当前位置:文档之家› 药代动力学

药代动力学

药代动力学
药代动力学

药代动力学

1. 药代动力学性质(DMPK)

1.1 对药代动力学性质的要求

给药方便:口服有效,一次或两次/日(消炎镇痛药、抗高血压药物、抗菌药常用药)

靶向分布或靶向活化:抗肿瘤药物

起效快:抗过敏药物、镇痛药物

药物相互作用少:有利于联合用药,如降脂药与抗高血压药物的合用

长期使用不产生耐药性:如抗菌药、抗癌药、抗病毒药。

无蓄积:如果药物或其代谢物不能通过有效途径排出体外,会在体内蓄积,产生毒性.

1.2 药代动力学性质的重要性

随着药物化学的发展及人类健康水平的不断提高,对药物的药代动力学性质的要求越来越高:判断一个药物的应用前景特别是市场前景,不单纯是疗效强,毒副作用小;更要具备良好的药代动力学性质。肽类药物就是最典型的例子。一般来说,体内的许多生物活性肽如内啡肽等均具有高效低毒的特点,但是,体内不稳定,口服无效。

2. 药物的理化性质与药代动力学

2.1 药物的体内过程

吸收:药物口服后,进入消化道,在不同部位,如口腔、胃、肠吸收,进入血液。

分布:进入血液的药物进入作用部位,产生治疗作用或毒副作用。

代谢转化:药物在肝脏或胃肠道通过酶催化的一系列氧化还原反应发生生物转化。

排泄:药物或代谢物经肾(尿)或胆汁(粪)或呼吸排泄。

为了表述的方便,常把体内过程分为三个时相:

药剂相:片剂或胶囊崩解、溶出,成为可被吸收的形式。(药剂学研究内容。)

药代动力相:药物吸收、分布、代谢与排泄。(药代动力学研究内容。)

药效相:药物与作用靶点相互作用,通过刺激和放大,引发一系列的生物化学和生物物理变化,导致宏观上可以观察到的活性或毒性。(药理学或毒理学研究内容。)

三个时相依次发生,但是可能同时存在:如缓释药物,一部分药物已完成分布、发挥药理作用,但是另一部分还在释放和吸收的过程中。特别是药代动力相和药效相一般同时存在。

2.2 药代动力学参数

一、吸收

溶出度:药物分子在消化道中溶解的程度

生物利用度:药物吸收的程度

绝对生物利用度

最大血药浓度(Cmax)

达峰时间(Tmax)

二、分布

由于体内环境的非均一性(血液、组织),导致药物浓度变化的速度不同。

隔室(compartment):同一隔室药物浓度的变化速度相同,均相。

一室模型:药物进入血液迅速分布全身,并不断被清除。

二室模型: 药物进入体内后,首先快速分布于组织中,然后进入较慢的消除过程。

表观分布体积(Vd)(aparent volume of distribution):表征药物在体内被组织摄取的能力。表观容积大的药物体内存留时间较长。

药物浓度-时间曲线下面积(AUC);系统药物暴露(Systemic Exposure)

血脑屏障;蛋白结合率;分布半衰期(t 1/2(α)

三、消除

消除(elimination):原药在体内消失的过程。包括肾(尿)或胆汁(粪)或呼吸排泄及代谢转化的总和。

消除速率常数(elimination constants):反映药物在体内消失的快慢。不完全反映药物的作用时间(代谢物也有活性)。

半寿期或半衰期(t1/2):药物浓度或药量降低50%所需的时间。消除半衰期t1/2(β))Terminal Half-life ,Elimination Half-life。

清除率(clearance,廓清率)或肾清除率(renal clearance):反映药物或代谢物经肾被排出体外的速度。

2.3 药物-机体相互作用

一方面是药物对机体的作用,产生药效、毒性或副作用,表现为药物的药理作用或毒理作用,决定于特定的化学结构,具有较强的结构特异性。另一方面是机体对药物的作用:吸收、分布,生物转化和排泄,表现为药物的药代动力学性质。主要取决于药物的溶解性、脂水分配系数、电荷等药物分子整体的理化性质,结构特异性不强。

3 药物的理化性质与吸收

3.1 药物的吸收

是药物由给药部位通过生物膜进入血液循环的过程。

吸收部位

消化道(口服给药,口腔、胃、小肠、大肠)、呼吸道(鼻腔给药,肺)、肌肉(肌肉注射)、粘膜(栓剂)。

吸收部位不同,药物被吸收的程度和快慢,有差异(静注、肌注;皮下给药,口服。)共性:药物是通过生物膜吸收的。

吸收过程

扩散

被动扩散:扩散速率与浓度梯度成正比;无特异性;无饱和性;药物分子必须具备合适的脂水分配系数。大部分化学药物是通过被动扩散途径吸收的。

膜孔扩散:分子量小于100的物质。

易化扩散:需转运载体的参加,有饱和性和特异性;但需要一定的浓度梯度。如细胞摄入葡萄糖、甲氨蝶呤、小肠吸收VB12 。

转运

主动转运:扩散速率与浓度梯度无关;有结构特异性(机体所必需的营养分子如氨基酸,可作为药物转运的载体)、有饱和性;毋须具备一定的脂水分配系数;是耗能过程。

离子对转运:强解离性的化合物如磺酸盐或季铵盐与内源性物质结合成电荷中性的离子对,再以被动扩散的途径通过脂质膜。

胞饮作用:脂肪、油滴、蛋白质等。细胞受体介导。

首过效应:小肠吸收的药物经门静脉进入肝脏,在肝脏中代谢

肠肝循环:肝脏中的药物随胆汁分泌到胆囊,再由胆囊排到小肠,最后在小肠吸收经门静脉进入肝脏。3.2 药物理化性质对药物吸收的影响

1)水溶性

水是药物转运的载体,体内的介质是水。药物在吸收部位必须具有一定的水溶解度,处于溶解状态,才能被吸收。因此,要求药物有一定的水溶性。

极性(引入极性基团可增加水溶性)、晶型(对药物生物利用度的影响受到越来越多的重视)、熔点均影响溶解度,从而影响药物的吸收,影响生物利用度。

2)脂溶性

细胞膜的双脂质层的结构,要求药物有一定的脂溶性才能穿透细胞膜。进得来(一定的脂溶性),出得去(一定的水溶性)。

将易解离的基团如羧基酯化。

通过化学结构的修饰,引进脂溶性的基团或侧链,可提高药物的脂溶性,促进药物的吸收,提高生物利用

度。

3)离解度

药物只能以分子形式通过生物膜。

生物膜本身带有电荷,相吸,进得来,出不去;相斥:进不来。

离子具有水合作用,药物分子体积增大,不能通过生物膜微孔。

因此,离解度越大,吸收越差。

离解度与药物的离解常数和吸收部位的pH有关。同一药物在不同部位的解离度不同,吸收程度不同。弱酸性药物在胃中的解离度小,易被吸收;在肠道,弱碱性药物解离度小,是弱碱性药物的主要吸收部位。强酸强碱药物及离子性药物,难以吸收。但是进入细胞后也难以出来。

