中,我们已知轨迹点Θ、Θ 和Θ ,我们欲求出所需要的关节扭矩矢量τ。这种形式的动力学对操作机的控制问题有用。 6.2 刚体的加速度 现在我们把对刚体运动的分析推广到加速度的情况。在任一瞬时,线速度矢量和角速度矢量的导数分别称为线加速度和角加速度。即 B B Q Q B B Q Q 0V ()V ()d V V lim dt t t t t t ?→+?-==? (6-1) 和 A A Q Q A A Q Q 0()()d lim dt t t t t t ?→Ω+?-ΩΩ=Ω=? (6-2) 正如速度的情况一样,当求导的参坐标架被理解为某个宇宙标架{}U 时我们将用下面的记号 U A AORG V V = (6-3) 和 U A A ω=Ω (6-4)

6.2.1 线加速度 我们从描述当原点重合时从坐标架{}A 看到的矢量B Q 的速度 A A B A A Q B Q B B V V B R R Q =+Ω? (6-5) 这个方程的左手边描述A Q 如何随时间而变化。所以,因为原点是重合的,我们可以重写(6-5)为 A A B A A B B Q B B d ()V dt B B R Q R R Q =+Ω? (6-6) 这种形式的方程式当推导对应的加速度方程时特别有用。 通过对(6-5)求导,我们可以推出当{}A 与{}B 的原点重合时从{}A 中看到的B Q 的 加速度表达式 A A B A A A A Q B Q B B B B d d V (V )()dt dt B B R R Q R Q =+Ω?+Ω? (6-7) 现在用(6-6)两次── 一次对第一项,一次对最后一项。(6-7)式的右侧成为: A B A A A A B Q B B Q B B A A A A B B Q B B V () +Ω?+Ω?+Ω?+Ω? B B B B R R V R Q R V R Q (6-8) 把相同两项合起来 A B A A A A B Q B B Q B B A A A B B B V 2 () +Ω?+Ω?+Ω?Ω? B B B R R V R Q R Q (6-9) 最后,为了推广到原点不重合的情况,我们加上一项给出{}B 的原点的线加速度的项,得到下面的最后的一般公式 A B A A A A BORG B Q B B Q B B A A A B B B V 2 () ++Ω?+Ω?+Ω?Ω? A B B B V R R V R Q R Q (6-10) 对于我们将在本章上考虑的情况,我们总是有B Q 为不变,或 B Q Q V 0== B V (6-11) 所以,(6-10)简化为 A A A A A A Q BORG B B B B B V ()=+Ω?Ω?+Ω? A B B V R Q R Q (6-12) 我们将用这一结果来计算操作机杆件的线加速度。 6.2.2 角加速度 考虑{}B 以A B Ω相对于{}A 转动的情况,而{}C 以B C Ω相对于{}B 转动。为了计算 A C Ω我们把矢量在坐标架{}A 中相加

六轴运动机器人运动学求解分析

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.doczj.com/doc/8d9366560.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

机器人运动学知识介绍

机器人运动学知识介绍 收藏 21:53|发布者: dynamics|查看数: 1125|评论数: 2| 来自: 东方早报 摘要: 现在你可能正拿着一本书,边看边翻页,并时不时回头,越过肩膀察看后面是否有红眼的恶意机器人。随着书页的翻动,你也许会在无意识里考虑这个问题。作为人类,在物理世界移动是如此自然,只需要一丁点的意识即可。而 ... 丹尼尔·威尔逊 现在你可能正拿着一本书,边看边翻页,并时不时回头,越过肩膀察看后面是否有红眼的恶意机器人。随着书页的翻动,你也许会在无意识里考虑这个问题。作为人类,在物理世界移动是如此自然,只需要一丁点的意识即可。而另一方面,机器人———就像最后一个选择踢球的孩子———为了避免伤到自己和别人,每一个动作都必须经过仔细考虑。机器 人专家管这个过程叫做“操作研究”。 前进和逆转 如果你醒来发现自己处在一具新的躯体中,拥有金属手臂,每只手只有三根手指,你会怎么样呢?如果不知道手臂的长度,拿东西会很困难;如果只有三根手指,那么你必须找到一个全新的抓取和握东西的方法;由于弯曲的金属手臂,你可能再也没有约会的机会。这些就是身处各地的孤独的机器人们所面临的重大问题。 运动学研究旨在解决机器人的手臂转向何方(动力学则为了解决移动的速度和劲道)。机器人运动学可分两类:前进和逆转。前进运动学的问题是机器人运用它对自身的了解(关节角度和手臂长度)来判断自己在三维空间中到底身处何方。这算是简单的部分,逆转运动学正好相反,它解决机器人如何移动才能达到合适的姿势(改变关节位置)这一问题。机器人在握你手之前,需要知道你手的大概方位,以及从这里移向那里的最优顺序。有时候,可能没有最好的解决方案(试试用你的右手碰你的右肘)。 对逆转运动学来说,大多数方案运用传感器(通常是视觉和力)来估计机器人身体的当前位置。只要有了这个,机器人就能够计划下一步行动(握手、问好或绞断你的脖子)。机器人的反应很敏捷,日本ATR实验室的类人机器人能够更新视觉,估计世界形势,并且在一秒钟里能够做60个动作。这些类人机器人已经能够跳舞,耍弄彩球,玩篮球和曲棍球。 扫描环境和选择动作的过程叫做反馈环路。新的信息被经常性地用于更新当前的决定。如果缺乏经常性更新,机器人的操作技能会变得糟糕。传感器的损伤(或非常不可信赖的传感器)会干扰这一重要的环路。比如以视觉为基础的跟踪遇到混乱的场景会大受干扰,或者浪费资源去跟踪一些无意义的目标(比如落叶等)。震动可以扰乱力传感器,即使它们位于机器人手臂的内部。虽然机器人能够反应得更快更精确,但它们总是依赖于不断更新的信息和持续改进的计划。

机器人运动学

第2章 机器人位置运动学 2.1 引言 本章将研究机器人正逆运动学。当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。 实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。根据实际应用,用户可为机器人附加不同的末端执行器。显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。 2.2 机器人机构 机器手型的机器人具有多个自由度(DOF ),并有三维开环链式机构。 在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。如图2.1所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。 图2.1 具有单自由度闭环的四杆机构 如果机器人要在空间运动,那么机器人就需要具有三维的结构。虽然也可能有二维多自 由度的机器人,但它们并不常见。 机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。这是因为如果关节或连杆有丝毫的偏差,该关节之后的所有关节的位置都会改变且没有反馈。例如,在图2.2所示的四杆机构中,如果连杆AB 偏移,它将影响2O B 杆。而在开环系统中(例如机器人),由于没有反馈,之后的所有构件都会发生偏移。于是,在开环系统中,必须不断测量所有关节和连杆的参数,或者监控系统的末端,以便知道机器的运动位置。通过比较如下的两个连杆机构的向量方程,可以表示出这种差别,该向量方程表示了不同连杆之间的关系。 1122O A AB OO O B +=+ (2.1) 11O A AB BC OC ++= (2.2)

相关主题
文本预览
相关文档 最新文档