当前位置:文档之家› 函数信号发生器论文

函数信号发生器论文

函数信号发生器论文
函数信号发生器论文

摘要

本文设计低频信号发生器,以AT89C52 单片机为核心,通过键盘输入控制信号类型和频率的的选择,采用DA 转换芯片输出相应的波形,同时以LCD 显示器进行实时显示信号相关信息。我们采用C 语言进行编程,可实现方波,三角波,和正弦波三种波形的产生,且波形的频率可调。经测试该设计方案线路优化,结构紧凑,性能优越,满足设计要求。

关键字:单片机,DA 转换,信号发生器

第一章绪论

1.1 选题背景及其意义

信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如方波、锯齿波、三角波、正弦波的电路被称为函数信号发生器。在通信、广播、电视系统,在工业、农业、生物医学领域内,函数信号发生器在实验室和设备检测中具有十分广泛的用途。

1.2 单片机概述

单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU 随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D 转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。单片机具有集成度高、系统结构简单、使用方便、实现模块化、可靠性高、处理功能强、速度快等特点,因为被广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域。

1.3 信号发生器分类

信号发生器是指产生所需参数的电测试信号的仪器。因其应用广泛,种类繁多,特性各异,分类也不尽一致。按信号波形可分为正弦信号、函数信号、脉冲信号和随机信号发生器等四大类;按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器、标准信号发生器和功率信号发生器;按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发生器和频率合成式信号发生器等。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

1.4 研究题目及其意义

信号发生器是一种经常使用的设备,由纯粹物理器件构成的传统的设计方法存在许多弊端,如:体积较大、重量较沉、移动不方便、信号失真较大、波形形状调节过于死板,无法满足用户对精度、便携性、稳定性等要求,研究设计出一种具有频率稳定、准确、波形质量好、输出频率范围宽、便携性好等特点的波形发生器具有较好的市场前景。以满足工业领域对信号源的要求。

本次试验实现利用单片机AT89S52 和8 位D/A 转换芯片DAC0832 共同实现方波、锯齿波、三角波、正弦波这四种常用波形的发生。根据设计的要求,对各种波形的频率和幅度进行程序的编写,并将所写程序装入单片机的程序存储器中。在程序运行中,当接收到来自外界的命令,需要输出某种波形时再调用相应的中断服务子程序和波形发生程序,经电路的数/模转换器和运算放大器处理后,从信号发生器的输出端口输出。并且可以通过数码管和键盘显示模块,键盘可以实现对几种波形的切换。

第二章信号发生器方案设计与选择

信号发生器是指产生所需参数的电测试信号的仪器。按信号波形可分为正弦信号、波形信号、脉冲信号和随机信号发生器等四大类。本文利用单片机构造低频信号发生器,可产生正弦波,方波,三角波,锯齿波四种波形,再通过D/A 转换器DAC0832 把数字信号转变为模拟信号,经OP07 放大输出到示波器,与此同时外接LCD 显示输出信号的类型和频率。

2.1 方案的设计与选择

方案一:采用单片函数发生器可产生正弦波、方波等,操作简单易行,用D/A 转换器的输出来改变调节电压,可以实现数控调整频率,但产生信号的频率稳定度不高。

方案二:利用芯片组成的电路输出波形,MAX038 是MAXIM 公司生产的一个只需要很少外部元件的精密高频波形产生器,他能产生准确的高频正弦波、三角波、方波。输出频率和占空比可以通过调整电流、电压或电阻来分别地控制。所需的输出波形可由在A0和A1 输入端设置适当的代码来选择,且具有输出频率范围宽、波形稳定、失真小、使用方便等特点。

方案三:采用Atmel 公司的AT89C51 单片机编程方法实现,该方法的可以通过编程的方法控制信号波形的频率和幅度,而在硬件电路不便的情况下,通过程序实现频率的变化和输出波形的选择,并同时在显示器显示相应的结果。

方案一输出信号频率不够稳定;方案二成本高,程序复杂度高;方案三,软硬件结合,硬件成本低,软件起点低,优化型相对比较好,容易实现,且满足设计要求。综合考虑,我们采用了方案三,用AT89C51 单片机设计低频信号发生器,能够满足信号的频率稳定性和精度的准确行。

2.2 设计原理简介

该设计设计一个低频信号发生器,我们采用的是AT89C51 单片机用软件实现信号的输出。该单片机是一个微型计算机,包括中央处理器CPU ,RAM ,ROM 、I/O 接口电路、定时计数器、串行通讯等,是波形设计的核心。该信号发生器原理框图如图2.1,总体原理为:利用AT89C51 单片机构造低频信号发生器,可产生正弦波,方波,三角波,锯齿波四种波形,通过C 语言对单片机的编程即可产生相应的波形信号,并可以通过键盘进行各种功能的转换和信号频率的控制,当输出的数字信号通过数模转换成模拟信号也就得到所需要的信号波形,通过运算放大器的放大输出波形,同时让显示器显示输出的波形信息。

