当前位置:文档之家› A070201 煤矿深部巷道锚杆支护理论与技术研究新进展

A070201 煤矿深部巷道锚杆支护理论与技术研究新进展

A070201 煤矿深部巷道锚杆支护理论与技术研究新进展
A070201 煤矿深部巷道锚杆支护理论与技术研究新进展

煤矿深部巷道锚杆支护理论与技术研究新进展

康红普

[煤炭科学研究总院北京开采研究所,北京 100013]

摘要针对我国深部高地压巷道围岩条件的特殊性与复杂性,巷道支护存在的问题,分析高地压巷道围岩变形与破坏机理,支护系统控制围岩变形的作用。介绍适用于深部巷道围岩的地质力学快速测试系统,包括地应力测量、围岩强度原位测试及围岩结构观察;高预应力、强力锚杆支护系统,包括高冲击韧性强力锚杆,大吨位、大延伸率单体锚索,高刚度钢带;最后,介绍高预应力、强力锚杆支护系统在新汶矿区和金川镍矿的应用情况,通过分析矿压监测数据,评价支护效果和围岩稳定性。实践表明,高预应力、强力锚杆支护系统是比较适合深部巷道的有效支护形式。

关键词深部巷道强力锚杆支护研究进展应用

1 引言

煤炭资源开发由浅部向深部发展是客观的必然规律,也是世界上许多产煤国家所面临的共同问题。我国煤矿开采深度以8-12m/年的速度增加。国有大中型煤矿平均开采深度已达到400m以上,开采深度超过600m的有117处煤矿,有10余处煤矿开采深度超过1000m,最深达到1300m。随着煤炭科学技术进步,矿山现代化促进了生产的高产高效,进一步加速矿井深度的增加。浅矿井数目大为减少,中深矿井数目明显增加,深矿井将成倍增加,并将出现更多的特深矿井。预计在未来20年我国很多煤矿将进入到1000-1500m的开采深度。

深部开采引起高地压、高地温、高岩溶水压和强烈的开采扰动影响。深部矿井重力引起的垂直应力明显增大,构造应力场复杂,地应力高;矿井开采深度越大,地温越高,同时由于热胀冷缩,温度变化会引起地应力变化;地应力与地温升高,岩溶水压升高,矿井突水严重。此外,在高地应力作用下,开采扰动影响强烈,围岩破坏严重。

在高地应力环境下,煤岩体的变形特性发生了根本变化:由浅部的脆性向深部的塑性转化;高地应力作用下,煤岩体具有较强的时间效应,表现为明显的流变或蠕变;煤岩体的扩容现象突出,表现为大偏应力下煤岩体内部节理、裂隙、裂纹张开,出现新裂纹导致煤岩体积增大,扩容膨胀;煤岩体变形的冲击性,表现为变形不是连续的、逐渐变化的,而是突然剧烈增加。高地应力环境和煤岩体变形特征决定了深部矿井会遇到一系列动力灾害,包括冲击矿压、煤岩与瓦斯突出、瓦斯爆炸、矿井突水、矿压显现剧烈、巷道围岩大变形、冒顶片帮等灾害,对深部矿井的安全、高效开采带来巨大威胁。上述灾害主要发生在巷道,可以说,深部开采首要的、关键的技术是巷道支护。而目前一般的巷道支护技术、支护材料与设备无法满足高地压巷道支护的要求。因此,在深入研究高地压巷道支护理论的基础上,开发研制支护材料与配套设备,为深部煤炭资源开采提供技术支持具有非常重要的意义。

2 国内外技术状况

国外对深部矿井涉及的相关问题的认识与研究从上世纪80年代就开始了。如1983年,前苏联学者就提出对超过1600m的深矿井开采进行专题研究;当时的西德还建立了特大模拟试验台,专门针对1600m 深矿井的三维矿压问题进行模拟试验研究。1989年国际岩石力学学会在法国专门召开了“深部岩石力学”国际会议。近20多年来,美国、加拿大、澳大利亚、南非、波兰等有深井开采的国家相继开展了深部开采与支护研究。加拿大联邦和省政府及采矿工业部门合作开展了为期10年的深井研究计划,在冲击地压潜在区的支护技术和冲击矿压危险性评估等方面进行了卓有成效的研究工作;南非政府、大学与工业部

门合作,从1998年启动“Deep Mine”研究计划,旨在研究解决深部金矿安全、开采需要的关键技术。总之,国外学者在深部围岩大变形机理、围岩支护与加固技术、围岩应力控制技术、冲击地压预测与防治技术等方面做了大量工作,取得可喜成绩。

近年来,随着我国国民经济的快速发展和科学技术进步,对深部开采遇到的问题进行了大量的研究与试验。在高地压巷道围岩控制技术、冲击矿压预测预报与防治技术等方面,煤炭科学研究总院北京开采研究所、中国矿业大学、中南大学、东北大学、重庆大学及北京科技大学等单位进行了比较系统的研究,积累了较为丰富的实践经验。如北京开采研究所进行的“冲击地压矿井巷道锚杆支护技术研究”,中国矿业大学开展的“深部煤矿开采中灾害预测与防治研究”,以及中南大学开展的“千米深井岩爆发生机理与控制技术研究”等项目,都做了许多有益的工作。

综合国内外在高地压巷道支护技术研究方面取得的成果,归纳为以下几方面:

①提出了多种高地压巷道支护理论,包括新奥法支护理论的改进与完善、松动圈支护理论、二次支护理论、联合支护理论等,这些支护理论在不同时期与不同条件下对生产实践起到积极的指导作用。

②在高地压巷道围岩控制技术方面,有锚喷支护、U型钢可缩性支架支护、注浆加固、联合支护及卸压技术等多种形式。这些支护形式在高地应力、破碎围岩巷道中得到应用,取得一定的支护效果。

③高强度锚杆、锚索支护技术得到大面积推广应用,基本形成了包括地质力学测试、支护设计、支护材料、施工机具与工艺、工程质量检测与矿压监测在内的锚杆支护成套技术,成为巷道支护的主要形式。

高地压巷道支护研究初步成果,还远不能满足高地压巷道围岩控制的要求。归纳起来,还存在以下问题:

(1) 尽管提出了多种巷道支护理论,但任何一种理论都有缺陷,不能全面解释高地压巷道围岩变形与破坏的机理,还缺乏高应力环境下围岩与支护体相互作用机理全面、系统的研究。目前,国内大部分高地压巷道采用二次支护理论,即巷道支护分两次进行,一次支护在保持巷道稳定的前提下,允许巷道有一定的变形以释放压力;隔一定时间后实施二次支护,保持巷道的长期稳定。但是,这种理论目前已遇到了极大的挑战,在深部动压影响区、构造压力带、软岩破碎带等地点,采用二次支护后仍出现变形破坏等问题,甚至需要三次、四次支护,巷道周而复始的发生破坏,围岩变形长期得不到有效控制。

(2) 虽然目前有多种巷道支护形式,但各种支护形式都存在不足。对于高地压巷道,还缺乏有效的支护方法,导致巷道变形与破坏剧烈,需要多次维修与翻修。不仅支护成本很高,掘进速度低,而且带来很多安全隐患,严重制约采煤工作面的快速推进和矿井产量和效益的提高。

(3) 高强度锚杆、锚索支护技术在一般条件下支护效果良好,综合效益显著。但在高地压巷道中,出现了一系列问题:锚杆预应力过低,强度不足,抗冲击性能差,造成锚杆拉断或整体失效,甚至锚杆尾部被弹射出去等破坏现象;锚索直径小、强度低、延伸率低,与钻孔匹配性差,经常出现锚索被拉断或整体滑动;钢带强度和刚度小,容易撕裂和拉断,护顶效果差。上述现象严重影响了巷道支护效果和安全程度。

(4) 由于锚杆、锚索强度和刚度偏低,导致单位面积上锚杆、锚索数多,间排距小,支护密度大,严重影响巷道掘进速度,造成采掘接续紧张。

综上所述,高地压巷道支护问题,已经成为制约深部煤炭资源安全、高效开采的关键技术瓶颈。如果支护问题得不到有效解决,大量深部煤炭资源无法开采,矿井的安全状况将会进一步恶化,煤矿的产量与效益受到严重影响,煤炭工业的可持续发展无法实现。