4)分子量

同系列的化合物中,分子量越小,越易被吸收。

口服有效的药物的分子量一般在500以下。

4 体内环境对药物吸收的影响

表面积、药物停留时间、pH影响药物的吸收。

口腔:起效快,直接进入循环。舌下含片、口崩片。接触面积小,适合小剂量药物。

胃:血液循环好、停留时间长,pH偏酸。适合弱酸性药物吸收。胃刺激。

小肠:pH适中,表面积大,停留时间长。首过效应。

大肠:表面积小;可进行药物转化

直肠:血流较丰富,直接进入血液,避免胃肠道刺激和肝脏代谢。

药物的理化性质与分布

药物分布是指药物透过毛细管,离开血液循环;借助血液的流动到达作用部位;借助浓度的差异,经被动扩散,进入组织器官中。

毛细血管由脂质性物质构成,管壁上的孔隙可自由通透水溶性的小分子或离子。

血脑屏障:特殊的内皮细胞构成,没有间隙。穿越血脑屏障的药物,一般有较高的脂溶性。

5 药物的理化性质与药物分布

亲脂性:向组织分布,必须通过细胞膜。

合适的脂水分配系数。

电荷:带电分子难以通过细胞膜和血脑屏障与组织或蛋白的结合,与血浆蛋白结合,不能穿越细胞膜或血管壁,不能扩散入细胞内,也不能被肾小球过滤,影响分布容积、生物转化和排泄速度。

血浆蛋白结合对药物分布的影响

与血浆蛋白的结合能够维持较平稳的血药浓度,因此调整药物分子中的非活性必须结构,可以改变结合与解离的平衡,延长药物的作用时间。

由于这是一种非特异性结合的可逆性结合,不直接影响疗效,但是影响药代过程,因而间接地影响受体部位的药物有效浓度。

不能被肾小球过滤,影响分布容积、生物转化和排泄速度。

影响药物与血浆蛋白结合的因素

亲脂性强的药物与组织蛋白或脂肪组织的亲和力高,结合较强:起长效作用。烷基、芳环基、卤素等疏水性基团,增加与蛋白的结合亲和力。

可离解性的药物,也可通过电荷相互作用与蛋白结合。

药物的立体结构影响药物与血浆蛋白的结合。

手性药物的不同光学异构体具有不同血浆蛋白结合作用。

特异性分布与靶向给药

利用某些组织对特定配基的选择性识别和结合作用,将药物分子与这些配基偶联,将药物分子选择性投放于特定的组织,以提高药物作用的选择性。

主动靶向:如抗体导向药物;受体靶向药物

被动靶向:利用组织的屏障作用,将药物包裹于脂质体或微球中,避免药物向非作用部位分布,以免代谢失活或产生毒副作用。

6 药物的理化性质与药物代谢

药物在体内发生的化学变化,就是生物转化,也就是代谢。

从理化性质上看,药物生物转化的结果,是使其增加极性和水溶性,以利于排泄,是机体的一种保护性机制。

从生物学性质上看,药物的代谢物的可能失去活性,也可能提高活性或产生毒性;特别是代谢的中间体,化学活性较强,可能具有较强的毒副作用。

药物的生物转化的过程

第一步,通过氧化、还原或水解作用,在分子结构中引入(氧化)或暴露出(还原或水解)极性基团,如:-OH,-COOH,-SH,-NH2等。

氧化作用有可能形成活性产物如环磷酰胺就是通过氧化代谢形成活性代谢物而发挥抗癌作用的;也可能产生毒副作用。

第二步:极性基团与葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽共价结合,生成极性大、易溶于水和易排出体外的结合物。这是解毒过程。

药物代谢对药学性质的影响药物代谢的结果是药物的失活、活化或产生新的毒性。

影响药物代谢的因素

由于代谢酶的个体差异,会引起药效或毒性的个体差异,造成药学性质的不可预测性由于不同药物共用同一种代谢酶,引起药物的相互作用

由于代谢一般在肝脏进行,代谢过程中会产生化学活性较高的中间体,从而带来肝脏毒性。

年龄、种属、遗传、性别等的不同,药物代谢酶的种类和数量会有所不同。

药物对代谢酶也有诱导或抑制作用,从而产生耐药性和药物相互作用。

代谢机理相同的药物,合并用药时,药代动力学性质会发生改变,产生药物相互作用。肝功能异常,也会影响药物的药代动力学性质。

7 药物的理化性质与药物排泄

药物经肾排泄

肾小球过滤游离状态的药物及代谢物都能被肾小球过滤;过滤速度取决于游离药物的浓度,没有结构特异性。

肾小管的主动分泌:与分配系数有关,有饱和性。

肾小管的重吸收:不带电荷的药物分子穿越肾小管上皮细胞的脂质膜,又回到血液。为被动扩散过程。与极性、电荷、解离度、脂溶性等有关。

药物经胆汁排除

具有极性基团,分子量较大。

与葡萄糖醛酸等结合,由胆汁排泄。

结合物水解,被小肠吸收,进入肠肝循环。

影响药物的作用时间。

排泄途径机理相同的药物,合并用药时,药代动力学性质也会发生改变,生药物相互作用。

肾功能的异常会引起药物蓄积,产生毒副作用。

8 药代动力学与新药设计

优化药代动力学性质,是药物设计的重要内容之一。通过结构改造或分子设计优化药物的吸收与分布,能够突破国外专利保护药。一般来说,对药代动力学性质的优化,不涉及药物的基本结构,因此,成功的几率较高,有可能以最小的成本,获得具有自主知识产权的药物。根据代谢研究的结果,进行结构优化,实现药代性质的可预测性或可控性,减少个体差异和药物相互作用。

从代谢物中发现先导物或药物

代谢物作为药物起效更快(本身即为活性形式)、作用更强或副作用更小、药物相互作用小(毋需进一

步代谢)。如从特非那定到非索那定,氯雷他定到Desloratadine,阿司咪唑到降阿司咪唑,西沙必利到降西沙必利.