输出

图2.1 信号发生器原理框图

本方案其主要模块包括复位电路、时钟信号、键盘控制、D/A 转化及LED 显示。其各个模块的工作原理如下:

(1)复位电路是为单片机复位使用,使单片机接口初始化;89C51 等CMOS51

键盘 输入

AT89C51 单片机

接口 电路

数/模转换器 DAC0832

Op07 运算放大器

系列单片机的复位引脚RET 是施密特触发输入脚,内部有一个上拉低电阻,当振荡器起振以后,在RST 引脚上输出2 个机械周期以上的高电平,器件变进入复位状态开始,此时ALE、PSEN、P0、P1、P2、P4 输出高电平,RST 上输入返回低电平以后,变退出复位状态开始工作。该方案采用的是人工开关复位,在系统运行时,按一下开关,就在RST 断出现一段高电平,使器件复位。

(2)时钟信号是产生单片机工作的时钟信号,控制着计算机的工作节奏,可以通过提高时钟频率来提高CPU 的速度。89C51 内部有一个可控的反相放大器,引脚XTAL1、XTAL2 为反相放大器输入端和输出端,在XTAL1、XTAL2 上外接12MHZ 晶振和30pF 电容便组成振荡器。时钟信号常用于CPU 定时和计数。

(3)键盘模块是是用于控制信号输入的类型,当按键按下时,可以通过单片机编程读取闭合的键号,实现相应的信号输出。其步骤主要是a、判断是否有键按下;b、去抖动,延时20ms 左右;c、识别被按下的键号;d、处理,实现功能。

(4)D/A 转换也称为数模转换,是把数字量变换成模拟量的线性电路。单片机产生的数字信号通过DAC0832 转化成模拟信号,输出相应的电流值,通过OP07 集成运算放大器可以取出模拟量得电压值,最后利用示波器获得输出的模拟信号的波形;衡量数模转换的性能指标有分辨率、转换时间、精度、线性度等。LED 显示器用由若干个发光二极管按一定的规律排列而成,是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光用于是显示相关输出波形的信息,包括信号的类型和频率。

2.3 设计功能

当程序下进去时经过初始化,液晶屏的上只显示“wave:”和“f:“,当开关三按一下是此时输出波形为正弦波,按两下时输出为方波,按三下时输出为三角波。另外两个开关可以调节频率,三种波形的频率可调范围不同,分别如下:

正弦波:1——280HZ

方波:1——3.3KHZ

三角波:1——280HZ

根据示波器的波形频率的显示计算出三种波形的频率计算公式如下:正弦波:f=(1000/(9+3*ys))

方波:f=(100000/(3*ys))

三角波:f=(1000/(15+3*ys)

其中ys为延时的变量。

第三章主要电路元器件介绍

3.1 AT89C51 单片机简介

3.1.1 单片机简介

AT89C51 是一种带4K 字节FLASH 存

储器的低电压、高性能CMOS 8 位微处理

器,俗称单片机。该芯片具有优异的性价

比,集成度高,体积小,可靠性强,控制

功能强等优点。其外形及引脚排列如图3.1

所示。

3.1.2 主要特性

兼容性能强

4K 字节可编程FLASH 存储器

全静态工作:0Hz-24MHz

128×8 位内部RAM

32 可编程I/O 线

两个16 位定时器/计数器

5 个中断源图3.1 AT89C51 引脚图

可编程串行通道

低功耗的闲置和掉电模式

片内振荡器和时钟电路

3.1.3管脚功能说明

VCC:供电电压4~6V (典型值5V);

GND:接地;

REST :复位引脚输入高电平使89C51 复位,返回低电平退出复位;

EA/Vpp:运行方式时,EA 为程序存储器选择信号,EA 接地时CPU 总是从外部存储器中取指令,EA 接高电平时CPU 可以从内部或外部取指令;FLASH 编程方式时,该引脚为编程电源输入端Vpp(=5V 或12V);PSEN :外部程序存储器读选通信号,CPU 从外部储存器取指令时,从PSEN 引脚输出读选通信号(负脉冲)ALE /PROG :运行方式时,ALE 为外部储存器低8 位地址锁存信号,FLASH 编程方式时,该引脚为负脉冲输入端;

XTAL1,XTAL2 为内部振荡器电路(反相放大器)的输入端和输出端,外接晶振电路;

P0 口:P0 口为一个8 位漏级开路双向I/O 口,每脚可吸收8TTL 门电流。

当P0 口的管脚第一次写1 时,被定义为高阻输入。P0 能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH 编程时,P0 口作为原码输入口,当FIASH进行校验时,P0 输出原码,此时P0 外部必须被拉高;

P1 口:P1 口是一个内部提供上拉电阻的8 位双向I/O 口,P1 口缓冲器能接收输出4TTL 门电流。P1 口管脚写入1 后,被内部上拉为高,可用作输入,P1 口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH 编程和校验时,P1 口作为第八位地址接收;