3 深部巷道锚杆支护的作用分析

传统的锚杆支护理论有悬吊、组合梁、加固拱等理论。本文在井下实测、数值计算等研究成果的基础上,针对深部巷道围岩变形的流变性、扩容性和冲击性,分析深部巷道锚杆支护的作用:

(1) 锚杆可不同程度地提高锚固区煤岩体强度、弹性模量、凝聚力和内摩擦角等力学参数。如锚杆对煤岩体凝聚力的影响可用下式表示:

)2Scos(4534πd n σc c 2

s 0?-?+

= (1)

式中:c-有锚杆岩体凝聚力;

c 0-无锚杆凝聚力;

n-锚杆数;

σs -锚杆屈服强度;

d-锚杆直径; S-面积;

φ-内摩擦角。

由上式可知,对于中等强度以上岩石,锚杆对岩石破坏前的强度和变形影响不大;对于强度较低的煤体,锚杆在煤体破坏前对其强度有较明显的影响。锚杆的主要作用是改善发生塑性变形和破碎煤岩的力学性质,显著提高其屈服后强度,改变屈服后煤岩变形特性。

(2) 锚杆对节理、层理、裂隙等不连续面的本质作用在于:通过锚杆提供的轴向力与切向力,提高不连续面的抗剪强度,阻止不连续面产生离层与滑动。通过提高结构面的强度,提高节理煤岩体的整体强度、完整性与稳定性。

(3) 通过锚杆给围岩施加一定的压应力,可以改善围岩应力状态。对于受拉区域,可抵消部分拉应力,提高围岩抗拉能力;对于受剪区域,通过压应力产生的摩擦力,提高围岩的抗剪能力。

(4) 在深部巷道中,锚杆支护主要作用在于控制锚固区围岩的离层、滑动、张开裂隙等扩容变形与破坏,在锚固区内形成次生承载层,最大限度地保持锚固区围岩的完整性,避免围岩有害变形的出现,提高锚固区围岩的整体强度和稳定性。

(5) 在冲击矿压巷道中,锚杆支护可改善锚固区煤岩体的冲击倾向性指标;通过保持锚固区围岩的完整性,提高围岩承载能力,使巷道围岩应力分布趋于均匀化,同时提高了对深部围岩的约束能力。基于上述作用,锚杆支护对冲击矿压有较好的控制作用,能降低冲击矿压的程度。

(6) 在深部巷道中,应采用高强度、高刚度锚杆组合支护系统,同时要求锚杆有一定的延伸率。高强度要求锚杆具有较大的破断力,高刚度要求锚杆具有较大的预紧力并实施加长或全长锚固,组合支护要求采用钢带、金属网等护表构件。应尽量一次支护有效控制围岩变形,避免二次支护和巷道维修。

(7) 锚索的作用主要是将锚杆支护形成的次生承载层与深部围岩相连,充分调动深部围岩的承载能力,使更大范围内的岩体共同承载,提高支护系统的整体稳定性。

4 巷道围岩地质力学测试

围岩是巷道支护对象,地质力学参数是巷道支护设计的基础。一切与围岩有关的工作,如巷道布置、巷道支护设计,采煤方法设备的选型等,都离不开对围岩地质力学特征的充分了解。

对于深部巷道,最大的特点是巷道埋深增加,导致地应力高、构造应力场复杂,围岩强度和变形特征发生明显变化。因此,在深部矿井中进行地质力学参数测试显得更为重要。

为了快速、准确测定地质力学参数(包括井下地应力测量、巷道围岩强度测定、围岩结构观察),可采用巷道围岩地质力学快速测试系统。 4.1 地应力测量

地应力测量方法有多种类型,常用的有应力解除法与水压致裂法。地质力学快速测试系统中采用了水压致裂法。该法有以下优点:

① 能测量较深处的绝对应力状态;

② 直接测量,无需了解和测定岩石的弹性模量;

③ 测量应力空间范围较大,受局部因素影响小;不需要套芯工序,可利用其它工程的勘探孔进行压裂。

地应力测量仪器为自行开发的SYY-56型水压致裂地应力测量装置。采用小孔径钻孔(56mm ),最

大测量深度为30m,可在井下进行快速、大面积地应力测量。同一钻孔还可以用于巷道围岩强度测量。如图1,该仪器由分隔器、印模器、定位器、手动泵、储能器、隔爆油泵及记录仪等部件组成。

图1 水压致裂地应力测量示意图

4.2 巷道围岩强度测试

采用WQCZ-56型围岩强度测定装置进行井下围岩强度测试(图2)。该仪器由围岩强度测定仪、探头、手摇泵、高压管、延长杆等部件组成。探头直径54 mm,测量深度30m,非常适合井下快速测量。

图2 巷道围岩强度测量示意图

岩体强度的测定在井下巷道围岩钻孔中进行。探头内的活塞在高压油的驱动下发生移动,使端部顶针压向钻孔孔壁。根据顶针压破钻孔孔壁的临界压力,经过计算,便可得到该点的岩体单轴抗压强度。

通过对30余组岩石试样同时用围岩强度测定装置及实验室压力机作了岩石单轴抗压强度的对比试验。测试结果表明,岩石单轴抗压强度R c与围岩强度测定装置临界破坏压力P m呈强相关关系,可用下式描述:

R c =k1P m P m≤20MPa

R c =k2+k3 logP m P m>20MPa (2)

式中:R c—岩体单轴抗压强度,MPa;

P m—临界破坏压力,MPa;

k1、k2、k3—系数。

为了测定整个钻孔长度上岩层的抗压强度,每隔200~300mm取一个测试剖面。

4.3 巷道围岩结构观察

巷道围岩结构观察采用KDVJ-400型矿用电子钻孔窥视仪(图3),由CCD摄像头、图像接收与存储装置、安装杆等组成。仪器由摄像头在钻孔中接受图像,通过接收仪直接观察、记录图像,并可与计算机连接,分析和处理图像,能直观、清晰地反映巷道围岩的结构情况。可窥视钻孔的最小直径为28mm,长度为30m,分辨率为0.1mm。

图4是井下巷道顶煤钻孔的窥视结果,可清楚地观察到煤体中的节理、裂隙分布状况,为分析结构面的分布提高的直观的依据。

图3 KDVJ-400型矿用电子钻孔窥视仪

图4 围岩结构观察结果

5 煤巷锚杆支护设计方法与软件

5.1 动态信息设计法

根据煤矿巷道的特点,提出锚杆支护动态信息设计法。动态信息法具有两大特点,动态性与信息性:其一,设计不是一次完成的,而是一个动态过程;其二,设计充分利用每个过程中提供的信息。该设计方法包括五部分,即试验点调查和地质力学评估、初始设计、井下监测、信息反馈和修正设计。初始设计采用数值计算法,目前应用效果比较好的数值计算程序为有限差分软件FLAC[7]和离散单元法软件UDEC。根据锚杆支护扩容—稳定理论,确定支护参数选择的原则为:

(1) 临界支护强度刚度原则:锚杆支护强度与刚度不能低于临界值,否则巷道将长期处于不稳定状态;

(2) 高预紧力原则:锚杆应施加较大的预紧力,达到杆体屈服载荷的30-50%;

(3) 锚杆锚索匹配原则:锚杆与锚索的力学性能应相互匹配,保证支护整体效果;

(4) “三高一低”原则:在高强度、高刚度、高可靠性的前提下,降低支护密度。

5.2 适合工程技术人员使用的设计软件

为了使锚杆支护初始设计既简单、方便,适合工程技术人员使用,又具有较高的科学性和合理性,在大量示范巷道数值计算设计的基础上,进行提炼与简化,编制了适合现场工程技术人员使用的设计软件。设计软件由数据库系统、咨询系统、设计系统与绘图系统组成,可根据巷道原始参数确定锚杆支护设计,并绘制巷道支护布置图。该软件的应用,显著提高了支护设计的合理性和速度,大大减轻了工程技术人员的设计工作量。

6 高强度树脂锚杆与锚索支护材料

锚杆支护材料包括锚杆杆体和附件、树脂锚固剂、W钢带和小孔径树脂锚固锚索等。

6.1 锚杆杆体材料

传统的低强度、低刚度锚杆支护材料已经无法满足深部巷道支护的要求,必须开发研制适用于高地应力巷道的新的支护材料。为了大幅度提高锚杆强度,开发了专用锚杆钢材配方,设计了3个级别的螺