根据药物代谢机理设计前药或软药

提高生物利用度

靶向释放:利用靶组织或靶器官特有的酶或pH的差异,实现前体药物的定位水解,以提高作用的选择性。

抗肿瘤药物研究中的酶-前体药物疗法:将酶(体内没有)选择性投放(抗体导向或受体靶向)或表达(基因靶向)于靶组织,前体药物水解,释放细胞毒药物分子。

改善生物利用度

设计软药,实现可控代谢,如降糖药瑞格列奈和那格列奈的设计,起效快,药效时间短,能够有效控制餐后血糖的升高,同时避免低血糖和肥胖的副作用,更生理性地调节血糖水平,被称为象胰岛一样思考的药物。

延长作用时间对代谢部位的封闭或预活化

根据药代动力学的研究结果,封闭药物代谢位点,阻断不利的药物代谢。如苯环上氟取代以阻断苯环上不利的代谢事先引入代谢基团, 如羟基等,提高药物活性或加快起效时间。

计算机辅助的药代动力学筛选

药代动力学筛选

临床前药代动力学的评价已经越来越早的介入药物开发研究的过程:

体外药效学-体内药效学-安全性-药代动力学

体外药效学-药代动力学-体内药效学-安全性

与高通量药效学筛选技术的发展相似,高通量药代动力学筛选的方法也正在建立,并得到应用。同样,为了提高药物设计的科学性,发展了计算机辅助虚拟筛选技术,建立和优化模型,通过模型进行虚拟筛选,如降脂新药Enzetimbe的发现。药代动力学的虚拟筛选技术也已经受到药物化学家的重视。

药代动力学

简答题 1.影响药物分布的因素: ①血液循环与血液通透性的影响;②药物与血浆蛋白结合率的影响③药物理化性质的影响; ④药物与组织亲和力的影响;⑤药物相互作用对分布的影响。 2.简述淋巴系统转运的特点: ①某些特点物质如脂肪,蛋白等大分子物质转运必须依赖淋巴系统;②当传染病,炎症,癌转移等使淋巴系统成为病灶时,需要使药物向淋巴系统转运;③淋巴循环可使药物不通过肝而比过首过效应。 3.简述药物在体内分布与靶向制剂设计的关系: 理想的靶向给药体统应是传递药物到达靶器官或靶组织,使药物在治疗部位富集,而减少了药物在其他正常器官或组织中的分布,这样不仅可以提高疗效,而且可以降低药物的毒副作用。 4. 药物代谢主要反应类型和药物代谢酶 ㈠第一相反应①氧化反应②还原反应③水解反应㈡第二相反应(结合反应) 药物代谢酶系统:⑴微粒体酶系:主要存在于肝细胞或其他细胞的内质网上(细胞色素P450)⑵非微粒体酶系:肝脏、血浆、肠粘膜及其它组织 5药物代谢对药理活性的影响①代谢使药理活性消失或降低。②代谢使药理活性增强。 ③代谢使药理作用激活。④代谢使药理作用类型改变。⑤代谢产生毒性代谢物。 6.简述药物代谢的影响因素: (一)生理因素:①种属差异;②个体差异,即年龄,性别,病理状态;③遗传变异性;④P-糖蛋白。(二)非生理因素:①药物的理化性质;②给药途径与剂型;③给药剂量;④酶诱导与抑制作用;⑤药物的相互作用。 7.药物代谢的临床意义主要表现在哪些方面: ①代谢使药理活性消失或降低,如普鲁卡因;②代谢使药理活性增强,如非那西丁;③代谢使药理作用激活,如前体药物环磷酰胺;④代谢使药理作用类型改变,如可待因;⑤代谢产生毒性代谢物,如异烟肼。 8.为什么肝肾功能不全者使用某些药物时要适当调整给药方案? 答:肝功能不足时影响生物转化的因素很多,其中以肝药酶和肝血流量的影响明显。大部分药物通过口服经门静脉首先进入肝脏,当肝功能不足时,肝药酶的合成减少,细胞色素P450含量降低,可减少许多药物的生物转化而使药物浓度升高,生物利用度变大,药效增强或引发毒性反应。肾脏疾病时,可使主要经肾排泄的药物的原形或代谢产物蓄积而加强药效,甚至产生毒性反应。 9.药剂学所涉及的剂型因素和生物因素各包括那些方面 剂型因素:1)药物的物理性质;2)药物的化学性质;3)药物的剂型及用量方法;4)辅料的性质和用量;5)药物配伍与相互作用;6)工艺流程,贮存条件等;7)中药材产地,采集时间,入药部位及贮存等。生物因素包括种属差异,种族差异,性别差异,年龄差异,生理和病理条件的差异以及遗传因素等。 10.生物药剂学与药动学的研究目的: 生物药剂学的研究目的是为了正确评价药物制剂质量、设计合理的剂型及制剂工艺、指导临床合理用药提供科学依据,一确保用药的安全与有效。 11.被动转运、主动转运的特性及速度过程。 被动转运的特点:①.药物从高浓度侧向低浓度侧的顺浓度梯度转运;②.不需要载体,膜对药物无特殊选择性;.③不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影

药代动力学代表计算题

计算题(Calculation questions ) 1.某患者单次静脉注射某单室模型药物2g ,测得不同时间的血药浓度结果如下: 时间(h) 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 血药浓度(mg/ml) 0.28 0.24 0.21 0.18 0.16 0.14 0.1 0.08 求k ,Cl ,T 1/2,C 0,V ,AUC 和14h 的血药浓度。 【解】对于单室模型药物静脉注射 kt 0e C C -=,t 303 .2k C log C log 0- = log C 对t 作直线回归(注:以下各题直线回归均使用计算器或计算机处理),得: a = 0.4954, b = -0.0610,|r | = 0.999(说明相关性很好) 将a 、b 代入公式0C log 303 .2kt C log +-= 得回归方程: 4954.0t 061.0C log --= ① 1h 1405.0)061.0(303.2b 303.2k -=-?-=?-= ② h 9323.41405 .0693 .0k 693.0T 2/1=== ③ mg/ml 3196.0)4954.0(log C 10=-=- ④ 6.258L ml)(62583196 .02000C X V 00==== ⑤ L/h 8792.0258.61405.0kV Cl =?== ⑥ )(mg/ml h 2747.21405 .03196.0k C AUC 00 ?=== ∞ ⑦ 3495.14954.014061.0C log -=-?-= g/ml 44.7mg/ml)(0477.0C μ== 即14h 的血药浓度为g/ml 44.7μ。 2.某患者单次静脉注射某药1000mg ,定期测得尿药量如下: 时间(h) 1 2 3 6 12 24 36 48 60 72 每次尿药量(mg) 4.02 3.75 3.49 9.15 13.47 14.75 6.42 2.79 1.22 0.52 设此药属一室模型,表观分布容积30L ,用速度法求k ,T 1/2,k e ,Cl r ,并求出80h 的累积药量。 【解】单室模型静脉注射尿药数据符合方程0e c u X k log 303 .2kt t X log +-=??, t X log u ??对c t 作图应为一直线。根据所给数据列表如下: t (h) 1 2 3 6 12 t ? 1 1 1 3 6