P2 口:P2 口为一个内部上拉电阻的8 位双向I/O 口,P2 口缓冲器可接收,输出4个TTL 门电流,当P2 口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2 口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。P2 口当用于外部程序存储器或16 位地址外部数据存储器进行存取时,P2 口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2 口输出其特殊功能寄存器的内容。P2 口在FLASH 编程和校验时接收高八位地址信号和控制信号;

P3 口:P3 口管脚是8 个带内部上拉电阻的双向I/O 口,可接收输出4 个TTL 门电流。当P3 口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3 口将输出电流(ILL)这是由于上拉的缘故。P3 口也可作为AT89C51 的一些特殊功能口如下:

P3.0 RXD(串行输入口) P3.4 T0(记时器0 外部输入)

P3.1 TXD(串行输出口) P3.5 T1(记时器1 外部输入)

P3.2 /INT0(外部中断0) P3.6 /WR(外部数据存储器写选通)

P3.3 /INT1(外部中断1) P3.7 /RD(外部数据存储器读选通)

3.2 DAC0832

3.2.1 工作原理

DAC0832 是8 分辨率的D/A 转换集成芯

片,由8 位输入锁存器、8 位DAC 寄存器、8

位D/A 转换器及转换控制电路四部分构成。8

位输入锁存器用于存放主机送来的数字量,

使输入数字得到缓冲和锁存,并加以控制;8

位DAC 寄存器用于存放存放待转换的数字

量,并加以控制;8 位D/A 转换器输出与数

字量成正比的模拟电流,由与门、与非门组

成的输入控制的输入电路来控制2 个寄存器的选通或锁存状态。图3.2 DAC0832 引脚图

WR2 和XFER 同时有效时,8 位DAC 寄存器端为高电平“1”,此时DAC 寄存器的输出端Q 跟随输入端D 也就是出入寄存器Q 端得电平变化,反之,当端为低电平“0”时,第一级8 位输入寄存器Q 端得状态则锁存到第二级8 位DAC 寄存器中,以便第三极8 位DAC 转换器进行D/A 转换。

3.2.2 DAC0832的主要特性参数

分辨率为8 位;电流稳定时间1us;

可单缓冲、双缓冲或直接数字输入;

只需在满量程下调整其线性度;

单一电源供电(+5V~+15V);

低功耗,20mW。

3.2.3 DAC0832 引脚功能简介

D0~D7:8 位数据输入线,TTL 电平,有效时间应大于90ns(否则锁存器的数据会出错);

ILE:数据锁存允许控制信号输入线,高电平有效;

CS:片选信号输入线(选通数据锁存器),低电平有效;

WR1:数据锁存器写选通输入线,负脉冲(脉宽应大于500ns)有效。由ILE CS、WR1 的逻辑组合产生LE1,当LE1 为高电平时,数据锁存器状态随输入数据线变换,LE1 的负跳变时将输入数据锁存;

XFER:数据传输控制信号输入线,低电平有效,负脉冲(脉宽应大于500ns)有效;

WR2:DAC 寄存器选通输入线,负脉冲(脉宽应大于500ns)有效;

IOUT1:电流输出端1,其值随DAC 寄存器的内容线性变化;

IOUT2:电流输出端2,其值与IOUT1 值之和为一常数;

Rfb:反馈信号输入线,改变Rfb 端外接电阻值可调整转换满量程精度;

Vcc:电源输入端,Vcc 的范围为+5V~+15V;

VREF:基准电压输入线,VREF 的范围为-10V~+10V;

AGND:模拟信号地;

DGND:数字信号地。

3.3 LCD液晶屏引脚功能简介

VSS为电源地;

VDD接5V电源;

VO需要与地短接显示屏工作;

RS为寄存器选择,高电平1时选择数据寄存器、低电

平0时选择指令寄存器;

RW为读写信号线,高电平1时进行读操作,低电平0

时进行写操作;

E端是液晶的使能端;

D0~D7为8位双向数据端;

VCC电源;

GND地。

图3.3LCD引脚图

第四章单元电路的硬件设计

硬件原理硬件电路的设计决定一个系统的的功能,是设计的基础所在,而一般设计的目标:可靠,简洁,高效,优化,好的硬件电路可以给程序的编写带来极大的优势,同时使可以很好的提高该信号设计的精度和灵敏度,使整个系统工作协调有序。

4.1 硬件原理框图

对于该低频信号发生器的设计,我们采用了以AT89C51 单片机芯片作为核心处理器,编程实现各种不同类型信号的产生,最后通过DA 转换输出到示波器。结构简单,思路仅仅有条,而根据设计的基本要求,我们又把其细分为不同的功能模块,各个功能模块相互联系,相互协调,通过单片机程序构成一个统一的整体,其整体电路原理框图如图4.1 所示:

