当前位置:文档之家› lc正弦波振荡电路

lc正弦波振荡电路

LC正弦波振荡电路详解

LC 正弦波振荡电路详解 LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本 质上是相同的,只是选频网络采用 LC 电路。在LC 振荡电路中,当 f=f o 时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减 到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持 输出电压,从而形成正弦波振荡。由于 LC 正弦波振荡电路的振荡频 率较高,所以放大电路多采用分立元件电路。 一、LC 谐振回路的频率特性 LC 正弦波振荡电路中的选频网络采用 LC 并联网络,如图所示 图(a )为理想电路,无损耗,谐振频率为 「—(推导过程如下) 公式推导过程: 电路导纳为 式中Q 为品质因数 R 1 当Q>>1时,?—,所以谐振频率 将上式代入…二,得出令式中虚部为零, R , 戸+(班)宀 1 就可求出谐振角频率 1

当f=fo 时,电抗 一一 丑 I?二 在信号频率较低时,电容的容抗( 兀€) J I 很大,网络呈感性;在信号频率较高 时,电感的 「二; 疼 感抗(昭祖)很大,网络呈容性;只有当f=fo 时, [ 网络才呈纯阻性,且阻抗最大。这时电路产生电O ? ------------ 流谐振,电容的电场能转换成磁场能,而电感的 磁场能又转换成电场能,两种能量相互转换。 L :;讲嵌阀 绻 实际的LC 并联网络总是有损耗的,各种损耗等 效成电阻R ,如图 (b )所示。电路的导纳为 y =亦+—5— R+ 回路的品质因数' 公式推导过程: 电路导纳为 当Q>>1时,已 ,代入:',整理可得 亍(推导过程如下) ⑹萼慮匝路损耗时] LC 并联网络

式中Q为品质因数

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

LC正弦波振荡电路的仿真分析

摘要 振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 关键词:LC振荡回路;仿真;正弦波信号;Multisim软件;

目录 一、绪论 (1) 二、方案确定 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (3) 2.3 振荡平衡条件一般表达式 (4) 2.4起振条件和稳幅原理 (4) 三、LC振荡器的基本工作原理 (4) 四、总电路设计和仿真分析 (5) 4.1软件简介 (5) 4.2 总电路设计 (7) 4.3 进行仿真 (8) 4.4 各个原件对电路的影响 (11) 五、心得体会 (12) 参考文献 (13) 附录 (14) 电路原理图 (14) 元器件清单 (14)

一、绪论 在本课程设计中,对LC正弦波振荡器的仿真分析。正弦波振荡器用来产生正弦交流信号的电路,它广泛应用于通信、电视、仪器仪表和测量等系统中。在通信方面,正弦波震荡器可以用来产生运载信息的载波和作为接收信号的变频或调解时所需要的本机振荡信号。医用电疗仪中,用高频加热。在课程设计中,学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。 我利用了仿真软件对电路进行了一写的仿真分析,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,本设计中所涉及的仿真电路是比较简单的。但通过仿真得到的结论在实际的类似电路中有很普遍的意义。 二、方案确定 通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。我们这里研究的主要是LC三端式振荡器。

高频实验2:LC与晶体振荡器

实验二:LC与晶体振荡器 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统。 2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能。 3.熟悉静态工作点IEQ对振荡器振荡幅度和频率的影响。 4.熟悉LC谐振回路的电容变化对振荡器振荡频率的影响。 二.实验预习要求 1.做本实验时应具备的知识点: * 三点式LC振荡器 * 克拉泼电路 * 静态工作点值对振荡器工作的影响 2.做本实验时所用到的仪器: * LC与晶体振荡模块实验板 * 双踪示波器 * 频率计 * 万用表 三.实验电路原理 1.概述 LC振荡器实质上是满足振荡条件的正反馈放大器。LC振荡器是指振荡回路是由LC元件组成的。从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。 在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。 2.LC振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振、平衡条件和相位平衡条件。 3.C振荡器的频率稳定度 频率稳定度表示:在一定时间、或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4、LC振荡器的调整和参数选择 以实验采用的改进型电容三点振荡电路(西勃电路)为例 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路,如实验电路图12-1所示。