药代动力学

ORIGINAL RESEARCH ARTICLE Multiple Dose Pharmacokinetics and Safety of Sulcardine Sulfate in Healthy Chinese Male Subjects:An Open-Label Phase I Clinical Study Wei Wang 1?Hong-jie Qian 2?Liang Xin 2?Meng-qi Zhang 2?Dong-ying Lu 4? Jie-mei Jin 2?Gang-yi Liu 2?Jing-ying Jia 2?Hong-chao Zheng 3?Chen Yu 2?Yi-ping Wang 4?Fu Zhu 3?Yun Liu 2 óSpringer International Publishing Switzerland 2016 Abstract Background Sulcardine sulfate is a novel antiarrhythmic agent with mechanism of action as a multi-ion channel blocker.Preclinical studies in animal models have demonstrated that sulcardine sulfate is ef?cacious in atrial and ventricular arrhythmias,and consequently,leads to the prevention of sudden cardiac death. Objectives This study was conducted in healthy Chinese male subjects to investigate the pharmacokinetic pro?le and safety of sulcardine sulfate after repeated oral dose administration at 200,400,and 800mg for 5days. Methods Thirty-three male subjects were enrolled in this study.In the multiple dose phase,sulcardine sulfate was administered orally twice at the interval of q12h since day 3.Sulcardine sulfate plasma concentration was determined using a validated LC–MS/MS method.Safety was assessed using clinical evaluation and AE monitoring. Results In this repeated dose study,pharmacokinetic parameters (C max ,AUC (0–t ),and C ss_av)increased with the increase in dose (the dose ratio of the three cohorts was 1:2:4,while the ratio of C max and AUC (0–t )at day 1was around 1:4:9and 1:4:6,respectively),but in a non-linear fashion.The accumulation ratio at steady state (AR)of 200,400,and 800mg dose level was 1.18,1.69,and 2.13,respectively,indicating that sulcardine sulfate has a modest accumulation upon repeated dose administration.Moni-toring of pre-dose plasma concentrations on days 6,7,and 8for each dose level indicated that steady state was achieved at day 6after three-day repeated dosing. Conclusions Pharmacokinetic characteristics of sulcardine sulfate were shown to be non-linear,with the modest accumulation upon repeated dosing,and sulcardine sulfate was safe and well tolerated. Key Points The pharmacokinetic characteristics of sulcardine sulfate were non-linear. Sulcardine sulfate was shown to have modest accumulation upon repeated dosing. Sulcardine sulfate was well tolerated in healthy Chinese male subjects. &Fu Zhu zhufu@https://www.doczj.com/doc/886855328.html, &Yun Liu yliu@https://www.doczj.com/doc/886855328.html, 1 Emergency Ward,Shanghai Xuhui Central Hospital and Zhongshan-Xuhui Hospital,Fudan University and Shanghai Clinical Center,Chinese Academy of Science,Shanghai,China 2 Department of Cardiology,Shanghai Xuhui Central Hospital and Zhongshan-Xuhui Hospital,Fudan University and Shanghai Clinical Center,Chinese Academy of Science,Shanghai,China 3 Department of Cardiology,Shanghai Xuhui Central Hospital and Zhongshan-Xuhui Hospital,Fudan University and Shanghai Clinical Center,Chinese Academy of Science,Shanghai,China 4 Department of Pharmacology,State Key Laboratory of Drug Research,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai,China Eur J Drug Metab Pharmacokinet DOI 10.1007/s13318-016-0370-1

(完整版)药物非临床药代动力学研究技术指导原则

附件5 药物非临床药代动力学研究技术指导原则 一、概述 非临床药代动力学研究是通过体外和动物体内的研究方法,揭示药物在体内的动态变化规律,获得药物的基本药代动力学参数,阐明药物的吸收、分布、代谢和排泄(Absorption, Distribution, Metabolism, Excretion, 简称ADME)的过程和特征。 非临床药代动力学研究在新药研究开发的评价过程中起着重要 作用。在药物制剂学研究中,非临床药代动力学研究结果是评价药物制剂特性和质量的重要依据。在药效学和毒理学评价中,药代动力学特征可进一步深入阐明药物作用机制,同时也是药效和毒理研究动物选择的依据之一;药物或活性代谢产物浓度数据及其相关药代动力学参数是产生、决定或阐明药效或毒性大小的基础,可提供药物对靶器官效应(药效或毒性)的依据。在临床试验中,非临床药代动力学研究结果能为设计和优化临床试验给药方案提供有关参考信息。 本指导原则是供中药、天然药物和化学药物新药的非临床药代动力学研究的参考。研究者可根据不同药物的特点,参考本指导原则,科学合理地进行试验设计,并对试验结果进行综合评价。 本指导原则的主要内容包括进行药物非临床药代动力学研究的 基本原则、试验设计的总体要求、生物样品的测定方法、研究项目(血

药浓度-时间曲线、吸收、分布、排泄、血浆蛋白结合、生物转化、对药物代谢酶活性及转运体的影响)、数据处理与分析、结果与评价等,并对研究中其他一些需要关注的问题进行了分析。附录中描述了生物样品分析和放射性同位素标记技术的相关方法和要求,供研究者参考。 二、基本原则 进行非临床药代动力学研究,要遵循以下基本原则: (一)试验目的明确; (二)试验设计合理; (三)分析方法可靠; (四)所得参数全面,满足评价要求; (五)对试验结果进行综合分析与评价; (六)具体问题具体分析。 三、试验设计 (一)总体要求 1. 受试物 中药、天然药物:受试物应采用能充分代表临床试验拟用样品和/或上市样品质量和安全性的样品。应采用工艺路线及关键工艺参数确定后的工艺制备,一般应为中试或中试以上规模的样品,否则应有充分的理由。应注明受试物的名称、来源、批号、含量(或规格)、保存条件、有效期及配制方法等,并提供质量检验报告。由于中药的特殊性,建议现用现配,否则应提供数据支持配制后受试物的质量稳定性及均匀性。当给药时间较