图4.1 硬件原理框图

4.2 单片机AT89C51 系统的设计

89C51 单片机是该信号发生器的核心,具有2 个定时器,32 个并行I/O 口,1 个串行I/O 口,5 个中断源。由于本设计功能简单,数据处理容易,数据存储空间也足够,因为我们采用了片选法选择芯片,进行芯片的选择和地址的译码。

在单片机最小最小系统中,单片机从P1 口接收来自键盘的信号,并通过P0 口输出控制信号,通过DA 转换芯片最终由示波器显示输出波形,P2 控制显示器段选码,P3口P3.4-P3.6 通过74LS138 译码器控制位选码,输出显示信息。如果有键盘按下,则在控制器端产生一个读信号,使单片机读入信号,如果有信号输出,则在写控制端产生一个写信号,并通过示波器和显示器显示相应的信息。 单片机引脚分配如下:

XTAL1,XTAL2:外接晶振,产生时钟信号; RST :复位电路;

P0 口:键盘输出信号。具体为:P1.0、P1.1 波形选择;P1.2、P1.3、P1.4

频率个位,十位,百位调节;P1.5 频率加减控制;P1.6 跳出循环。 P1 口:8 位数字信号输出输出,外接DAC0832; P2 口:LED 显示器段选码;

键盘 输入 时钟 复位 单片机 AT89C51

LCD 显示 D/A 转换 放大 电路

波形 显示

P3 口:P3.0 锁存器74HC573 片选信号;P3.2 中断控制;P3.4-P3.6 74LS138 输入信号,译码控制LED 显示器位选。

P3.7 为74LS138 片选码。

4.3 时钟电路

单片机的时钟信号通常用两种电路形式得到:内

部振荡和外部振荡方式。在引脚XTAL1 和XTAL2 外接

晶体振荡器,构成了内部振荡方式。由于单片机内部

有一个高增益的反相放大器,当外接晶振后,就构成

了自激振荡,并产生振动时钟脉冲。晶振通常选用

6MHZ、12MHZ、24MHZ。

本设计中时钟电路图如图4.2,我们选择了12MHZ

和晶振分别接引脚XTAL1 和XTAL2,电容C1,C2 均选

择为30pF,对振荡器的频率有稳定作用,当频率较大时,正弦波、方波、三角波

及锯齿波中每一点的延时时间为几微妙,故延时时间还要加上指令时间才能获得

较大的频率波形。图4.2 时钟电路

4.4 复位电路

复位引脚RST 通过一个斯密特触发器

与复位电路相连,斯密特触发器用来抑制

噪声,在每个机器周期的S5P2,斯密特触

发器的输出电平由复位电路采样一次,然

后才能得到内部复位操作所需要的信号。

复位电路通常采用上电自动

图4.3 复位电路

复位和按钮复位两种方式。本设计选择了

按键复位如图4.3, 在系统运行时,按一下

开关,就在RST 断出现一段高电平,使图

4.2 时钟电路图器件复位。此时ALE、PSEN、P0、P1、P2、P4 输出高

电平,RST 上输入返回低电平以后,变图4.3 复位电路

退出复位状态开始工作。

4.5 键盘接口电路

常用的键盘电路一般为矩阵式,但是对于此设

计,为了方便程序的简单化,我们采用了一般的键盘

接口,键盘输出信号。具体为:P1.0、P1.1波形选择,

其中当P1.0=0,P1.1=0 输出正弦波,当P1.0=0,

P1.1=1 输出三角波,当P1.0=1,P1.1=0输出锯齿波;

当P1.0=1,P1.1=1 输出方波。;P1.2、P1.3、P1.4 频

率个位,十位,百位调节;P1.5 频率加减控制;P1.6

跳出循环。图4.4 键盘电路

4.6 LCD 显示电路

如图 4.5所示,1602的八

位数据端接单片机的P1口,其三个使能端RS、RW、E分别接单片机的P3.2—P3.4。通过软件控制液晶屏可以显示波形的种类以及

波形的频率。

图4.5 显示电路

4.7 数、模转换及放大电路

由于单片机输出的是数字信号,因为要得到模拟信号的波形就必须对其进行数模转换。我们采用了DAC0832 数模转换器,该芯片具由8 位输入锁存器、8 位DAC 寄存器、8 位D/A 转换器及转换控制电路四部分构成。由于其输出为电流输出,因为外加运算放大器OP07 使之装换为电压输出。最后通过示波器显示输出的波形。

图4.6 D/A转换电路

第五章系统软件设计

5.1 软件设计流程

本系统采用AT89S52单片机,用编程的方法来产生三种波形,并通过编程来切换三种波形以及波形频率的改变。

具体功能有:(1)各个波形的切换;(2)各种参数的设定;(3)频率增减等。

后,

AT8

9S5

2芯片中,然后插到系统中即可独立完成所有的控制。

5.1.1 程序流程图

5.1.2 简介

首先对程序初始化,再判断若有按键按下,则计算相关参数,一方便利用中断定时和查询查表输出波形,另一方便送段选口和位选口数据使LCD 显示相关波形类型和频率,最后反馈回去构成循环,判断按键相关信息。