信号产生LC振荡电路

在信号频率较低时,电容的容抗()很大,网络呈感性;在信 号频率较高时,电感的感抗()很大,网络呈容性;只有当f=f0时,网络才呈纯阻性,且阻抗最大。这时电路产生电流谐振,电容的电场能转换成磁场能,而电感的磁场能又转换成电场能,两种能量相 互转换。 7.1.3 LC正弦波振荡电路 LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原则在本质上是相同的,只是选频网络采用LC电路。在LC振荡电路中,当f=f0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路。 一、LC谐振回路的频率特性 LC正弦波振荡电路中的选频网络采用LC并联网络,如图所示。图(a)为理想电路,无损耗,谐振频率为 (推导过程如下) 公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率

式中Q为品质因数 当Q>>1时,,所以谐振频率 将上式代入,得出 当f=f0时,电抗 当Q>>1时,,代入,整理可得 在信号频率较低时,电容的容抗() 很大,网络呈感性;在信号频率较高时,电感的 感抗()很大,网络呈容性;只有当f=f0时, 网络才呈纯阻性,且阻抗最大。这时电路产生电 流谐振,电容的电场能转换成磁场能,而电感的 磁场能又转换成电场能,两种能量相互转换。 实际的LC并联网络总是有损耗的,各种损耗等 效成电阻R,如图(b)所示。电路的导纳为 回路的品质因数 (推导过程如下)

公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数 当Q>>1时,,所以谐振频率 将上式代入,得出 当f=f0时,电抗 当Q>>1时,,代入,整理可得 上式表明,选频网络的损耗愈小,谐振频率相同时,电容容量愈小,电感数值愈大,品质因数愈大,将使得选频特性愈好。 当f=f0时,电抗(推导过程如下)公式推导过程: 电路导纳为

LC正弦波振荡电路详解

LC正弦波振荡电路详解 LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原则在本质上是相同的,只是选频网络采用LC电路。在LC振荡电路中,当f=f0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路。 一、LC谐振回路的频率特性 LC正弦波振荡电路中的选频网络采用LC并联网络,如图所示。图(a)为理想电路,无损耗,谐振频率为 (推导过程如下) 公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数 当Q>>1时,,所以谐振频率 将上式代入,得出

当f=f0时,电抗 当Q>>1时,,代入,整理可得 在信号频率较低时,电容的容抗() 很大,网络呈感性;在信号频率较高时,电感的 感抗()很大,网络呈容性;只有当f=f0时, 网络才呈纯阻性,且阻抗最大。这时电路产生电 流谐振,电容的电场能转换成磁场能,而电感的 磁场能又转换成电场能,两种能量相互转换。 实际的LC并联网络总是有损耗的,各种损耗等 效成电阻R,如图(b)所示。电路的导纳为 回路的品质因数 (推导过程如下)公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数

当Q>>1时,,所以谐振频率 将上式代入,得出 当f=f0时,电抗 当Q>>1时,,代入,整理可得 上式表明,选频网络的损耗愈小,谐振频率相同时,电容容量愈小,电感数值愈大,品质因数愈大,将使得选频特性愈好。 当f=f0时,电抗(推导过程如下)

二阶电路分析——LC震荡的推导

二阶电路分析——LC 震荡的推导 如图9.16所示,RLC 串联电路零输入响应的数学分析依KVL ,得 0=-+C L R u u u 按图9.16中标定的电压,电流参考方向有 dt du C i C -= dt du RC Ri u C C -== 22dt u d LC dt di L u C L -== 将以上各式代入KVL 方程,便可以得出以 C u 为响应变量的微分方程,为 02 2=++C C C u dt du RC dt u d LC ()0≥T (9.10) 式(9.10)为一常系数二阶线性齐次微分方程,其特征方程为 012=++RCp LCp 其特征根为 2 022 2 ,1122ωαα-±-=-?? ? ??±-=LC L R L R p 式中:L R 2/=α称为衰减系数;LC /10=ω称为固有振荡角频率。 1.几种不同情况的讨论 (1)当(R/2L)2>1/LC 时,1p 、2p 为不相等的负实根,称为过阻尼情况。特征根为 2 022,1ω-±-=a a p 微分方程的通解为 ()t p t p C e A e A t u 2121+= (9.11) 其中待定常数1A 、2A 由初始条件来确定,其方法是:当+=0t 时刻,则由