药物代谢动力学公式计算总结

Harvard-MIT 卫生科学与技术部 HST.151: 药理学原理 授课教师: Carl Rosow 博士 药物代谢动力学公式计算总结 下列公式来自Steven Shafer博士的药理学讲义,对药物代谢动力学有关概念进行了总结和描述。 1.一室模型注射用药时体内药量变化(降低)的速率(公式为一级消除动力学) 2.瞬时药物浓度C(t),其中C0为0时刻时的药物浓度 3.半衰期t?,为血浆药物浓度下降一半所需的时间 4.根据半衰期可以得到速率常数K 5.药物浓度定义为药物剂量与体积的比值,其中X为剂量,V为体积 6.一次静脉注射给药中药物的浓度以下式表示,其中X0/V为起始药物浓度 7.如果一室模型中药物总清除率以Cl T表示,则药物清除速率可以下式计算 8.将第7项和第8项的公式合并为 将半衰期的公式带入,可得到更为有意义的公式 从公式中可以得到。当清除率(Cl T)增加,k值增加,半衰期降低;容积(V)增大,k值降低,半衰期增加。

9.如果药物以k0的速率滴注,则达到平衡是药物的浓度以下式表示,其中Css表示稳态 浓度 10.稳态浓度Css可以通过滴注速率和清除率计算 11.半衰期为给药后浓度下降一半所需的时间,同样也可理解为静脉滴注达到稳态浓度的 50%时的时间。一次用药,药物浓度降至起始浓度的25%、13%、6%和3%时分别需经历2、3、4、5个半衰期;恒速静脉滴注,药物浓度达到稳态浓度的45%、88%、94%和97%时分别需经历2、3、4、5个半衰期。 应用这些公式有何意义? 1.如果知道注射剂量和药物浓度,则可以计算药物分布体积 2.如果知道注射剂量X0、药物分布体积V和速率常数k,则可以计算出任意时刻的药物浓 度 3.如果知道两个时间点t1和t2,以及相应的浓度C1和C2,则可以计算出速率常数k 4.如欲求清除率(一室模型),可以根据速率常数k和分布体积V求得,但若是多室模型, 即速率常数k值有多个,或者k和V不知,则可按照以下公式,其中AUC为药时曲线下的面积 5.根据欲达到的靶浓度(C target)可以求得出负荷剂量(X loading) 6.欲维持靶浓度(C target)恒定,则需要恒速静脉滴注药物,滴注的速度与药物消除的速 度相同。如果首次给药为C target (V),消除的药物为C target (Cl T),则药物的维持剂量X maintenance为

药物代谢动力学完整版

药物代谢动力学完整版 第二章药物体内转运 肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法 能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代谢酶等在Caco-2细胞中大都也有相同的表达,因此更接近药物在人体内吸收的实际环境,可用于测定药物在细胞内的代谢和转运机制; ④可同时研究药物对粘膜的毒性; ⑤试验结果的重现性比在体法好。 缺点: ①酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响; ②缺乏粘液层,需要时可与HT-29细胞共同培养。

(完整版)药代动力学完整版

1.代谢分数fm:药物给药后代谢物的AUC和等mol的该代谢物投用后代谢物的AUC的比值。 第二章药物体内转运 1. 药物肠跨膜转运机制:药物通过不搅动水层;药物通过肠上皮;药物透过细胞间隙;药 物通过淋巴吸收。 2. 血浆蛋白:白蛋白、α1-糖蛋白、脂蛋白 3. 被动转运的药物的膜扩散速度取决于:油/水分配系数 4. 血脑屏障的特点:脂溶性药物易于透过、低导水性、高反射系数、高电阻性。 5. 肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸 收。 6. 肝肠循环:某些药物,尤其是胆汁排泄分数高的药物,经胆汁排泄至十二指肠后,被重 吸收。 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法 能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代谢酶等在Caco-2细胞中大都也有相同的表达,因此更接近药物在人体内吸收的实际环境,可用于测定药物在细胞内的代谢和转运机制;

临床药代动力学试验的常见设计类型与统计分析

发布日期 20140327 化药药物评价 >> 临床安全性和有效性评价 临床药代动力学试验的常见设计类型与统计分析 张学辉,卓宏,王骏 化药临床二部 一、临床药代动力学试验的统计分析问题现状 临床药代动力学试验在新药上市注册申请中占有重要地位。 与大样本量的 临床试验相比,这类试验样本数少、 观测指标少,其统计分析问题要简单很多, 未引起申请人或研究者的重视,一般较少邀请统计专业人员参与。甚至一些人 认为这类试验是描述性试验,不需要进行专业的统计分析。其实正是因为这类 试验的样本数少,才要更加重视其试验设计和统计分析的规范性,才能得出相 对可靠的专业结论。从目前申报资料看,存在较多问题: 1 )研究设计时未充 分考虑三要素”(受试者、试验因素、观察指标),无法满足研究目标的专业 需要;2)研究设计不符合 四原则”(随机、对照、重复和均衡),不采用常见 的设计类型,设计出一些不同寻常的异型试验; 3)资料整理和统计分析方法 选用不当,与研究设计类型不匹配,尤其是滥用 t 检验和单因素多水平设计资 料的方差分析方法。 临床药代动力学试验的一般要求参见技术指导原则 ⑴。本文拟介绍这类试 验的常见研栏目 标题 作者 部门 正文内容

究设计类型与统计分析方法,供大家参考。 二、创新药物临床药代动力学试验 这里的创新药物是指新化学实体。这类药物通常在健康受试者中进行多项 的临床药代动力学试验,包括单次给药、多次给药、食物影响、药代动力学相互作用等药代动力学试验。后续还要进行目标适应症患者和特殊人群的药代动力学试验。 2.1创新药物单次给药药代动力学试验 创新药物的健康受试者单次给药药代动力学试验通常在I期耐受性试验结 束后进行。受试者例数一般要求每个剂量组8?12例,男女各半。药物剂量, 一般选用低、中、高三种剂量,有时会选用更多剂量。剂量的确定主要根据I 期临床耐受性试验的结果,并参考动物药效学、药代动力学及毒理学试验的结果,以及经讨论后确定的拟在∏期临床试验时采用的治疗剂量推算。高剂量组剂量必须接近或等于人最大耐受的剂量。 由于该类药物初上人体试验,出于安全性和伦理的考虑,每位受试者只给药一次,最常采用多剂量组平行设计。一般设计为在健康受试者(男女各半)中、随机、开放、多剂量组平行、单次给药的药代动力学试验。整理这类试验的药代动力学参数时,可以归类为两因素(剂量、性别)析因设计。各剂量组内性别间差异无统计学意义或者不考虑性别因素时,可以将该试验简化为单因素(剂量)的平行组设计。 安全性好的药物,在伦理允许情况下,也可采用多剂量组、多周期的交叉设计。交叉设计的优点是节省样本量、自身对照、减少个体间变异,缺点是多周期时间长、重复测量次数多、受试者依从性差易脱落、统计分析方法复杂。 当选用低、中、高三个剂量组时,通常采用随机、开放、单次给药、三剂量组