5.2 信号频率数据采集程序

本设计将各种波形的数据通过P1.0 口选择,送往在单片机的程序储存器里,通过调节P1.1和P1.2口来改变这个频率,然后计算其技术初值,开启中断,通过改变D/A 转换器输出波形。电路较为简单,成本较低。

5.2.1 正弦波产生

开 始

初始化

有按键按下? S1按下 S2按下

S3按下

S1num++

S1num=1 S1num=2

S1num=3

S1num=1

输出: 正弦波 液晶显示

Sine:

输出:

方波 液晶显示 Squart: 输出: 三角波 液晶显示 Train: 无输出 S1num=0

延时增 f 减小

液晶显示

f

延时减 f 增大

液晶显示

f

(1)输出波形

(2)程序如下:

if(s1num==1)

{

for(j=0;j<255;j++)

{

P0=tosin[j];

delay1(ys);

}

}

5.2.2 三角波产生

(1)产生三角波的原理

设个自变量a,让其不断地自加1,直到加到255 时,再求其对a 进行不断地自减一直减到0,加减的控制利用P0 控制。再不断地重复上述过程而产生三角波。(2)输出波形

(3)程序如下

if(s1num==3)

{

if(a<128)

{

P0=a;

delay1(ys);

}

else

{

P0=255-a;

delay1(ys);

}

a++;

}

5.2.4 方波产生

(1)产生方波的原理

设个自变量使之延时一段时间,再另自变量在255 时在延时与为0 相同的时间,然后在重复上述过程。

(2)输出波形

(3)程序如下

if(s1num==2)

{

P0=0xff;

delay1(ys);

P0=0;

delay1(ys);

}

第六章设计总结

制作函数信号发生器随设计思想不同,具有多种方法,本文只是一种可能实现的方法。此法的频率控制和幅度控制分辨率高,且硬件集成度高,整机自动化程度高,性能优良,具有很高的实用价值。

该信号发生器在调试时,总是出现许多的错误,软件上除了许多的问题,之后纠正和向老师、同学请教慢慢的改了过来。可是在仿真时依然存在很多的问题,开始的时候是仿真出不了波形,之后改了改电路的一根线,出现了。在频率的调节问题更多,无法实现逐步增加。

通过这次课程设计,使我深刻地认识到学好专业知识的重要性,也理解了

理论联系实际的含义,并且检验了大学三年的学习成果,进一步加深了我对专业

知识的了解和认识以及动手的能力。虽然在这次设计中对于所学知识的运用和衔

接还不够熟练,作品完成的还不是很出色。但是我将在以后的工作和学习中继续

努力、不断完善。这个设计是对我们过去所学知识的系统提高和扩充的过程,为

今后的发展打下了良好的基础。

参考文献

[1] 谭浩强.C 程序设计. 北京:清华大学出版社,2002

[2] 王为青,程国刚. 单片机Keil Cx51 应用开发技术.北京:人民邮电大学出版社,2007

[3] 蒋辉平主编单片机原理与应用设计北京航空航天大学出版社 2007

[4]张友德,赵志英,涂时亮. 单片机微型机原理、应用和实验. 上海:复旦大学出版社,2006.10

[5]丁向荣,谢俊,王彩申. 单片机C 语言编程与实践. 北京:电子工业出版社,2009.8

附录:源程序

#include

#define uchar unsigned char

#define uint unsigned int

sbit lcdrw=P3^3;

sbit lcdrs=P3^2;

sbit lcde=P3^4;

sbit d=P2^7;

sbit s1=P2^0;

sbit s2=P2^1;

sbit s3=P2^2;

sbit cs=P3^5;

sbit wr=P3^6;

uchar s1num,a,ys,j;

uint fre;

uchar code tosin[256]={

0x80,0x83,0x86,0x89,0x8d,0x90,0x93,0x96,0x99,0x9c,0x9f,0xa2, 0xa5,0xa8,0xab,0xae,0xb1,0xb4,0xb7,0xba,0xbc,0xbf,0xc2,0xc5, 0xc7,0xca,0xcc,0xcf,0xd1,0xd4,0xd6,0xd8,0xda,0xdd,0xdf,0xe1, 0xe3,0xe5,0xe7,0xe9,0xea,0xec,0xee,0xef,0xf1,0xf2,0xf4,0xf5, 0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfd,0xfe,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xfe,0xfd, 0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7,0xf6,0xf5,0xf4,0xf2,0xf1, 0xef,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe3,0xe1,0xde,0xdd,0xda, 0xd8,0xd6,0xd4,0xd1,0xcf,0xcc,0xca,0xc7,0xc5,0xc2,0xbf,0xbc, 0xba,0xb7,0xb4,0xb1,0xae,0xab,0xa8,0xa5,0xa2,0x9f,0x9c,0x99, 0x96,0x93,0x90,0x8d,0x89,0x86,0x83,0x80,0x80,0x7c,0x79,0x76, 0x72,0x6f,0x6c,0x69,0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51, 0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30, 0x2e,0x2b,0x29,0x27,0x25,0x22,0x20,0x1e,0x1c,0x1a,0x18,0x16, 0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a,0x09,0x08,0x07,0x06, 0x05,0x04,0x03,0x02,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02,0x02,0x03,0x04,0x05, 0x06,0x07,0x08,0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15, 0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b,0x2e, 0x30,0x33,0x35,0x38,0x3a,0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e, 0x51,0x55,0x57,0x5a,0x5d,0x60,0x63,0x66 ,0x69,0x6c,0x6f,0x72, 0x76,0x79,0x7c,0x80 };/*正弦波码 */