纹钢筋,达到高强度和超高强度级别,力学性能见表1。杆体形状设计方面遵循合理孔径差、有利于提高锚杆锚固力、杆体各个部位等强度三个原则。将杆体设计为左旋无纵肋螺纹钢筋,确定杆体公称直径为18-25mm,杆尾螺纹段采用滚压工艺加工。对于直径22mm的BHRB600型钢筋,屈服力达235.6kN,破断力达311.6kN,是同直径普通圆钢的2.64 、2.16倍;对于直径25mm的强力锚杆,屈服力达300kN以上,破断力达400kN以上,真正实现了高强度。

表1 锚杆杆体力学性能

锚杆类型牌号

直径

(mm)

屈服载荷

(kN)

拉断载荷

(kN)

伸长率

(5)%

低强度Q2351647.276.425

高强度BHRB40022152.0216.620 BHRB50022190.0250.820 BHRB60022235.6311.618

强力BHRB60025304.2402.318

6.2 树脂锚固剂

在树脂锚固剂配方改进和生产技术方面做了大量工作,现已形成系列产品,主要性能指标均达到国外先进国家的要求。锚固剂尺寸有多种规格,从直径划分,常用的有23mm,28mm,35mm;从长度划分,常用的有300mm,350 mm,500 mm,600 mm等。

6.3 W钢带

钢带是煤巷锚杆支护中的重要组合构件。W型钢带是利用带钢经多组轧辊连续进行冷弯、滚压成型的型钢产品。由于带钢在冷弯成型过程中的硬化效应,可明显提高型钢强度。冷弯成型出材率高(98%),与冲压及热轧型钢相比,可节约钢材10~30%。

根据我国煤矿井下巷道的具体情况,制定了我国矿用W型钢带标准(MT/T861-2000)。在井下使用时,可根据巷道的具体条件,选择不同参数的W型钢带。

为了与强力锚杆配合,又设计了厚度5mm的高强度、高刚度W型钢带,其破断载荷高达500kN,同时,刚度也大幅度提高,组合与护表能力大大增强。

6.4 小孔径树脂锚索

针对煤巷特点,开发了小孔径树脂锚固预应力锚索加固技术。其最大特点是采用树脂药卷锚固,安装孔径仅为28mm,用普通单体锚杆机即可完成打孔、安装。树脂药卷固化时间快,锚索能及时、快速承载。

小孔径锚索主要用在破碎、复合顶板巷道;放顶煤开采沿煤层底板掘进的煤顶巷道;软弱和高地应力巷道;以及大跨度开切眼和巷道交叉点。其主要技术参数为:钻孔直径,28mm;锚索直径,15.24-22mm;索体破断力,260-600kN。

7 应用实例

新汶矿区是我国是开采深度最大的矿区之一,平均开采深度已达到900m,多个矿井开采深度超过1000m,最深达1300m。它集中了采深大、地质构造复杂、矿井灾害性现象多重条件,使巷道支护极为困难。目前,深部岩石巷道围岩变形大、底鼓严重;煤巷维护困难,需要多次维修与翻修;冲击地压煤层巷道支护问题没有得到解决。以往研究形成的锚网喷二次支护理论受到了挑战,在深部动压影响区、构造压力带、软岩破碎带等地点,采用二次支护后仍出现大变形与破坏等问题,需要三次甚至更多次的支护,巷道维护费用极高,而且围岩变形长期不能稳定。为此,开展了系统的深部巷道支护理论与技术研究。

7.1 巷道围岩地质力学测试

在新汶协庄矿、孙村矿和华丰矿进行了地应力测量,测试结构见表2。

表2 新汶矿区地应力测量结果

序号矿井测量地点埋深/m垂直主应力

/MPa 最大水平主应

力/MPa

最小水平主应

力/MPa

最大水平主应

力方向

1协庄1202W回风巷79020.9432.3916.56N33.5°E 21202E运输巷115030.4834.6017.89N12.5°E 3-850二采中车场107128.3839.7720.64N39.7°E

4孙村-1050西大巷128334.0031.9716.51N6.0°W

541120疏水巷98226.0233.1216.80N20.6°E

62124轨道巷103427.4023.2212.19N35.5°E

7华丰-1100水平大巷120031.8031.8022.80N3.0°E

从表2的数据中看出,在7个测点中,埋深超过1000m的有5个,最深为1283m;最大水平主应力最大为39.77MPa,最小为23.22MPa;7个测点中,最大水平主应力不小于垂直应力的测点有5个,占71.4%,最大水平主应力与垂直应力的比值最大为1.55。可见,新汶千米埋深巷道地应力很高,而且水平应力占明显优势。

协庄矿围岩强度测量结果见表3。砂质页岩的单轴抗压强度在35-40MPa,煤层强度在12MPa左右,煤岩体强度比较低。

表3 新汶协庄矿围岩强度测量结果

岩性累计厚

度/m

厚度

/m

岩层

柱状

平均强度

(MPa)

中砂岩9.10 3.5478.6

砂质泥岩 5.560.5640.5

煤 5.000.3011.9

砂质页岩 4.70 1.2036.1

煤 3.500.7512.1

砂质页岩 2.75 2.7534.6

7.2 高预应力、强力支护系统试验

(1) 巷道地质与生产条件

针对高地应力、软岩巷道,进行了高预应力、强力支护系统井下试验。

试验地点为新汶协庄矿1202E运输巷。该巷沿二煤顶板掘进,煤层平均厚度2.4m,倾角20°~26°。直接顶为厚6.5m的砂质页岩,水平层理发育,破碎易冒落;直接底为粘土岩,遇水膨胀变软,厚度0~0.5m;其下为厚2.2m的砂质页岩。巷道埋深1150~1200m。原岩应力测量结果表明:最大水平主应力为35~40MPa,垂直主应力为30~32MPa。巷道掘进断面11.1m2,全宽3.7m,全高3m。

(2) 锚杆支护设计

采用有限差分数值计算进行了多方案比较,确定巷道支护形式为:高预应力、强力锚杆组合支护(锚杆支护布置如图5)。

锚杆为直径25mm的左旋无纵筋锚杆,长度2.4m,杆尾螺纹为M27,极限破断力400kN。树脂加长锚固,预紧力矩达到100kN。

组合构件为W钢带,钢带厚度5mm,宽280mm。采用金属经纬网护顶、护帮。

锚杆排距1.0m,每排12根锚杆,顶板锚杆间距900mm,上帮锚杆间距1100mm,下帮间距800mm。

图5 锚杆支护布置图

(3) 井下监测与支护效果

锚杆支护实施于井下后,进行了矿压监测。

如表4,强力锚杆支护巷道顶底板移近量为115mm,两帮移近量为55mm,顶板离层为3mm,分别比原锚杆支护巷道降低83.5%、90.6%、96.1%,巷道变形降低幅度非常显著。

可见,强力锚杆支护有效控制了深部巷道围岩变形,实现了深部支护的突破。

表4 不同支护巷道围岩变形量对比(mm)

结语

(1) 深部巷道埋深大、地应力高,构造应力场复杂,围岩强度和变形特征发生明显变化。围岩变形的流变性、扩容性和冲击性显著,巷道支护困难。

(2) 在深部巷道中,锚杆支护主要作用在于控制锚固区围岩的离层、滑动、张开裂隙等扩容变形与破坏,在锚固区内形成次生承载层,最大限度地保持锚固区围岩的完整性,避免围岩有害变形的出现,提高锚固区围岩的整体强度和稳定性。

(3) 深部巷道应采用高强度、高刚度锚杆组合支护系统,同时要求锚杆有一定的延伸率。高强度要求锚杆具有较大的破断力,高刚度要求锚杆具有较大的预紧力并实施加长或全长锚固,组合支护要求采用钢带、金属网等护表构件。应尽量一次支护有效控制围岩变形,避免二次支护和巷道维修。