体内药代动力学及药效学研究

体内药代动力学及药效学研究 中药药代动力学是指在中医理论的指导下,利用动力学原理和数学模型处理方法,定量描述中药有效成分、有效部位、单味中药和中药复方通过各种给药途径进入体内后的吸收、分布、代谢和排泄等过程的动态变化规律,即研究给药后体内的药物位置、数量、疗效和时间之间关系的科学。目前常用于研究中药制剂体内药物动力学的方法主要有:(1)以某一成分为代表研究体内药物动力学:它适用于化学成分比较明确的制剂;(2)生物药效法:包括药理效应法、药物累积法和效量半衰期法。在本研究中,牡丹皮为组方中的君药,丹皮酚为其主要有效成分,因此,以血药浓度法测定血浆中代表成分丹皮酚的含量,并测定对豚鼠冠脉流量的增加百分率以考察其综合药效,从而将二者结合来考察通栓救心缓释微丸的体内药动学过程。 1.血药浓度法药物动力学研究将原料药粉按处方比例混合装胶囊作为参比制剂,受试与参比制剂的服用量均相当于丹皮酚500mg。采用健康家犬进行交叉实验,受试制剂(T)与参比制剂(R)的药一时曲线如图9-30所示。根据所测血药浓度结果,得到受试制剂的相对生物利用度为123. 08%。 2.生物效应法药物动力学研究离体豚鼠心脏冠脉流量实验具体方法‘3:为:取豚鼠( 300~350g),雌雄兼用;击头处死后迅速取出心脏,按Langendoff法制备离体心脏,以氧饱和的任洛氏液(任洛氏液的配制: NaCl 9g, KCl o.42g, NaHC()30.Sg, CaCl2 o.24g,葡萄糖lg,加蒸馏水至1 000ml)恒温、恒压灌流,待稳定后,从灌流系统中注入各组血清Iml,测定给药后5分钟内每分冠脉流量,计算给药后流量的最大增加百分 率,剂量一效应曲线、时间一效应曲线分别如图9-31、9-32所示,药动学参数结果见表9-11。

药物代谢动力学完整版

药物代动力学完整版 第二章药物体转运 肾脏排泄药物及其代物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法 能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代酶等在Caco-2细胞都也有相同的表达,因此更接近药物在人体吸收的实际环境,可用于测定药物在细胞的代和转运机制; ④可同时研究药物对粘膜的毒性; ⑤试验结果的重现性比在体法好。 缺点: ①酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响; ②缺乏粘液层,需要时可与HT-29细胞共同培养。

常用药代动力学符号注释

芈临床药物动力学符号注释 蚆A 蚄体内药量(mg或μmol) 蚃Aa 在吸收部位有待于吸收的药量(mg或μmol) Ae 尿中累积原形药物排泄量(mg或μmol) Ael(m) 已消除的代谢物的量(mg或μmol) Aess 在稳态下,一个给药间隔期间尿中累积原形药物排泄量(mg或μmol) Ae∞单次给药后,至无穷大时间内尿中累积原形药物排泄量(mg或μmol) A(m) 体内代谢物的量(mg或μmol) Amin 达到预期药物效应的所需最小药量(mg或μmol) AN,max;AN,min 固定给药剂量和给药间隔,第N次给药后体内的最大和最小药量(mg或μmol)AN,t 在第N次给药后的t时间点的体内药量(mg或μmol) ARE 单次给药后,有待从尿中排泄的药量(mg或μmol) ASS 在恒速静脉滴注时,稳态时的体内药量(mg或μmol) ASS,AU 稳态时,一个给药间隔期间的平均体内药量(mg或μmol) ASS,max;Ass,m in 固定剂量,固定给药间隔,稳态时一个给药期间的最大和最小体内药量(mg或μmol)Ass,t 在固定剂量和给药间隔,稳态时一个给药剂量后t时间点的体内药量(mg或μmol) AUC 血浆药物浓度—时间曲线下面积,它代表一次用药后的吸收总量,反映药物的吸收程度。(mg·h/L或μmol/L·h) AUCb 全血药物浓度—时间曲线下面积(mg·h/L或μmol/L·h) AUC(m) 血浆代谢物浓度—时间曲线下面积(mg·h/L或μmol/L·h) AUCSS 稳态时,一个给药间期的血浆药物浓度—时间曲线下面积(mg·h/L或μmol/L·h)AUMC 一阶矩—时间曲线下面积(mg·h2/L或μmol/L·h2) C 在t时的血药浓度(mg/L或μmol/L) Ca 在吸收部位液体中的药物浓度(mg/L或μmol/L) CA 动脉血液中的药物浓度(mg/L或μmol/L) Cb 血液中的药物浓度(mg/L或μmol/h) Cbd 血浆中的结合药物浓度(mg/L或μmol/L) CD 离开透析器时透析液药物浓度(mg/L或μmol/L) Cinf 恒速滴注浓度(mg/L或μmol/L)