式(9.11) 可得 ()21A A t u C += 对式(9.12)求导,可得+=0t 时刻()t u C 对t 的导数的初始值为 ()()()C i p A p A dt t du u t C C +=+-=+=='+0022110 联立求解式(9.12)和式(9.13),便可以解出1A 、2A 。 根据式(9.11)可知,零输入响应()t u C 是随时间按指 数规律衰减的,为非振荡性质。()t u C 的波形如图9. 17所示。 (2).当()LC L R /12/2=时, 1p 、2p 为相等的负实根, 称为临界阻尼情况。特征根为 a p p -==21 微分方程的通解为 ()()at C e t A A t u -+=21 其中常数1A 、2A 由初始条件()+0C u 和()+'0C u 来确定。()t u C 的波形图根据式(9.13)可知,这种情况的响应也是非振荡的。 (3)当时,1p 、2p 为具有负实部的共轭复根,称为欠阻尼情况。待征根为 d j L R LC j L R p ωα±-=?? ? ??-±-=2 2 ,1212 其中 2202 21αωω-=?? ? ??-= L R LC d 称为阻尼振荡角频率。微分方程的通解为 ())sin(e ?ωα+=-t A t u d t C

RC正弦波振荡器电路设计及仿真

《电子设计基础》 课程报告 设计题目: RC正弦波振荡器电路设计及仿真学生班级: 学生学号: 学生姓名: 指导教师: 时间: 成绩: 西南xx大学 信息工程学院

一.设计题目及要求 RC正弦波振荡器电路设计及仿真,要求: (1)设计完成RC正弦波振荡器电路; (2)仿真出波形,并通过理论分析计算得出频率。 二.题目分析与方案选择 在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。 三.主要元器件介绍 10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器 四.电路设计及计算 电路震荡频率计算: f=1/2πRC

起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d 由其电路元件特性 R=10KΩ C=10nF 电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。 平衡时A v=3,F v=1/3(w=w0=1/RC) 五.仿真及结果分析 在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图 图2 刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

基于Multisim的RC正弦波振荡电路仿真分析

龙源期刊网 https://www.doczj.com/doc/899732754.html, 基于Multisim的RC正弦波振荡电路仿真分析 作者:李咏红 来源:《数字技术与应用》2012年第11期 摘要:采用Multisim10为工作平台对RC桥式正弦波振荡电路进行了仿真分析,讨论起振条件、稳幅环节,并通过仿真示波器观察了起振过程和振荡波形,仿真的结果与理论分析结果一致,说明将Multisim软件应用在电子技术教学中,可使教学更生动形象,利于学生对抽象原理的理解,提高课堂理论教学的教学质量。 关键词:Multisim RC桥式振荡电路仿真分析 中图分类号:TN752 文献标识码:A 文章编号:1007-9416(2012)11-0206-02 振荡电路是在无外加输入信号的情况下,能自动产生一定波形、一定频率和振幅的交流信号的一类电路,按振荡波形可分为正弦波振荡电路和非正弦波振荡电路两大类[1]。正弦波振 荡电路是一种基本的电子电路,广泛应用于量测、遥控、通讯、自动控制、热处理和超声波电焊等加工设备之中,也作为模拟电子电路的测试信号[2]。无论对于哪种振荡电路,用传统方 法精确分析起振、振幅、振荡频率的大小都是十分困难的,而用Multisim软件则可灵活方便的进行仿真分析。下面用Multisim软件对RC桥式正弦波振荡电路进行仿真分析[3]。 1、Multisim软件的特点 随着计算机的飞速发展,以EDA技术已经成为电子学领域的重要学科。EDA工具摒弃了靠硬件调试来达到设计目标的繁琐过程,实现了硬件设计软件化。NI Multisim10是美国国家仪器公司推出的Multisim最新版本。 NI Multisim10为用户提供了一个集成一体化的设计实验环境,建立电路、仿真分析和结果输出在一个集成菜单中可以全部完成,仿真手段切合实际,元器件和仪器与实际情况非常接近。NI Multisim10元件库中不仅有数千种电路元器件、虚拟测试仪器可供选用,而且与较常用的电路分析软件PSPICE提供的元器件完全兼容。Multisim还提供了丰富的分析功能,可对模拟电路或数字电路分别进行仿真,也可进行数模混合仿真,尤其是新增了射频(RF) 电路的仿真功能;因此功能强大的Multisim仿真软件非常适合电子类课程的教学和实验[4、5]。 2、RC正弦波振荡电路仿真分析 2.1创建仿真电路图