(4) 新汶矿区深部巷道支护实践表明,高预应力、强力锚杆支护系统是有效控制深部巷道围岩变形和破坏的支护形式。

参考文献

[1] и.л. 切尔尼亚克,ю.и.布尔恰科夫,深矿井采准巷道矿压控制,煤炭工业出版社,1989。

[2] P.H.威利斯, 深井开采—南非深部黄金开采对安全和效益的技术要求, 国外金属矿山, 第26卷, 第

2期, 2001。

[3] 侯朝炯,郭励生,勾攀峰,煤巷锚杆支护,中国矿业大学出版社,1999。

[4] 侯朝炯,勾攀峰,巷道锚杆支护围岩强度强化机理研究,岩石力学与工程学报,2000,19(3)。

[5] 王怀新, 深井主要巷道支护方式的研究与应用, 煤矿安全, 第34卷, 第8期,2003。

[6] 王元仁, 深井困难条件下的巷道支护技术, 煤炭科学技术, 第31卷,第2期, 2003。

[7] 石伟, 孙德林, 邹德蕴, 深井软岩巷道围岩二次支护新技术, 矿山压力与顶板管理, 第20卷,第1

期,2003。

[8] 康红普,高强度锚杆支护技术的发展与应用,煤炭科学技术,2000,28(2):1-4。

[9] 康红普,林健. 我国巷道围岩地质力学测试技术新进展,煤炭科学技术,2001,29(7):27-30。

[10] 康红普,回采巷道锚杆支护影响因素的FLAC分析,岩石力学与工程学报,1999,18(5):534-537。

[11] 贾金河,煤巷锚杆支护设计与监测软件的开发及应用研究,煤矿开采,2004,9(1):62-64。

作者简介:康红普男,1965年11月生,博士。现任煤炭科学研究总院北京开采分院首席专家,巷道支护研究所所长,研究员,博士生导师。中国岩石力学与工程学会常务理事;软岩专业委员会副主任委员;中国煤炭学会青年工作委员会副主任委员。从事巷道矿压理论和支护技术方面的研究工作。主持和参与完成了国家攻关项目、行业重点项目等30余项,15项成果获省部级科技进步一、二、三奖。发表论文60余篇,出版专著1部,参与编写著作2部,获得国家专利5项。

(收稿日期:2006-08-10;责任编辑:王方荣)

锚杆支护理论

锚杆支护理论 (1)悬吊理论。1952年路易斯?阿?帕内科(Louis.A.Panek )等提出了第一个锚杆支护理论—悬吊理论,该理论认为锚杆支护的作用就是将巷道顶板浅部较软弱破裂岩层悬吊在深部稳固的岩层上,增强浅部较软弱岩层的稳定性。 (2)组合梁理论。1952年德国Jacobio 等基于层状地层提出了组合梁理论。该理论认为通过在岩体内施加锚杆,可以将多层薄岩层组合成类似铆钉加固的组合梁,因此,锚杆锚固范围内岩层被视为组合梁,并认为组合梁作用的实质就是通过锚杆的预拉应力将锚固区内岩层挤紧,增大岩层之间的摩擦力;同时,锚杆本身也具有一定的抗剪能力,可以约束岩层间的错动。锚固范围内岩层同步变形,这种组合厚岩层在载荷作用下,其最大弯曲应力和应变较之前单一薄岩层都将大大减小,该理论充分考虑了锚杆对离层及层间滑动的约束作用。组合梁理论适用于若干层状岩层组成的巷道顶板。 (a) 未打锚杆 (b) 布置顶板锚杆 1—锚杆 2—层状地层 图7-30 锚杆的组合梁作用 (3)组合拱理论。兰氏(T?A?Lang )和彭德(Pende )通过光弹试验提出组合拱理论。组合拱理论认为,在拱形巷道围岩中安装预应力锚杆时,在锚固区内将形成以杆体两端为端点的圆锥形分布的压应力,只要沿巷道周边安装的锚杆间距足够小,相邻锚杆的压应力椎体将相互交错,在巷道周围锚固区中部形成一个连续的压缩带(拱)。承压拱内岩石处于径向、切向均受压的三向应力状态,使得岩体强度大大提高,支撑能力相应增加。该理论充分考虑了锚杆支护的整体作用,在软岩巷道中应用广泛。

图7-31 组合拱(压缩拱)作用示意图 (4)新奥法。20世纪60年代,奥地利工程师L.V.Rabcewicz在总结前人经验基础上,提出了新奥法(NATM),目前新奥法已成为地下工程的主要设计施工方法之一。1978年,米勒(L.Miiller)教授比较全面地阐述了新奥法的基本指导思想和主要原则,并将其概括为22条。1980年,奥地利土木工程学会地下空间利用分会把新奥法定义为:“在岩质为砂质介质中开挖隧道,以使围岩形成一个中空筒状支承环结构为目的的隧道设计施工方法”。施工时遵循下列原则:①应当考虑岩体的力学特性;②应当在适宜时机构筑支护结构,避免围岩中出现不利的应力应变状态;③为使围岩形成力学上十分稳定的中空筒状支承环结构,必须构筑一个闭合的支护结构;④现场量测监控围岩动态,根据允许变形量求得最适宜的支护结构。新奥法的上述定义简明扼要地揭示了新奥法核心问题-充分利用围岩自承能力,使围岩本身形成支承环。 (5)围岩强度强化理论。侯朝炯、勾攀峰提出来巷道围岩强度强化理论。该理论认为:①巷道锚杆支护的实质是锚杆与锚固区域的岩体相互作用而组成锚固体,形成统一的承载结构;②锚杆提高了锚固体的力学参数E、C、Φ,改善了锚固体的力学性能;③锚固体的峰值强度和残余强度都得到强化。锚固体的峰值强度和残余强度随锚杆支护强度的增加而得到强化,达到一定程度就可保持围岩稳定。该理论的分析方法是将锚杆的作用简化为对锚固围岩从锚杆的两端施加径向约束力,由实验室锚固块体试验确定围岩塑性应变软化本构关系,再利用弹塑性理论定量分析锚杆的支护效果。 (6)松动圈理论。20世纪70年代末期,以中国矿业大学董方庭为首的“松动圈巷道支护研究室”,提出围岩松动圈支护理论。该理论包括三个部分:(1)巷道工程的外载荷问题:围岩松动圈理论认为,围岩破裂过程中所产生的碎胀力(剪切力)是支护的危险载荷;(2)围岩分类方法:围岩松动圈是围岩应力、围岩强度、水的影响等综合因素的指标,它与支护难度关系密切;(3)巷道锚喷支

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

煤矿巷道锚杆支护技术规范

煤矿巷道锚杆支护技术规范 1 范围 本标准规定了煤矿巷道锚杆支护技术的术语和定义、技术要求、锚杆支护施工质量检测及锚杆支护监测。 本标准适用于煤矿岩巷、煤巷及半煤岩巷的锚杆支护。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 175-2007 硅酸盐水泥、普通硅酸盐水泥 GB/T 228.1-2010 金属材料拉伸试验第1部分:室温试验方法 GB/T 23561.1-2009 煤和岩石物理力学性质测定方法第1部分:采样一般规定 GB 50086 岩土锚固与喷射混凝土支护工程技术规范 GB/T 50266-2013 工程岩体试验方法标准 MT 146.1-2011 树脂锚杆第1部分:锚固剂 MT 146.2-2011 树脂锚杆第2部分:金属杆体及其附件 MT 285 缝管锚杆 MT/T 861 W型钢带 MT/T 1061-2008 树脂锚杆玻璃纤维增强塑料杆体及其附件 3 术语和定义 GB/T 228.1-2010、MT 146.1-2011、MT 285界定的以及下列术语和定义适用于本文件。 3.1 巷道 roadway 为煤矿提升、运输、通风、排水、行人、动力供应等而掘进的通道。 3.2 煤巷 coal roadway 断面中煤层面积占4/5或4/5以上的巷道。 3.3 岩巷 rock roadway 断面中岩石面积占4/5或4/5以上的巷道。 3.4

半煤岩巷 coal-rock roadway 断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。 3.5 锚杆 rock bolt 安装在围岩中,对围岩实施锚固的杆件系统。一般由杆体、托盘、螺母、垫圈、锚固剂或锚固构件组成。 3.6 预应力锚杆 pretensioned rock bolt 在安装过程中施加一定预拉力的锚杆。 3.7 无预应力锚杆 non-pretensioned rock bolt 在安装过程中不施加预拉力的锚杆。 3.8 树脂锚杆 resin anchored bolt 采用树脂锚固剂锚固的锚杆。 注:改写MT 146.1-2011,定义3.1。 3.9 注浆锚杆 grouting bolt 杆体为中空式,兼做注浆管,对围岩进行注浆加固的锚杆。 3.10 钻锚注锚杆 self-drilling bolt 杆体为中空式,自带钻头,集钻孔、锚固、注浆于一体的锚杆。 3.11 玻璃纤维增强塑料锚杆 glass fibre reinforced plastic bolt 杆体主体部分由玻璃纤维和树脂复合而成的锚杆。 3.12 缝管锚杆 s plit set bolt 经特殊加工成纵向开缝的钢管及其附件。 [MT 285—1992,术语 3.1] 3.13 锚索 cable bolt 安装在围岩中,对围岩实施锚固的索体系统。一般由钢绞线、托盘、锚具及锚固剂组成。 3.14 锚杆支护 rock bolting