void delay(uint z) //延时子程序

{

uchar i,j;

for(i=z;i>0;i--)

for(j=110;j>0;j--);

}

void delay1(uint y)

{

uint i;

for(i=y;i>0;i--);

}

void write_com(uchar com) //1602写指令{

lcdrs=0;

P1=com;

delay(5);

lcde=1;

delay(5);

lcde=0;

}

void write_data(uchar date) //1602数据{

lcdrs=1;

P1=date;

delay(5);

lcde=1;

delay(5);

lcde=0;

}

void init() //初始化

{

lcdrw=0;

lcde=0;

wr=0;

cs=0;

write_com(0x38);

write_com(0x0c);

write_com(0x06);

write_com(0x01);

write_com(0x80+0x00);

write_data(0x77); //写wave:

write_data(0x61);

write_data(0x76);

write_data(0x65);

write_data(0x3a);

write_com(0x80+0x40); //写 f: write_data(0x66);

write_data(0x3a);

}

void write_f(uint date) //写频率{

uchar qian,bai,shi,ge;

qian=date/1000;

bai=date/100%10;

shi=date/10%10;

ge=date%10;

write_com(0x80+0x42);

write_data(0x30+qian);

write_data(0x30+bai);

write_data(0x30+shi);

write_data(0x30+ge);

write_data(0x48);

write_data(0x5a);

}

void xsf() //显示频率

{

if(s1num==1)

{

fre=(1000/(9+3*ys));

write_f(fre);

}

if(s1num==2)

{

fre=(100000/(3*ys));

write_f(fre);

}

if(s1num==3)

{

fre=(1000/(15+3*ys));

write_f(fre);

}

}

void keyscanf()

{

d=0;

if(s1==0)

{

delay(5);

if(s1==0)

{

while(!s1);

s1num++;

if(s1num==1)

{

ys=0;

write_com(0x80+0x05);

write_data(0x73); //写sine: write_data(0x69);

write_data(0x6e);

write_data(0x65);

write_data(0x20);

write_data(0x20);

}

if(s1num==2)

{

ys=10;

write_com(0x80+0x05);

write_data(0x73); //写squrae write_data(0x71);

write_data(0x75);

write_data(0x61);

write_data(0x72);

write_data(0x65);

}

if(s1num==3)

{

ys=0;

write_com(0x80+0x05); //train write_data(0x74);

write_data(0x72);

write_data(0x61);

write_data(0x69);

write_data(0x6e);

write_data(0x20);

}

if(s1num==4)

{

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

信号发生器论文(DOC)

函数信号发生器

函数信号发生器 1.概述 1.1 任务说明 1.设计、调试方波、三角波、正弦波发生器 2.输出波形:方波、三角波、正弦波 3..频率范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz 4.正弦波U≈3V,三角波U≈5V,方波U≈14V 1.2 信号发生器发展现状 随着信息科技的发展,在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,这就需要能产生高频信号的振荡器。 在电子工程中,常常用到正弦信号,作为信号源的振荡电路,主要的要求是频率准确度高、频率稳定性好、波形失真小和振幅稳定度高等。 在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火,超声波焊接,超声诊断,核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。可见,正弦波振荡电路在各个科学技术部门的应用是十分广泛的。 正弦波振荡电路广泛应用于无线电通讯、广播电视,工业上的高频感应炉、超声波发生器、正弦波信号发生器等。正弦波振荡电路用来产生一定频率和幅值的正弦交流信号。它的频率范围很广,可以从一赫以下到几百兆以上;输出功率可以从几毫瓦到几十千瓦;输出的交流电是从电源的直流电转换而来的。 1.3 信号发生器的分类 信号发生器用途广泛、种类繁多,它分为通用信号发生器和专用信号发生器两大类。专用仪器是为某种专用目的而设计制作的,能够提供特殊的测量信号,如调频立体声信号发生器、电视信号发生器等。通用信号发生器应用面广,灵活性好,可以分为以下几类: 1、按发生器输出信号波形分类 按照输出信号波形的不同,信号发生器大致分为正弦信号发生器、函数信号发生器、脉冲信号发生器和随机信号发生器。应用最广泛的是正弦信号发生器。正弦信号是使用最广泛的测试信号。这是因为产生正弦信号的方法比较简单,而且用正弦信号测量比较方便。函数信号发生器也比较常用,这是因为它不仅可以输出多种波形,而且信号频率范围较宽。脉冲信号发生器主要用来测量脉冲数字电路的工作性能和模拟电路的瞬态响应。随机信号发生器即噪声信号发生器,用来产生实际电路和系统中的模拟噪声信号,借以测量电路的噪声特性。 2、按工作频率分类 按照工作频率的不同,信号发生器分为超低频、低频、视频、高频、甚高频、超高频信号发生器。 3、按调制方式分类 按调制方式的不同,信号发生器分为调幅、调频、调相、脉冲调制等类型。