LC正弦波振荡器的设计

高频电子线路课程设计报告 题目: LC正弦波振荡器的设计 学院: 专业班级: 姓名: 学号: 指导教师: 二〇一三年一月八日

摘要:振荡器(英文:oscillator)是用来产生重复电子讯号(通常是正弦波或方波)的电子元件。其构成的电路叫振荡电路,能将直流信号转换为具有一定频率的交流电信号输出。振荡器的种类很多,按振荡激励方式可分为自激振荡器、他激振荡器;按电路结构可分为阻容振荡器、电感电容振荡器、晶体振荡器、音叉振荡器等;按输出波形可分为正弦波、方波、锯齿波等振荡器。广泛用于电子工业、医疗、科学研究等方面。 三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的一种振荡器。三点式振荡器电路用电容耦合或自耦变压器耦合代替互感耦合, 可以克服互感耦合振荡器振荡频率低的缺点, 是一种广泛应用的振荡电路, 其工作频率可达到几百兆赫。本文将围绕高频电感三点式正弦波振荡器进行具有具体功能的振荡器的理论分析与设计。 关键词:高频三点式正弦波振荡器。

目录 1系统方案设计 (4) 1.1设计说明及任务要求 (4) 1.1.1设计说明 (4) 1.1.2设计要求 (5) 1.2 方案1 (6) 1.3 方案2 (7) 2电路设计 (8) 2.1工作原理 (8) 2.2设计内容 (9) 2.2.1原理图 (9) 2.2.2参数计算 (9) 2.2.2注意事项 (10) 3系统测试 (10) 3.1振荡器正常工作 (10) 3.2实现输出频率可变功能 (10) 4结论 (11) 5参考文献 (11) 6附录 (11) 6.1元器件明细表 (11) 6.2电路图图纸.......................................................................................... 错误!未定义书签。 6.2.1Altium Designer 原理图设计 (12) 6.2.2PCB制作 (13) 6.2.3成品展示 (13) 6.3电路使用说明 (13)

LC正弦波振荡器设计要点

通信基本电路课程设计报告设计题目:LC正弦波振荡器设计 专业班级电信10-03 学号 311008001022 学生姓名王勇 指导教师高娜 教师评分 2012年12月4日

目录 第一章设计任务与要求 (3) 1.1. 设计任务 (3) 1.2. 设计要求 (3) 第二章总体方案 (3) 2.1振荡器的选择 (3) 2.2信号输出波形的仿真选择 (4) 第三章电路工作原理 (4) 3.1 LC三点式振荡组成原理图 (4) 3.2 起振条件 (5) 3.3 频率稳定度 (5) 3.4 总原理图 (6) 3.5 LC振荡模块设计 (7) 第四章电路制作和调试 (12) 4.1元器清单 (12) 4.2 按设计电路安装元器件 (14) 4.3 测试点选择 (14) 4.4调试 (14) 4.5 实验结果与分析 (15) 4.6频率稳定度 (16) 第五章总结 (16) 第六章参考文献 (17)