锚杆支护理论计算方法

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟;

四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度 宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm); d1——锚杆钢筋直径走私或锚索体直径(cm ); d2——锚杆孔直径(cm ); fst ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2);

锚杆支护机理

锚杆支护技术在煤矿的广泛应用,推动了锚杆支护理论的研究工作,国内外在这方面做了大量的工作,取得了许多有价值的成果,形成了以下3大类较成熟的锚杆支护理论:一是基于锚杆的悬吊作用而提出的悬吊理论、减跨理论等;二是基于锚杆的挤压、加固作用提出的组合梁理论、组合拱理论以及楔固理论等;三是综合锚杆的各种作用而提出的松动圈支护理论、锚固体强度强化理论、锚注理论、最大水平应力理论以及锚杆桁架支护理论等。 悬吊理论认为,巷道开挖以后,由于应力状态的改变,围岩中一定区域内将可能发生岩石的松动和破裂现象、或由于被裂隙切割的岩块因失去足够约束而成为关键块体即出现危岩,此时锚杆的作用就是利用其抗拉能力将松软岩层或危岩悬吊于稳定岩层之上。该理论适用于锚杆长度范围内赋存有稳定岩层或稳定岩层结构的条件。 减跨理论包括两方面的内容:一是基于松散介质的自然冒落拱理论提出的锚杆作用原理,其依据是冒落拱高度与跨度成正比关系,认为利用锚杆的悬吊作用可增加顶板岩层的支点,从而减小支点间的跨距,进而达到降低冒落拱高度、减少所需支护强度的目的;二是基于梁或板的理论提出的锚杆作用原理,即当巷道顶板为层状岩层时,其变形特性近似于梁或板的性质,此时锚杆的作用是缩短梁或板的跨距,以减小其中因横力而产生的弯矩及因弯矩产生的弯曲应力,尤其是弯曲拉应力,从而提高顶板的稳定性。从以上两种情况可以看出,减跨理论中锚杆的作用机理以及适用条件等同于悬吊理论,即需要以稳定岩层或稳定岩层结构为依托。 组合梁理论适用于顶板由多层小厚度连续性岩层组成的巷道,其原理是通过锚杆的轴向作用力将顶板各分层夹紧,以增加各分层间的摩擦作用,并借助锚杆自身的横向承载能力提高顶板各分层间的抗剪切强度以及层间粘结程度,使各分层在弯矩作用下发生整体弯曲变形,呈现出组合梁的弯曲变形特征,从而提高顶板的抗弯刚度及强度。 挤压加固理论适用性较强(几乎适用于所有围岩条件)。对于拱形巷道,其原理是通过锚杆的轴向作用力在围岩中形成拱形压缩带,即通过锚杆的轴向作用力将围岩中一定范围岩体的应力状态由单项(或双向)受压转变为三向受压,从而提高其环向抗压强度指标,使该压缩带既可承受其自身重量,又可承受一定的

煤矿锚杆支护

煤矿锚杆支护设计GJSS - - 批准: 审定: 审核: 编制:

****年11月18日

目录 一、工程概况 二、场地地质条件 三、锚杆支护方案 四、锚杆施工工艺 五、锚杆基本试验与验收试验 六、主要施工机械设备 七、施工人员安排 八、安全施工措施

九、质量保证措施及检验 十、施工进度计划

锚杆支护设计与施工方案 一、工程概况 由地产开发有限公司投资兴建****的位于东风路和法政路交汇处附近,基坑周长约340m,开挖深度至-15.9m。基坑采用地下连续墙加锚杆支护方案,由****市城市规划勘测设计研究院设计。设计连续墙厚800,预应力锚杆三排,分别布置在-4.5m、-9.2m和-11.9m处,锚杆穿越的土层有淤泥、粘土层、强风化层及中风化层,锚杆预应力400KN。 二、场地地质条件 根据****市城市规划勘测设计研究院提供的工程地质报告,场地地层自上而下依次为:人工填土层、冲积层、残积层及白垩系页岩。

1、人工填土层(Q ml):场地均布,杂色,含砖瓦碎石等杂物,层厚1.50~ 3.80m。 2、冲积层(Q al):按岩性不同可分为淤泥及中砂。 (1)淤泥:场地大部分布(除钻孔鉴7、鉴9、技11和鉴12外),灰黑色,软塑~流塑,含少量粉细砂,间夹贝壳及腐木,层厚0.50~ 3.90m。 (2)中砂:仅见于钻孔鉴5、技6、技13及技16,灰黑色,松散,饱和,颗粒较均匀。层厚0.6~1.7m。 3、残积层(Q el): (1)粉质粘土:局部分布,灰黄色,可塑至硬塑,含粉细砂层,为原岩风化产物。 (2)粘土:局部分布,红黄、灰白、灰黄、褐色,硬塑,含少量粉细砂,为原岩风化产物。

锚杆支护原理

锚杆支护 一、锚杆支护原理 1、锚杆的悬吊作用 悬吊作用是指用锚杆将软弱的直接顶板吊挂在其上的坚固老顶之上。如图1所示,或者是用锚杆将因巷道开挖而引起松动的岩块连接在松动区外的完整坚固岩石上,使松动岩块不至冒落。 锚杆的悬吊作用

2、锚杆的组合梁理论 利用锚杆的拉力将层状岩层组合起来形成组合梁结构进行支护,这就是锚杆组合梁作用。组合梁作用的本质在于通过锚杆的预拉应力将原视为叠合梁的岩层挤紧,增大岩层间的摩擦力;同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。 锚杆的组合作用

3、锚杆锲固作用 是指在围岩中存在一组或多组不同产状的不连续面的情况下,由于锚杆穿过这些不连续面,防止或减少了围岩沿不连续面的移动。如图3。 锚杆的楔固作用 p бb p 锚杆的楔固作用 -б p (бb p

4、挤压加固拱作用 形成以锚杆头和紧固端为顶点的锥形体压缩区。如将锚杆沿拱形巷道周边按一定间距径向排列,在预应力作用下,每根锚杆周围形成的锥形体压缩区彼此重叠联结,在围岩中形成一连续压缩带。它不仅能保持自身的稳定,而且能承受地压,组织上部围岩的松动和变形。 显然,对锚杆施加预紧力是形成加固拱的前提。

5、锚杆的减跨作用 如果把不稳定的顶板岩层看成是支撑在两帮的叠合梁,由于可视悬吊在老顶上的锚杆为支点,安设了锚杆就相当于在该处打了点柱增加了支点而减少了顶板的跨度,从而降低了顶板岩层的弯曲应力和挠度,维持了顶板与岩石的稳定性,使岩石不易变形和破坏。这就是锚杆的“减跨”作用,它实际上来源于锚杆的悬吊作用。 上述几种锚杆支护作用并非是孤立存在的,实际上是相互补充的综合作用,只不过在不同地质条件下,某种支护作用占的地位不同而已。

锚杆支护理论计算方法

锚杆支护参数的确定 锚杆长度 L》L l + L2+L3 -------------------- ① =0.1+1.5+0.3=1.9m 式中: L —锚杆总长度,m L1 - -—锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2 - -―锚杆有效长度或软弱岩层厚度,m L3 —锚入岩(煤)层内深度(锚固长度),按经验L3>300mm (一)锚杆外露长度L1 L1=(0.1?0.15)m ,[钢带+托板+螺母厚度+ (0.02?0.03 )](二)锚入岩(煤)层内深度(锚固长度儿3 1. 经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86- 85 “第三节锚杆支护设计”中、第3.3.3条第四款规定: 第333条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表333选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟; 四、树脂锚杆锚头的锚固长度宜为200?250毫米,快硬水泥卷锚杆锚头的锚固长度