药代动力学(王广基)word

前言 药物代谢动力学是定量研究药物在生物体内吸收、分布、排泄和代谢规律的一门学科。随着细胞生物学和分子生物学的发展,在药物体内代谢物及代谢机理研究已经有了长足的发展。通过药物在体内代谢产物和代谢机理研究,可以发现生物活性更高、更安全的新药。近年来,国内外在创新研制过程中,药物代谢动力学研究在评价新药中与药效学、毒理学研究处于同等重要的地位。药物进入体内后,经过吸收入血液,并随血流透过生物膜进入靶组织与受体结合,从而产生药理作用,作用结束后,还须从体内消除。通过在实验的基础上,建立数学模型,求算相应的药物代谢动力学参数后,对可以药物在体内过程进行预测。因此新药和新制剂均需要进行动物和人体试验,了解其药物代谢动力学过程。药物代谢动力学已成为临床医学的重要组成部分。中国药科大学药物代谢动力学研究中心为本科生、研究生开设《药物代谢动力学》课程教学已有二十多年历史,本书是在原《药物动力学教学讲义》基础,经多年修正、拓展而成的。全书十三章,三十余万字,重点阐述围绕药物代谢动力学理论及其在新药研究中的作用,与其它教材相比,创新之处在于重点阐述现代药物代谢动力学理论及其经典药物代谢动力学在新药及其新制剂研究中的应用以及目前迅速发展的药物代谢动力学体外研究模型等新内容。 本书编著者均是长期在药物代谢动力学教学和研究第一线的教师。因此,本书的实践性与理论性较强,可作为高年级本科生、硕士生教材使用,也可作为从事药物代谢动力学研究及相关科研人员的参考书。编者 药物代谢动力学 主编:王广基 副主编:刘晓东,柳晓泉 编者(姓氏笔画为序) 王广基、刘晓东、陈西敬、杨劲、柳晓泉 内容提要: 药物代谢动力学是定量研究药物在机体内吸收、分布、排泄和代谢规律的一门学科。在创新研制过程中,药物代谢动力学研究与药效学、毒理学研究处于同等重要的地位,已

临床药代动力学基础

临床药代动力学基础总结 一、被动转运 1、简单扩散:属于脂溶性扩散。 一、(1)特点:1、从浓度高的一侧转运向浓度低的一侧顺着浓度梯度差通过生物膜。 2、转运过程不消耗能量,不需要载体,各药物之间没有竞争抑制现象,没有饱和性。 3、当生物膜两侧药物浓度达到平衡状态时,转运即停止。 一、影响简单扩散的因素 1、膜两侧的浓度差2药物的脂溶性3药物的解离度:取决于解离常数(Ka)和环境的PH 值 (2)影响简单扩散的因素-Handersoh-hasselbalch公式:-弱酸性药物: 结论:1、酸性药物在酸性环境中,解离少容易跨膜转运达到平衡时,主要分布在碱侧。2、碱性药物在碱性环境中解离少,容易跨膜转运,达到扩散平衡,主要分布在酸侧。 2、膜孔扩散1、滤过或水溶性扩散2、分子量小,分子直径膜孔的水溶性极性或非极性物 质(水、乙醇、尿素、乳酸)借助膜两侧的液体和渗透压差,被水带到低压一侧的过程。 影响因素:膜两侧浓度差。 3、易化扩散分类1经载体的易化扩散2经通道的易化扩散 4、特殊转运 药物体内吸收过程 1吸收:药物从用药部位向血液循环中转运的过程。多数药物的吸收属于被动转运。 影响药物最主要的因素:1、给药途径:经肠给药口服:舌下、直肠、 2、非经肠给药:肌肉注射、皮下注射、静脉注射 吸入、皮肤 一、消化道给药 1、口服给药吸收途径:肠道内吸收-通过毛细血管-肝门静脉-体循环 2、影响因素首关效应:首过效应、第一关卡效应药物在肠粘膜上皮细胞内,肝脏内通过时, 被某些酶灭火代谢,进入体内循环的药物量减少,这一过程成为首关效应或首过消除。 3、药物方面:药物性质、剂型、溶出度在消化道稳定性。 胃肠功能:胃肠道蠕动速度、血流量。 其他:胃内容物、胃肠内PH值,肠道细菌对药物的代谢。 2舌下药:舌下含服,直接吸入体循环,不经过肝门静脉因此无首过消除效应。 3吸入给药:吸入途径:肺泡-肺部毛细血管-体循环 4皮肤给药 二、分布 药物随血液循环进入器官,组织甚至细胞内的过程。 影响因素1药物与血浆蛋白的结合2器官血流量与组织亲和力3体内屏障4体液PH值和药物溶解度 结合性药物分子量变大不易通过生物膜。 药物与血浆蛋白的结合特点:1可逆性2饱和性3竞争性4常用血浆蛋白结婚率来表现 一、体内屏障1血脑屏障分类:1血液-脑脊液2血液-脑组织3脑脊液-脑组织 特点:致密、通透性差2胎盘屏障 药物转化(代谢)过程 三催化转化的酶种类1专一性酶特点:具有专一性(选择性)如乙酰胆碱酯酶-单胺氧化酶2非专一性酶:即肝脏微粒体混合功能酶系统。 存在于肝脏的微粒内,参与多种化合物的转化,与药物的代谢密切相关,因此又称为肝药酶,

药代动力学参数

一、吸收 溶出度:药物分子在消化道中溶解的程度 生物利用度:药物吸收的程度 绝对生物利用度 最大血药浓度(Cmax) 达峰时间(Tmax) 二、分布 由于体内环境的非均一性(血液、组织),导致药物浓度变化的速度不同。 隔室(compartment):同一隔室药物浓度的变化速度相同,均相。 一室模型:药物进入血液迅速分布全身,并不断被清除。 二室模型: 药物进入体内后,首先快速分布于组织中,然后进入较慢的消除过程。 表观分布体积(Vd)(aparent volume of distribution):表征药物在体内被组织摄取的能力。表观容积大的药物体内存留时间较长。 药物浓度-时间曲线下面积(AUC);系统药物暴露(Systemic Exposure) 血脑屏障;蛋白结合率;分布半衰期(t 1/2(α) 三、消除 消除(elimination):原药在体内消失的过程。包括肾(尿)或胆汁(粪)或呼吸排泄及代谢转化的总和。

消除速率常数(elimination constants):反映药物在体内消失的快慢。不完全反映药物的作用时间(代谢物也有活性)。 半寿期或半衰期(t1/2):药物浓度或药量降低50%所需的时间。消除半衰期t1/2(β))Terminal Half-life ,Elimination Half-life。 清除率(clearance,廓清率)或肾清除率(renal clearance):反映药物或代谢物经肾被排出体外的速度。 一方面是药物对机体的作用,产生药效、毒性或副作用,表现为药物的药理作用或毒理作用,决定于特定的化学结构,具有较强的结构特异性。 另一方面是机体对药物的作用:吸收、分布,生物转化和排泄,表现为药物的药代动力学性质。主要取决于药物的溶解性、脂水分配系数、电荷等药物分子整体的理化性质,结构特异性不强。 药物的吸收是药物由给药部位通过生物膜进入血液循环的过程。 吸收部位 消化道(口服给药,口腔、胃、小肠、大肠)、呼吸道(鼻腔给药,肺)、肌肉(肌肉注射)、粘膜(栓剂)。 吸收部位不同,药物被吸收的程度和快慢,有差异(静注、肌注;皮下给药,口服。) 共性:药物是通过生物膜吸收的。 吸收过程 扩散