第一章设计任务与要求 1.1 设计任务 (1).熟悉LC正弦波振荡器的工作原理,以及示波器的原理及用法。 (2).掌握LC正弦波振荡器的基本设计方法。 (3).理解LC正弦波振荡回路并掌握LC振荡器的设计,装载,调试,及其主要性能参数的测试方法和如何选择电路的测试点。 (4).了解外界因素、元件参数对振荡器工作稳定性及频率稳定度的影响情,以便提高振荡器的性能。 1.2 设计要求 (1).设计一个LC正弦波频振荡器。 (2).利用三端式振荡器原理产生正弦波信号,采用的具体电路不限。要求给出所选电路的优点和缺点并通过测量值进行证明。也可以进行不同三端式振荡器的性能比较。 (3).了解电路分布参数的影响及如何正确选择电路的静态工作点。 (4).电路的基本原理,LC正弦波振荡器是各种接收机和发射机中一种常见的电路,常用作载波振荡、本振混频振荡等。其典型形式为“三点式”振荡电路,其电路简单、频率稳定度高,它的工作原理是在正反馈的基础上,将直流电源提供的能量变成正弦交流输出。 (5).选择所需的方案,画出有关的电路原理图。 第二章总体方案 2.1振荡器的选择 LC振荡器的电路种类比较多,根据不同的反馈方式,又可分为互感反馈振荡器,电感反馈三点式振荡器,电容反馈三点式振荡器,其中互感反馈易于起振,但稳定

浅析LC正弦波振荡电路振荡的判断方法

目录 摘要: (1) 0 前言 (2) 1 振荡器 (2) 1.1 什么是振荡器 (2) 1.2 振荡器的相关知识 (2) 1.3 反馈式振荡器的原理知识 (3) 2 正弦波振荡电路振幅条件的判定方法 (3) 3 LC正弦波振荡电路相位条件的判定方法 (5) 3.1 变压器耦合振荡器 (5) 3.2 三点式振荡器 (6) 4 判断三点式振荡器是否满足相位条件的简单方法 (9) 4.1 晶体管极间支路的电抗特性的分析 (9) 4.2 判断方法的实例应用 (14) 5 结论 (16) 参考文献 (16)

浅析LC正弦波振荡电路振荡的判断方法 摘要: 本文主要对LC正弦波振荡电路能否振荡的判断方法进行了浅要分析。当振荡电路同时满足起振的振幅条件和相位条件时就能产生振荡。于是本文主要阐述了正弦波振荡电路振幅条件的判定方法和LC正弦波振荡电路相位条件的判定方法。针对较复杂的三点式振荡器相位条件的辨别,通过对晶体管极间支路的电抗性质进行较全面的分析,并作出总结,之后利用这些结论,可使判断过程大大简化。 关键词: LC正弦波振荡电路;振幅条件;相位条件;电抗性质 0 前言 正弦波振荡器是《通信电子线路》一书中的重点章节。本文试图通过对LC正弦波振荡电路能否振荡的判断方法的浅要分析,来更深入地理解该章内容。 在实践中,正弦波振荡器有着相当广泛的应用。如在通讯、广播、电视系统中用作载波信号源,在工业方面用于高频加热、熔炼、淬火、超声波焊接,在医学方面用于超声诊断、核磁共振成象等。由此可见,学好正弦波振荡器是十分必要的! 从结构上看,正弦波振荡器就是一个没有输入信号的带有选频网络的正反馈放大器。它也是一种能量转换器,无需外加信号,就能自动地把直流电转换成具有一定频率、一定波形和一定幅度的正弦交流电。 正弦波振荡器一般可分为:RC正弦波振荡器、LC正弦波振荡器、石英晶体振荡器,其中LC正弦波振荡器又可分为:变压器耦合振荡器、三点式振荡器。 本文通过对LC正弦波振荡电路的分析说明:当振荡电路同时满足起振的振幅条件和相位条件时就能产生振荡。需要特别指出的是,当三点式振荡器符合“射同基反”的构成原则时,就满足了振荡的相位条件[1-2];对于电路较复杂的三点式振荡器,通过分析晶体管极间支路的电抗性质,并利用其分析结果,可以使其相位条件的判断过程大大简化。 1 振荡器 1.1 什么是振荡器 不需外加输入信号,便能自行产生输出信号的电路称为振荡器。 1.2 振荡器的相关知识 1.2.1振荡器的分类 1

LC正弦波振荡器课程设计

第 1 页共26 页

摘要 电子线路中,在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅度的交变能量的电子电路称为高频信号发生器。 高频信号发生器主要是产生高频正弦震荡波,电路主要由高频振荡电路构成。振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。它无需外加激励信号。 关键词:高频; LC正弦波振荡器;西勒电路;multisim 目录