公式(3.3.11 -1) (3311-2)见图形所示 (3.3.11 -1) (3.3.11 -2) 宜为300?400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150X150 毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取 300mn?400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》 GBJ86- 85 “第三节锚杆支 护设计”中规定: 第3311条局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时 满足下列公式: 式中la——锚杆杆体或锚索体锚入稳定岩体的长度(cm); d1—锚杆钢筋直径走私或锚索体直径(cm ; d2 --- 锚杆孔直径(cn); f st ――锚杆钢筋或锚索体的设计抗拉强度(N/cm); f cs——水泥砂浆与钢筋或水泥砂浆与锚索的设计粘结强度(N/cm2); 4d2 f cr

(完整版)第四讲锚杆支护理论

第四讲锚杆支护理论 本讲主要介绍锚杆常用支护理论(包括一些近年来比较流行和活跃的理论)、锚杆支护设计方法和国外锚杆支护主要经验,以及巷道容易冒顶的十种情况和五种应对措施。 锚杆支护的作用机理尚在探讨之中。目前己提出的观点较多,其中影响较大的有悬吊作用、组合梁(拱)作用、组合拱、减跨理论、加固(提高C、φ值)作用等几种。这几种观点都是以围岩状态和利用锚杆杆体受拉(力)为前提来解释锚杆支护作用机理的,因此,围岩状态及锚杆受拉力这两个前提的客观性是判定上述理论正确性的标准。 一、锚杆支护理论 支护:就是指为了地下巷道掘进、硐室开挖后的稳定及施工安全,而采取的支持、加强或改善围岩应力状态而打设的构件或采取的措施的总称。支护包括两个方面,一是支,就是顶住顶板,防止顶板出现大量的下沉,使顶板下沉控制在可控、安全的状态,二是护,就是保持顶板的完整性,防止出现漏矸、漏顶、巷道掉渣等现象。支和护是一个有机统一的整体,它们共同组成了支护系统。 (一)锚杆支护理论综述 1、悬吊理论

1)机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。 图4-1 锚杆悬吊作用原理示意图 2)缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。 3)适用条件:在锚杆的长度范围内有一层坚硬而稳定的岩层,锚杆可以锚固到顶板坚硬稳定岩层。 图4-2 a拱形巷道的锚杆悬吊作用b软弱岩层的锚杆悬吊作用 2、组合梁理论 1)机理:将锚固范围内的岩层挤紧,增加岩层间的摩

擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将几层薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应变和应力都将大大减小,组合梁的挠度亦减小。在于通过锚杆的预拉应力将原视为叠合梁(板)的岩层挤紧,增大岩层间的摩擦力; 同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。 决定组合梁稳定性的主要因素是锚杆的预拉应力及杆体强度和岩层的性质。 2)缺点:将锚杆作用与围岩的自稳作用分开;在顶板较破碎、连续性受到破坏时,难以形成组合梁。这一观点有一定的影响,但是其工程实例比较少,也没有进一步的资料供锚杆支护设计应用,尤其是组合梁的承载能力难以计算,而且组合梁在形成和承载过程中,锚杆的作用难以确定。另外,岩层沿巷道纵向有裂缝时粱的连续性问题、梁的抗弯强度等问题也难以解决。 3)适用条件: 层状地层,如图4-3中2所示; 顶板在相当距离内(锚杆长度范围内)不存在稳定岩层,

煤矿锚杆支护技术规范标准设计

煤矿锚杆支护技术规范(新) ICS 73.100.10 D 97 备案号:26921—2010 MT 2009-12-11发布 2010-07-01实施 中华人民共和国煤炭行业标准 MT/T 1104—2009 煤巷锚杆支护技术规范 Technical specifications for bolt supporting in coal roadway 国家安全生产监督管理总局发布 前言 本标准的附录A为资料性附录。 本标准由中国煤炭工业协会科技发展部提出。 本标准由煤炭行业煤矿专用设备标准化技术委员会归口。 本标准由中国煤炭工业协会煤矿支护专业委员会负责起草。煤炭科学研究总院南京研究所、煤炭科学研究总院开采设计研究分院、煤炭科学研究总院建井研究分院、中国矿业大学、兖州矿业集团公司、徐州矿务集团公司、鹤岗矿业集团公司、新汶矿业集团公司、山西焦煤西山煤电集团公司、江阴市矿山器材厂、石家庄中煤装备制造有限公司、深圳海川工程科技有限公司参加起草。 本标准主要起草人:袁和生、康红普、陈桂娥、权景伟、张农、王方荣、王富奇、何清江、周明、秦斌青、晨春翔、黄汉财、赵盘胜、何唯平。 煤巷锚杆支护技术规范 1 范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。 本标准适用于煤矿煤巷锚杆支护,也适用于半煤岩巷锚杆支护。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 5224-2003 预应力混凝土用钢绞线 GB/T 14370-2000 预应力筋用锚具、夹具和连接器 GB 50086-2001 锚杆喷射混凝土支护技术规范 MT 146.1-2002 树脂锚杆锚固剂 MT 146.2-2002 树脂锚杆金属杆体及其附件 MT/T 942-2005 矿用锚索 MT 5009-1994 煤矿井巷工程质量检验评定标准

巷道锚杆支护计算公式

根据1552工作面围岩柱状资料分析,15#煤层顶板直接顶为粘土岩,厚度1.0-1.5m ,施工时,极易垮落,掘进施工时以14#煤层做顶沿15#煤层底板掘进,采取锚网支护。为了将锚杆加固的“组合梁”悬吊于老顶坚硬岩层中,需用高强度锚索做辅助支护。根据邻近1551运、回两巷掘进巷道的支护经验,确定1552回风巷、1552回风巷皮带机头硐室,采用锚杆—钢筋网—钢带--锚索联合支护。 二、支护参数设计 ㈠采用类比法合理选择支护参数:根据15#煤层邻近巷道的支护经验,1552回风巷巷道顶锚杆选用φ16mm ×1800mm 的圆钢锚杆,间距1000mm,排距900mm ;选用1x7丝φ15.24mm ,锚固力不小于230kN 冷拔钢筋,长度4.2m 的锚索加强支护。 ㈡采用计算法校核支护参数 1、锚杆长度计算 L = KH+L 1+L 2 式中:L ——锚杆长度,m H ——冒落拱高度,m K----安全系数,取2 L 1——锚杆锚入稳定岩层深度,取0.5m L 2——锚杆在巷道中的外露长度,取0.05m 其中: H=B/2f=3.4/(2×4)=0.43m 式中:B ——巷道宽度 f ——岩石坚固性系数,取4 L = 2H+L1+L2=2×0.43+0.5+0.05=1.41m 施工时取L=1.8m 2、锚杆间距、排距a 、b a=b= KHr Q 式中:a 、b ——锚杆间、排距m Q ——锚杆设计锚固力,50kN/根; H ——冒落拱高度,取0.58m ; K ——安全系数,取2; r ——被悬吊粘土岩的重力密度,26.44kN/m 3 a=b= 44 .2643.0250 ??=1.48m

锚杆支护计算(实用荟萃)

2.3 支护参数计算 根据锚杆加固作用原理,确定如下参数: 2.3.1锚杆长度 123L L L L =++=0.15+1.5+0.4=2.05m 式中, 1L —锚杆外露长度,其值主要取决于锚杆类型及锚固方式,一般取0.15m ,对于端锚锚杆,L 1=垫板厚度+螺母厚度+(0.03~0.05),对于全长锚固锚杆,还有加上穹形球体的厚度; 2L —锚杆的有效长度,即围岩松动圈的范围,通过查规范知一般取1.5m; 3L —锚杆锚固段长度亦即锚杆锚入坚硬岩石的长度,一般L3=0.3~0.4,由拉拔实验确定,当围岩松软时,L 3还要加大,取L 3为0.4m 。 为安全施工,取锚杆长度L=2100mm 长满足要求。 围岩内外围层结构的稳定性分析 巷道围岩范围内各部分岩体,由于其距巷道周边的距离和岩性的不同,对巷道稳定性的影响作用是有显著差别的。根据这种作用的大小以及一般巷道支护控制作用的范围,可将巷道围岩分为内层围岩和外层围岩两部分,然后研究内外层围岩的结构类型及其与围岩稳定性之间的关系,并提出相应的围岩控制原则。 (1)内层围岩。内层围岩是指距巷道周边较近的那部分岩体,其范围与通常意义上的松动圈范围相当。如图所示,内层围岩的结构与性质对巷道稳定性影响