函数信号发生器(毕业设计)

陕西国防学院电子工程系毕业论文 摘要 本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调制信号输入端,所以可以用来对低频信号进行频率调制。 函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如ICL8038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。所以,可选择的方案多种多样,技术上是可行的。 关键词: ICL8038,波形,原理图,常用接法 1

陕西国防学院电子工程系毕业论文 目录 摘要 (1) 目录 (2) 第一章项目任务 (3) 1.1 项目建 (3) 1.2 项目可行性研究 (3) 第二章方案选择 (4) 2.1 [方案一] (4) 2.2 [方案二] (4) 第三章基本原理 (5) 3.1函数发生器的组成 (6) 3.2 方波发生器 (6) 3.3 三角波发生器 (7) 3.4 正弦波发生器 (9) 第四章稳压电源 (10) 4.1 直流稳压电源设计思路 (10) 4.2 直流稳压电源原理 (11) 4.3设计方法简介 (12) 第五章振荡电路 (15) 5.1 RC振荡器的设计 (15) 第六章功率放大器 (17) 6.1 OTL 功率放大器 (17) 第七章系统工作原理与分析 (19) 7.1 ICL8038芯片简介 (19) 7.2 ICL8038的应用 (19) 7.3 ICL8038原理简介 (19) 7.4 电路分析 (20) 7.5工作原理 (20) 7.6 正弦函数信号的失真度调节 (23) 7.7 ICL8038的典型应用 (24) 致谢 (25) 心得体会 (26) 参考文献 (27) 附录1 (28) 附录2 (29) 附录3 (30) 2

函数信号发生器实训报告

电子与信息工程 综合实验课程报告 实验名称:基于单片机的信号发生器的设计与实现班级:电子1班 组员:徐丹许艳徐梅 指导教师:张辉 时间:2013-6-8至2011-6-16

目录 前言......................................................................... 错误!未定义书签。 1 波形发生器概述 (2) 1.1波形发生器的发展状况 (2) 1.2国内外波形发生器产品比较 (3) 2 方案论证与比较 (4) 2.1 方案一 (4) 2.2 方案二 (5) 2.3 方案三 (5) 3 硬件原理 (5) 3.1 MCS-51单片机的内部结构 (6) 3.1.1 内部结构概述 (6) 3.1.2 CPU结构 (6) 3.1.3 存储器和特殊功能寄存器 (7) 3.2 P0-P3口结构 (7) 3.3 时钟电路和复位电路 (8) 3.3.1时钟电路 (8) 3.3.2单片机的复位状态 (9) 3.4 DAC0832的引脚及功能 (10) 4 软件原理 (11) 4.1 主流程图 (12) 4.1.1 方波仿真图 (13) 4.1.2 三角波仿真图 (14) 4.1.3 锯齿波仿真图 (15) 4.1.4 梯形波仿真图 (16) 4.1.5 正弦波仿真图 (17) 4.2附录:实物图 (17) 总结 (18) 致谢 (19) 参考文献 (19)

1 波形发生器概述 在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。 1.1波形发生器的发展状况 波形发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器。函数波形发生器具有连续的相位变换、和频率稳定性等优点,不仅可以模拟各种复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通讯,组成自动测试系统,因此被广泛用于自动控制系统、震动激励、通讯和仪器仪表领域。 在70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形,则电路结构非常复杂。同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。 在70 年代后,微处理器的出现,可以利用处理器、A/D/和D/A,硬件和软件使波形发生器的功能扩大,产生更加复杂的波形。这时期的波形发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。 90 年代末,出现几种真正高性能、高价格的函数发生器、但是HP公司推出了型号为HP770S的信号模拟装置系统,它由HP8770A任意波形数字化和HP1776A波形发生软件组成。HP8770A实际上也只能产生8 中波形,而且价格昂贵。不久以后,Analogic公司推出了型号为Data-2020的多波形合成器,Lecr oy 公司生产的型号为9100 的任意波形发生器等。 到了二十一世纪,随着集成电路技术的高速发展,出现了多种工作频率可过GHz 的DDS 芯片,同时也推动了函数波形发生器的发展,2003 年,Agilent 的产品33220A能够产生17 种波形,最高频率可达到20M,2005 年的产品N6030A 能够产生高达500MHz 的频率,采样的频率可达1.25GHz。由上面的产品可以看出,函数波形发生器发展很快近几年来,国际上波形发生器技术发展主要体现在以下几个方面:

函数信号发生器设计论文.