摘要 (1) 第1章绪论 (1) 1.1 概述 (1) 1.2 平衡条件 (1) 1.3 起振条件 (1) 1.4 稳定条件 (2) 1.4.1.振幅稳定条件 (2) 1.4.2 相位平衡的稳定条件 (3) 1.5 振荡器的频率稳定度 (4) 1.5.1 频率准确度和频率稳定度 (4) 1.5.2 提高频率稳定度的措施 (4) 1.5.3 LC振荡器的设计考虑 (4) 第2章 LC正弦波振荡器 (5) 2.1 LC三点式振荡器相位平衡条件的判断准则 (5) 2.2 电感三点式振荡器 (5) 2.3 电容三点式振荡器 (6) 2.4 克拉泼和西勒振荡器 (7) 2.4.1克拉泼振荡器 (8) 2.4.2.西勒振荡器 (9) 第3章调试与分析 (10) 3.1 调试中的问题 (10) 3.2 各振荡电路的方案比较与分 (11) 3.2.1 电容三点式振荡的特点: (11) 3.2.2 电感三点式振荡特点: (11) 3.2.3 克拉泼振荡特点: (12) 3.2.4 西勒振荡器特点: (13) 结论 (18) 参考文献 (19) 附录 (20)

致谢 (21)

LC固有频率计算公式

Q=wL\R=2πfL\R(因为w=2πf)=1/wCR=1/2πfCR 1. LC并联谐振电路最常见的应用是构成选频电路或选频放大器; 2. LC串联谐振电路最主要用来构成吸收电路,用来构成在众多频率信号中将某一频率信号进行吸收,也就是进行衰减,将某一频率信号从众多频率中去掉; 3. LC并联谐振电路还可用来构成阻波电路,即从众多频率中阻止某一频率信号通过放大器或其他电路; 4. LC并联谐振电路还可以构成移相电路,用来对信号相位进行超前或滞逅移动。 a. 无论是LC并联谐振还是LC串联谐振电路,其频率的计算公式相同,谐振频率又称固有频率,或自然频率。f0=1/(2*pi*sqrt(L1*C1)); b. 品质因数Q值——衡量LC谐振电路振荡质量的重要参数。Q=(2*pi*f0*L1)/R1,R1为线圈L1的直流电阻,L1为谐振电路中电感; ①频点分析:输入信号频率等于该电路谐振电路谐振频率时,LC并联谐振电路发生谐振,此时谐振电路的阻抗达到最大,并且为纯阻性,Z0=Q*Q*R1,Q为品质因数,R1为线圈L1的直流电阻; ②高频段分析:输入信号频率高于谐振频率f0时,LC谐振电路处于失谐状态,电路阻抗下降; ③低频段分析:输入信号频率低于谐振电路f0时,LC并联谐振电路也处于失谐状态,谐振电路的阻抗也要减小。 信号频率低于谐振频率时,LC并联谐振电路的阻抗呈感性电路等效成一个电感(但不等于L1)。

1. 谐振定义:电路中L、C两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是 X L =X C时,为R-L-C串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率

文氏桥振荡电路(multisim仿真)

高频电子线路课程设计 题目: 院(系、部): 学生姓名: 指导教师: 年月日 河北科技师范学院教务处制

摘要 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。 本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。文氏桥振荡电路由两部分组成:即放大电路和选频网络。由集成运放组成的电压串联负反馈放大电路,取其输入电阻高、输出电阻低的特点。经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内。 关键词:正弦波;振荡器;文氏电桥

目录 摘要.................................................... 错误!未定义书签。1设计任务及要求. (9) 1.1.................................................................................................... 错误!未定义书签。 1.2 ***............................................................................................ 错误!未定义书签。 2 方案论证 (10) 3 单元电路设计 (11) 4 电路原理图及PCB版图 (11) 5 总结................................................... 错误!未定义书签。附录及参考文献........................................... 错误!未定义书签。