最大。这部分岩体受开挖及风化等影响严重,最易出现破坏和冒落,围岩变形的绝大部分是由这部分岩体产生的,锚杆支护、注浆加固及人为卸压等措施大致上也是在该范围岩体中进行的。可见,内层围岩既是影响巷道稳定性的最关键部分,也是人为控制措施的主要的和直接的作用对象。 (2)外层围岩。外层围岩是围岩中距巷道周边较远的那部分岩体。与内层围岩相比,外层围岩受开挖及风化等影响较小,受支护控制作用的影响也较小;总的围岩变形中,外层围岩所占比例很小,对巷道稳定性的影响也较小。 (3)内外层围岩之间的关系。根据上述定义可知.内层围岩的结构与性质是影响巷道稳定性的决定因索,外层围岩的结构与性质对巷道稳定性的影响要通过内层围岩来实现;支护控制的主要对象是内层围岩。内层围岩往往与支护形成整体承裁结构,外层围岩则是上覆岩层压力向内层围岩和支护传递的中介。 巷道围岩内外层结构 2.3.2 锚杆直径: 锚杆采用20MnSiⅡ级建筑用螺纹钢系列,锚杆的直径根据杆体承载力与锚固力等强度原则确定,即

传统锚杆支护理论

传统锚杆支护理论 传统的锚杆支护理论有悬吊理论、组合梁理论、组合拱(压缩拱)理论,近期又发展了最大水平应力理论等。 1、悬吊理论 悬吊理论认为:锚杆支护的作用就是将巷道顶板较软弱岩层吊在上部稳定岩层上,以增强较软弱岩层的稳定性。 对于回采巷道经常遇到的层状岩体,当巷道开挖后,直接顶因弯曲、变形与老顶分离,如果锚杆及时将直接顶挤压并悬吊在老顶上,就能减小和限制直接顶的下沉和离层,以达到支护的目的。 巷道浅部围岩松软破碎,或者开掘巷道后应力重新分布,顶板出现松动破裂区,这时锚杆的悬吊作用就是将这部分易落岩体悬吊在深部未松动岩层上。这是悬吊理论的进一步发展。 根据悬吊岩层的质量就可以进行锚杆支护设计。 悬吊理论直观地揭示了锚杆的悬吊作用,在分析过程中不考虑围岩的自承能力,而且将被锚固体与原岩体分开,与实际情况有一定差距,计算数据存在误差。 悬吊理论只适用于巷道顶板,不适用于巷道帮、底。如果顶板中没有坚硬稳定岩层或顶板较软弱岩层较厚,围岩破碎区范围较大,无法将锚杆锚固到上面坚硬岩层或者未松动岩层上,悬吊理论就不适用。 2、组合梁理论

组合梁理论认为:在层状岩体中开挖巷道,当顶板在一定范围内不存在坚硬稳定岩层时,锚杆的悬吊作用居次要地位。 如果顶板岩层中存在若干分层,顶板锚杆的作用,一方面是依靠锚杆的锚固力增加各岩层间的摩擦力,防止岩石沿层面滑动,避免各岩层出现离层现象;另一方面,锚杆杆体可增加岩层间的抗剪刚度,阻止岩层间的水平错动,从而将巷道顶板锚固范围内的几个薄岩层锁紧成一个较厚的岩层(组合梁)。这种组合厚岩层在上覆岩层荷载的作用下,其最大弯曲应变和应力都将大大减小,组合梁的挠度也减小,而且组合梁越厚,梁内的最大应力、应变和梁的挠度也就减小。 根据组合梁的强度大小,可以确定锚杆支护参数。 组合梁理论,是对锚杆将顶板岩层锁紧成较厚岩层的解释。在分析中,将锚杆作用与围岩的自稳作用分开,与实际情况有一定的差距,并且随着围岩条件的变化,在顶板较破碎、连续性受到破坏时,组合梁也就不存在了。 组合梁理论只适合于层状顶板锚杆支护的设计,对于巷道的帮、底不适用。 3、组合拱(压缩拱)理论 组合拱理论认为:在拱形巷道围岩的破裂区中安装预应力锚杆时,在杆体两端将形成圆锥形分布的压应力,如果沿巷道周边置锚杆群,只要锚杆间距足够小,各个锚杆形成的压应力圆锥体将相互交错,就能在岩体中形成一个均匀的压缩带,即承压拱(也称组合拱或压缩拱),这个承压拱可以承受其上部破碎岩石施加的径向荷载。在承压

支护理论计算方法

1、按悬吊理论 (1)锚杆长度L, L=L 1+L 2+L 3 =50+1000+300=1350mm 式中:L 1——锚杆外露长度 L 2——软弱岩层厚度,可根据柱状图确定mm L 3——锚杆伸入稳定岩层深度一般不小于300mm (2)锚固力N:可按锚杆杆体的屈服载荷计算 N=π/4(d 2 σ屈) =0.25×3.14×(0.02)2×335×106=105KN 式中:σ屈——杆体材料的屈服极限Mpa d——杆体直径 (3)锚杆间排距 锚杆间距D≤1/2L D≤0.5×2200=1100mm 锚杆排距L 0=Nn/2kra L 2 =105×103×13/2×3×24×103×2.1×1=4.51m 式中:n——每排锚杆根数 N——设计锚固力,KN/根 K——安全系数,取2-3 r ——上覆岩层平均容重,取24KN/m 3 a——1/2巷道掘进宽度m

2、按自然平衡拱理论计算 Ⅰ、两帮煤体受挤压深度C C=((KrHB/1000fcKc)Cos(a/2)-1)h×tg(45-ψ/2) =((2.5×24×510×1/1000×2×1.0)Cos(23°/2) -1)×2.65×tg(45°-63°/2)=8.9m 式中:K——自然平衡拱角应力集中系数,与巷道断面形状有关;矩形断面,取2.8 r——上覆岩层平均容重,取24KN/m3 H——巷道埋深m B——固定支撑力压力系数,按实体煤取1 fc——煤层普氏系数, Kc——煤体完整性系数,0.9-1.0 a——煤层倾角 h——巷道掘进高度m ψ——煤体内摩擦角,可按fc反算 Ⅱ、潜在冒落高度b b=(a+c)Cosa/Kyfr =(2.1+8.9)×0.92/0.45×4=5.62m 式中:a——顶板有效跨度之半m Ky——直接顶煤岩类型性系数。当岩石f=3-4时,取0.45;f=4-6时,取0.6;f=6-9时,取0.75。 Fr——直接顶普氏系数

锚杆支护的发展现状

锚杆支护技术的应用现状及发展趋势 摘要 基于国内外大量而广泛的锚杆支护技术的应用与研究,锚杆支护的优越性越来越得到认可,本文阐述了锚杆支护技术及其分类,总结了锚杆支护技术的作用原理,并对国内外锚杆支护的现状做了初步分析。运用支护设计中常用理论及方法,对锚杆支护的优缺点进行了分析和评价,高效机械化掘进与支护技术是保证矿井实现高产高效的必要条件,也是巷道掘进技术的发展方向。同时对实际支护工程中的某些不足进行了具体讨论,并对未来的发展趋势进行了初步分析。 关键词:锚杆支护;支护原理;应用现状;发展趋势

摘要 ··································································································· I 一、概述 (1) 二、锚杆支护技术的概念及其分类 (1) (一)锚杆支护技术 (1) (二)锚杆的分类 (2) (三)锚杆支护适用条件及优缺点 (6) (四)锚杆支护的设计与施工 (6) 三、锚杆的支护原理 (7) (一)目前,已经被广为接受的锚杆支护理论主要有如下几种: (7) (二)近年来,又提出了新的支护理论,主要有以下几种: (9) 四、国内外锚杆支护技术的应用现状 (10) (一)国外锚杆支护技术的现状 (10) (二)国内锚杆支护的现状 (12) (三)国内外锚杆支护技术的对比 (12) 五、锚杆支护技术发展趋势 (13) (一)锚杆支护技术的改进 (13) (二)锚杆支护技术的发展趋势 (15) 参考文献 (16)