一期临床试验及药代动力学测试的主要内容

一期临床试验及药代动力学测试的主要内容 Ⅰ期临床试验就是新药人体试验的起始阶段。 Ⅰ期临床试验目的: 1.在健康志愿者中,对通过临床前安全有效性评价的新药,从绝对安全的初始剂量开始,考察人体对该药的耐受性; 2.对人体能够耐受的剂量进行药代动力学研究,为研究Ⅱ期临床试验提出合理的给药方案。 Ⅰ期临床试验工作程序 1、接到药政管理当局(SDA)下达的批件; 2、签订合同; 3、阅读有关资料及文献,选择、组织试验研究小组; 4、计算并确定耐受性试验最小初始剂量与最大剂量; 5、制定、讨论、确定Ⅰ期临床试验方案; 6、试验方案呈报伦理委员会审批; 7、Ⅰ期临床试验前准备工作: 1)筛选志愿受试者; 2)准备知情同意书; 3)准备记录表格与试验流程图; 4)血药浓度监测考核; 5)Ⅰ期病房准备; 8、Ⅰ期临床试验方案伦理委员会批准后,制定试验进度计划; 9、试验前受试者签署知情同意书; 10、受试者随机分组; 11、试验前24小时内完成每例受试者病例登记:体格检查、心电图检查、脑电图检查、 眼科检查、血液学检查、血生化检查、尿液学分析等各项指标检查; 12、准备每例受试者试验流程图; 13、按照试验方案与进度计划进行Ⅰ期临床试验; 14、数据处理、统计分析;

15、总结报告。 Ⅰ期临床试验方案程序 1)单次给药耐受性试验(随机分组,逐组进行,有主观或其它因素影响时设安慰剂对照); 2)单次给药药代动力学研究(设高、中、低三个剂组,三向交叉拉丁方设计,确定临床有效量与给药量,每组均有三个剂量,每次均有三个剂量,以排除仪器、个体差异); 3)连续给药耐受性与药代动力学研究,要求达稳态后再继续二天,一般连续七至十天)。 Ⅰ期临床试验方案模式 1、首页:项目名称、研究者姓名、单位,申办者负责人姓名、单位 2、简介:试验药物中文名、国际非专利药名、结构式、化学名、分子式、分子量、理化性 质、药理作用、作用机制、临床前药理、毒理研究结果摘要(如已在国外进入临床试验,介绍初步试验结果); 3、研究目的:在健康志愿受试者中,观察单次给药耐受性,单次给药药代动力学参数,连续给药药代动力学与耐受性; 4、试验样品:样品名称、代号、制剂与规格,制剂制备单位、制备日期、批号、有效期、药 检部门检验人用合格报告、给药途径、贮存条件、数量(剂量总数、制剂总数); 5、受试者选择:志愿受试者来源,入选标准,淘汰标准(根据各类具体药物制定)。入选人数、姓名、年龄、性别、体重、身高、籍贯、民族。 6、受试者签署知情同意书; 7、伦理委员会报批:三个试验方案需分别报送医学伦理委员会审批; 8、试验设计与方法; 9、观察指标:体检检查、心电图、脑电图、神经科检查、眼科检查、血液学、血生化及尿 液分析等各项指标均需写明; 10、数据处理统计分析:事先规定数据处理方法,确定正常值与异常值确定标准,统计分析方法及单位等; 11、总结报告:规定试验周期、总结报告完成日期; 12、末页:试验地点、研究者与申办者签名。 健康志愿者耐受性试验步骤与方法

药代动力学

生物药剂学与药物动力学复习2011/11/24 第二章 1、P12药物的吸收是指药物从给药部位进入体循环的过程。 2、P14被动转运是指存在于膜两侧的药物顺浓度梯度,即从高浓度一侧向低浓度一侧扩散的过程,分为单纯扩散和膜孔转运两种形式。 3、P15被动转运的特点:①药物从高浓度侧向低浓度侧的顺浓度梯度; ②不需要载体,膜对药物无特殊的选择性;③不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响;④不存在转运饱和想想和同类物竞争抑制现象。 4、P16主动转运的特点:①逆浓度梯度转运;②需要消耗机体能量,能量来源主要由细胞代谢产生的ATP提供;③需要载体参与,载体物质通常对药物有高度选择性;④主动转运的速率及转运量与载体的量及其活性有关;⑤结构类似物能产生竞争性抑制作用,相似物竞争载体结合位点,影响药物的转运和吸收;⑥受代谢抑制剂影响。⑦有结构特异性和部位特异性。 5、P27 PH分配假说:药物的吸收取决于药物在胃肠道中的解离状态和油水分配系数的学说。 6、P29 评价药物脂溶性大小的参数是油水分配系数(Ko/w)。越大说明药物脂溶性越好,吸收率也大。 7、P41 口服剂型生物利用度的高低顺序为:溶液剂>混悬剂>颗粒剂>胶囊剂>片剂>包衣片。 8、P49生物药剂学分类系统(BCS)的依据:根据药物的渗透性和溶解度分类。分为Ⅰ类(溶解度高、渗透性高);Ⅱ类(溶解度低、渗透性高);Ⅲ类(溶解度高、渗透性低);Ⅳ类(溶解度低、渗透性低)。 9、P55促进药物吸收的方法:㈠提高药物的溶出速度,①增加药物的溶解度(a、制成盐类;b、制成无定型药物;c、加入表面活性剂;d、用亲水性包合材料制成包合物);②增加药物的表面积。㈡加入口服吸收促进剂。 第三章 1、P77药物经皮渗透的主要屏障来自角质层。药物可经两种途径扩散通过角质层:①通过细胞间隙扩散;②通过细胞膜扩散。 2、P87影响肺部药物吸收的因素:㈠药物粒子在气道中的沉积(机理: ①惯性碰撞;②沉降;③扩散);㈡生理因素;㈢药物的理化性质;㈣制剂因素。 3、P90直肠部位血药循环药物经直肠吸收主要有两个途径通过直肠:一条是通过直肠上静脉,经门静脉而进入肝脏,在肝脏代谢后再转运至全身;另一条是通过直肠中、下静脉和肛管静脉进入下腔静脉绕过肝脏

相关主题
文本预览
相关文档 最新文档