LC正弦波振荡器仿真实验

LC正弦波振荡器仿真实验 1电容三点式 (1) (C1 , C2, L1)=(100nF,400nF,10mH) (2) (C1 , C2, L1)=(100nF,400nF,4mH) Oscilloscope-XSCl Time-ChanndjS.ChflnndJ 27.342 ms603.146frtV-5.577 V Reverse T2 * +2X401 im-l-SH V4,297 V T2-TI5a. 712 LB-Z?2¥9.374 V Xu Fi!-. hinnpf IVne base Charnel 占Chamd E rnoger Scale;SOusE :Scab: 11 V/Ofv5cate ;.2 V/Dw Ed^e-SE E |Ext D Tpog.tDw): 0r piM i0D4v): D Level:fl v1 B/A AC 'O|[K]? |K|[~Q~[bir|? Sngte Auto

Spectrum andllyzer-XSA1i (C I ,C2,L I ) U o /V Ui/V 增益A 相位 差 谐振频率f o /KHz 测量值 理论值 测量值 理论值 (100 nF ,400nF,10mH) 9.246 2.281 4.053 4 1.063* n 5.959 5.627 15.567ms 15.472ms (100 nF,400nF,4mH) 9.874 2.462 4.010 4 1.042* n 8.851 8.897 27.401ms 27.342ms (100 nF,900nF,4mH) 10.302 1.143 9.013 9 1.032* n 8.025 8.388 14.575ms 14.514ms a.asi^-s ^.2H3 v < Entef d9 Ln Span: IM kHz Rai^e: 2 | Start: 1 kH? Ref! D dB Genter: 51 Resihjtion freq: &>d: 101 鴉 1 Itflz LOW kHz StarE Sbqp Reverse Sh (MM redder. Set... Span oaitrol Set span 壬⑴ 翼即 Fili qpan Frequmv Antpilu^ Inpul ? Tr 沟ger (3) (C1 , C2, L1)=(100nF,900nF,4mH)

LC正弦波振荡电路的仿真分析—课程设计

摘要 本文主要叙述的是LC正弦波振荡电路的仿真分析的设计。自激振荡器我们所学中有电容三点式振荡器,电感三点式振荡器。通过对比我们选择电容三点式振荡器。线路简单、易起振、电容三点式振荡器的频率调节范围一般比电感三点式频率调节范围小、输出波形好。电容三点式振荡器都放大器和选频网络组成,都要满足起振,平衡和稳定条件。设计之后用mulsitim进行仿真,进行分析。 关键词:LC正弦波振荡电路;电容三点式振荡电路;正弦波信号

目录 1、绪论 (1) 2、方案的确定 (1) 2.1振荡电路的设计 (1) 3、工作原理、硬件电路的设计或参数的计算 (3) 3.1电容三点式振荡器 (3) 3.1.1 振荡平衡条件一般表达式 (3) 3.1.2 参数设计 (4) 3.2 LC正弦波振荡电路的工作原理 (4) 3.3 LC振荡器的振荡条件 (5) 3.3.1相位的平衡条件 (5) 3.3.2振幅平衡条件 (5) 4、总体电路设计和仿真分析 (5) 4.1总体电路设计 (5) 4.2仿真分析 (6) 4.3调试过程 (8) 5、心得体会 (9) 参考文献 (10) 附录 (11) 元器件清单 (11)

1、绪论 LC正弦波振荡电路使用非常广泛。在日常生活中我们也离不开LC正弦波振荡电路电路的应用。例如无线电的收发设备,各种开关电源。它广泛应用于通信、电视、仪器仪表和测量等系统中。在通信方面,正弦波震荡器可以用来产生运载信息的载波和作为接收信号的变频或调解时所需要的本机振荡信号。 本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,本设计中所涉及的仿真电路是比较简单的。但通过仿真得到的结论在实际的类似电路中有很普遍的意义。 2、方案的确定 如图2.1所示为方案框图。 图2.1振荡器方案框图 2.1振荡电路的设计 方案一:电容三点式振荡电路。如图2.2所示。 图2.2 电容三点式振荡电路