一、概述 锚杆支护作为岩土工程加固的一种重要形式,由于其具有安全、高效、低成本等优点,在国际岩土工程领域得到了越来越多的应用。1872年,英国北威尔士的煤矿加固工程中首次采用钢筋加固页岩之后,1905年美国矿山中也出现了类似的加固工程。到了20世纪40年代,锚杆支护在地下工程中的应用在国外得到了迅猛发展。 目前,在澳大利亚和美国等国的地下工程支护中,锚杆支护已经占到了接近100%。我国于20世纪50年代开始试用锚杆支护技术,至70年代前期还处于探索阶段,直到1978年才开始重点推广,80年代开始向英国学习锚杆支护技术后推广到煤巷支护,90年代又向澳大利亚学习引进成套先进的锚杆支护技术,目前已得到较广泛的推广和应用。在一些矿区的锚杆支护巷道比例达到90%以上,有些矿井甚至达到了100%,取得了较好的技术与经济效益。国内现有楔缝、涨壳、倒楔锚杆、钢丝绳或钢筋砂浆锚杆、木锚杆、竹锚杆、内涨锚杆、管缝锚杆、树脂锚杆、水泥锚杆、爆扩锚杆、预应力注浆大锚索等十几个系列。 由于各种锚杆的构造不同,锚杆作用机理差异甚大,国内外大量工程实践证明,各种不同种类锚杆,在不同的地质条件下,有不同的“支护”效果。国内外锚杆支护成功的经验表明,合理的锚杆支护设计及详细的监测分析,不仅可保证回采巷道的安全可靠,而且可取得显著的技术经济效益和社会效益。 二、锚杆支护技术的概念及其分类 (一)锚杆支护技术 锚杆支护技术就是在土层或岩层中钻孔,埋入锚杆后灌注水泥(或水泥砂浆、锚固剂),依靠锚固体与岩层之间的摩擦力、拉杆与锚固体的握裹力以及拉杆强度共同作用,来承受作用于支护结构上的荷载。通过锚杆的轴向作用力,将杆体周围围岩中一定范围岩体的应力状态由单向(或双向)受压转变为三向受压,从而提高其环向抗压强度,使压缩带既可承受其自身重量,又可承受一定的外部载荷,使其有效地控制围岩变形。 锚杆支护是在边坡、岩土深基坑等地表工程及隧道、采场等地下施工中均广

巷道锚杆支护设计专题报告

巷道锚杆支护 摘要 煤巷锚杆支护的技术已趋于成熟但是锚杆支护仍然存在较多问题。第一,锚杆支护工程隐蔽性强,监测技术不能完全满足煤矿的需要,安全可靠根本没有保证。第二,我国煤炭资源分布范围广,地质条件复杂多变,好多复杂地质条件下锚杆支护并未达到理想的支护效果。该设计是从锚杆支护的隐蔽性和我国复杂多变的地质条件等特点出发。围绕这些特点,从杆体材料,加工方法,支护设计理念、施工质量,检测设备,监测手段等方面入手进行试验研究,提高支护质量,实现高产高效。 关键词:巷道;锚杆支护;高强度锚杆;监测 1问题的提出 由于锚杆支护能够改变围岩的力学特性,能获得良好的支护效果,带来传统支护方式无法比拟的技术经济效益,在国内外已受到了普遍的重视并得到了快速的发展及广泛的应用。因此,探索正确的巷道支护理论、选择安全可靠的支护方法、确定经济合理的支护参数以及实用高效的施工工艺成了长期以来人们所致力解决的一个重大理论及技术课题,对于煤矿来说具有重大意义。锚杆支护是巷道支护的一次重大革命,它可以起到加固、悬吊、合成梁和挤压连接体等作用,在支护中使用锚杆可以改变岩体的受力状态,不仅增加了岩石本身的稳定程度,而且使被支护岩体由荷载变为承载体,提高了岩体承载能力。同时,大量工程实践表明,锚杆支护具有用料节省、巷道断面利用率高、支护及时、劳动强度小、经济效益高以及对巷道围岩变形的适应性好等诸多优。因而,井下巷道采用锚杆支护是一种行之有效的支护手段,成为世界主要产煤国家煤矿支护的主要形式,美国、澳大利亚的煤矿巷道普遍采用锚杆支护,其支护比例己接近100%,英法两国煤巷的锚杆支护比例也分别达到了50%和80%以上,而我国煤矿锚杆支护在煤巷中仅占20%左右,和世界先进水平相比存在较大差距。其主要原因是巷道事故率很高。巷道变形破坏、片帮冒顶等事故在地下工程中是最常见的。据不完全统计,煤矿事故中59%以上是巷道事故。究其原因,还是对巷道变形破坏规律认识不清、支护理论不完善,从而造成支护设计工程类比居多,缺乏科学的指导,巷道支护方式选择不合理,因而也就无法保证巷道在不同地质条件下稳定和安全使用。所以本文系统的介绍锚杆支护。

锚杆支护理论

第四讲锚杆支护理论本讲主要介绍锚杆常用支护理论(包括一些近年来比较流行和活跃的理论)、锚杆支护设计方法和国外锚杆支护主要经验,以及巷道容易冒顶的十种情况和五种应对措施。 锚杆支护的作用机理尚在探讨之中。目前己提出的观点较多,其中影响较大的有悬吊作用、组合梁(拱)作用、组合拱、减跨理论、加固(提高C、φ值)作用等几种。这几种观点都是以围岩状态和利用锚杆杆体受拉(力)为前提来解释锚杆支护作用机理的,因此,围岩状态及锚杆受拉力这两个前提的客观性是判定上述理论正确性的标准。 一、锚杆支护理论 支护:就是指为了地下巷道掘进、硐室开挖后的稳定及施工安全,而采取的支持、加强或改善围岩应力状态而打设的构件或采取的措施的总称。支护包括两个方面,一是支,就是顶住顶板,防止顶板出现大量的下沉,使顶板下沉控制在可控、安全的状态,二是护,就是保持顶板的完整性,防止出现漏矸、漏顶、巷道掉渣等现象。支和护是一个有机统一的整体,它们共同组成了支护系统。 (一)锚杆支护理论综述 1、悬吊理论

1)机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。 图4-1锚杆悬吊作用原理示意图2)缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。 3)适用条件:在锚杆的长度范围内有一层坚硬而稳定的岩层,锚杆可以锚固到顶板坚硬稳定岩层。 图4-2a拱形巷道的锚杆悬吊作用b软弱岩层的锚杆悬吊作用 2、组合梁理论 1)机理:将锚固范围内的岩层挤紧,增加岩层间的摩擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将几层薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应变和应力都将大大减小,组合梁的挠度亦减小。在于通过锚杆的预拉应力将原视为叠合梁(板)的岩层挤紧,增大岩层间的摩擦力;

锚杆支护理论

锚杆支护理论 Document number:PBGCG-0857-BTDO-0089-PTT1998

第四讲锚杆支护理论本讲主要介绍锚杆常用支护理论(包括一些近年来比较流行和活跃的理论)、锚杆支护设计方法和国外锚杆支护主要经验,以及巷道容易冒顶的十种情况和五种应对措施。 锚杆支护的作用机理尚在探讨之中。目前己提出的观点较多,其中影响较大的有悬吊作用、组合梁(拱)作用、组合拱、减跨理论、加固(提高C、φ值)作用等几种。这几种观点都是以围岩状态和利用锚杆杆体受拉(力)为前提来解释锚杆支护作用机理的,因此,围岩状态及锚杆受拉力这两个前提的客观性是判定上述理论正确性的标准。 一、锚杆支护理论 支护:就是指为了地下巷道掘进、硐室开挖后的稳定及施工安全,而采取的支持、加强或改善围岩应力状态而打设的构件或采取的措施的总称。支护包括两个方面,一是支,就是顶住顶板,防止顶板出现大量的下沉,使顶板下沉控制在可控、安全的状态,二是护,就是保持顶板的完整性,防止出现漏矸、漏顶、巷道掉渣等现象。支和护是一个有机统一的整体,它们共同组成了支护系统。 (一)锚杆支护理论综述 1、悬吊理论

1)机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。 图4-1锚杆悬吊作用原理示意图2)缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。 3)适用条件:在锚杆的长度范围内有一层坚硬而稳定的岩层,锚杆可以锚固到顶板坚硬稳定岩层。 图4-2a拱形巷道的锚杆悬吊作用b软弱岩层的锚杆悬吊作用 2、组合梁理论 1)机理:将锚固范围内的岩层挤紧,增加岩层间的摩擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将几层薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应变和应力都将大大减小,组合梁的挠度亦

相关主题
文本预览
相关文档 最新文档