实验十三LC正弦波振荡器

实验十三 LC 正弦波振荡器 一、实验目的 1、 掌握变压器反馈式LC 正弦波振荡器的调整和测试方法 2、 研究电路参数对LC 振荡器起振条件及输出波形的影响 二、实验原理 LC 正弦波振荡器是用L 、C 元件组成选频网络的振荡器,一般用来产生1MHz 以上的高频正弦信号。根据LC 调谐回路的不同连接方式,LC 正弦波振荡器又可分为变压器反馈式(或称互感耦合式)、电感三点式和电容三点式三种。图13-1为变压器反馈式LC 正弦波振荡器的实验电路。 其中晶体三极管T 1组成共射放大电路,变压器T r 的原绕组 L 1(振荡线圈)与电容C 组成调谐回路,它既做为放大器的负载,又起选频作用,副绕组L 2为反馈线圈,L 3为输出线圈。 该电路是靠变压器原、副绕组同名端的正确连接(如图中所示),来满足自激振荡的相位条件,即满足正反馈条件。在实际调试中可以通过把振荡线圈L 1或反馈线圈L 2的首、末端对调,来改变反馈的极性。而振幅条件的满足,一是靠合理选择电路参数,使放大器建立合适的静态工作点,其次是改变线圈L 2的匝数,或它与L 1之间的耦合程度,以得到足够强的反馈量。稳幅作用是利用晶体管的非线性来实现的。由于LC 并联谐振回路具有良好的选频作用,因此输出电压波形一般失真不大。 振荡器的振荡频率由谐振回路的电感和电容决定 式中L 为并联谐振回路的等效电感(即考虑其它绕组的影响)。 振荡器的输出端增加一级射极跟随器,用以提高电路的带负载能力。 图13-1 LC 正弦波振荡器实验电路 三、实验设备与器件 1、 +12V 直流电源 2、双踪示波器 3、 交流毫伏表 4、直流电压表 5、 频率计 6、振荡线圈 7、 晶体三极管 3DG6×1(9011×1) LC 2π1f 0

课设,RC正弦波发生器的设计与仿真

RC正弦波发生器的设计与仿真 1.课程设计目的 1、理解RC正弦波振荡器的工作原理;掌握调试RC振荡器频率特性的方法。 2、学习与掌握Multisim等仿真软件的元件搜寻、电路搭建、仿真分析等基本操作。 3、基于Multisim或其他仿真软件实现RC正弦波振荡器具体设计与模拟仿真,掌握元件、电路的仿真和波形的测试技能。 2.设计方案论证 本实验使用的一个软件是Multisim,它是一款电子电路仿真的虚拟电子工作台软件,采用直观的图形界面创建电路,在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件,电路仿真需要的测试仪器均可以直接从屏幕上选取;软件仪器控制面板外形和操作方式都与实物相似,可以实时显示测量结果;Multisim软件带有丰富的电路元件库,提供多种电路分析方法;作为设计工具,它可以同其它流行的电路分析,设计和制版软件交换数据;Multisim还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。 Multisim工作环境如图1所示

图1 Multisim工作环境 Protel 包含电路原理图设计,电路原理图仿真测试,印制电路板设计,自动布线器和FPGA/CPLD设计,覆盖了以PCB为核心的整个物理设计。它提供了进行层次原理图设计的环境,支持“自上而下”和“自下而上”的层次电路设计,能够完成更加大型,更为复杂的电路设计。Protel 提供了丰富的原件原理图库和PCB封装库,并且库的管理和编辑功能更加完善,草组更加简便。电路设计人员通过Protel提供的编辑工具,可以方便的实现库中没有包含的原件原理图以及PCB封装的设计制作。它提供了原件集成库的概念。在它的元件集成库中集成了元件的原理图符号,本次设计重要通过 Protel 绘图软件完成正弦波发生器原理图的绘制及PCB图的绘制,并利用Multisim软件进行编译、仿真出正弦波波形,并对其进行比较。本次设计主要用软件Protel ,Protel 是第一个将所有设计工具集于一身的板级设计系统,能够处理各种复杂的PCB设计过程。通过设计输入仿真、PCB绘制编辑、拓扑自动布线、信号完整性分析和设计输出等技术融合,提供了全面的设计解决方案。

相关主题
文本预览
相关文档 最新文档