四川师范大学成都学院通信原理课程设计 目录 前言 (1) 1 函数信号发生器设计任务 (1) 1.1 设计提议 (1) 1.2 方案论证与研究 (1) 2 方案设计 (2) 2.1 项目指标 (2) 2.1.1 电源参数 (2) 2.1.2 工作频率 (2) 2.2 方案比较及选择 (2) 3 设计理论 (3) 3.1 函数发生器的结构组成 (3) 3.2 方波信号 ........................................................... 3 如图3.2-1由运算放大器和电容积分电路、Rf组成的,输出电压最终反馈到运 放反相输出端,因此积分电路有负反馈和延迟的作用。 (3) 3.3 正弦波信号 (4) 3.4 三角波信号 (6) 4 RC振荡电路设计 (7) 5 放大器功率及ICL8038介绍 (9) 5.1 放大器功率 (9) 5.2 ICL8038原理介绍 (10) 6 致谢 (11) 7 总结及体会 (12) 附录1 系统原理图 (13) 附录2 系统元件清单 (14) 附录3 系统PCB图 (15) I 四川师范大学成都学院通信原理课程设计参考文 献 (16) II 四川师范大学成都学院通信原理课程设计函数信号发生器设计论文 前言 函数信号发生器的制作是以集成块ICL8038为核心器件,制作的成本也相对较低。是适合学生学习、使用电子技术测量。ICL8038可以输出具有多种波形的精

密振荡集成电路,要想产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号只需要个别外部元件。输出波形的占空比和频率还可以由电阻或电流控制。其次由于此芯片具有调制信号的输入端,所以可以用作频率调制,针对于低频信号。 函数信号发生器有着不同的用途,其电路中使用的器件是分离器件的可以产生三种或多种波形的函数发生器;而产生正弦波、方波、三角波也有多种方案,是集成器件电路,如先产生正弦波,根据其周期性内部某种确定的函数关系,再将正弦波通过整形电路转化为方波,最后三角波通过积分电路形成。也可以先产生方波或三角波,再将方波或三角波转化成正弦波。随着电子技术日益发展,新器材、新材料越发渐好,随着期间可选性的增加,函数信号发生器开发出更多的新款式,比如在技术上很可靠的产生正弦波、三角波、方波的主芯片ICL8038。所以,可以选择多种多样的方案,原则上是可行的。 1 函数信号发生器设计任务 1.1 设计提议 产品开发、工业生产、科学研究等领域都的使用函数信号发生器,它常用的基本测试信号有锯齿波和正弦波、矩形波、三角波。常作为时基电路的锯齿波信号在示波器等仪器中利用荧光屏显示图像。例如,想要通过示波器荧光屏上观察到被测不失真地信号波形,通过产生锯齿波电压使的电子束在水平方向匀速搜出荧光屏。方波,三角波都有着不同的重要作用,而函数信号发生器是指一种能自发的产生方波、正弦波、三角波和锯齿波阶梯波等电压波形的仪器或电路。因此,提议设计一种能产生三角波、正弦波、方波的函数信号发生器。 1.2 方案论证与研究 函数信号发生器用途较多,其电路中使用的器件是分离器件的可以产生三种或多种波形的函数发生器;而产生正弦波、方波、三角波也有多种方案,是集成器件电路,如先产生正弦波,根据其周期性内部某种确定的函数关系,再将正弦波通过整形电路转化 1 四川师范大学成都学院通信原理课程设计为方波,最后三角波通过积分电路形成。也可以先产生方波或三角波,再将方波或三角波转化成正弦波。随着电子技术日益发展,新器材、新材料越发渐好,随着期间可选性的增加,函数信号发生器开发出更多的新款式,比如在技术上很可靠的产生正弦波、三角波、方波的主芯片ICL8038。所以,可以选择多种多样的方案,原则上是可行的。 2 方案设计 2.1 项目指标 2.1.1 电源参数 ● 输入:双电源 +12V、-12v

信号发生器毕业设计

信号发生器的设计与制作 系别:机电系专业:应用电子技术届:07届姓名:张海峰 摘要 本系统以AD8951集成块为核心器件,AT89C51集成块为辅助控制器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。AD9851是AD公司生产的最高时钟为125 MHz、采用先进的CMOS技术的直接频率合成器,主要由可编程DDS系统、高性能模数变换器(DAC)和高速比较器3部分构成,能实现全数字编程控制的频率合成。 关键词AD9851,AT89C51,波形,原理图,常用接法

ABSTRACT 5 The system AD8951 integrated block as the core device, AT89C51 Manifold for auxiliary control devices, production of a function signal generator to produce low cost. Suitable for students to learn the use of electronic technology measurement. AD9851 is a AD produced a maximum clock of 125 MHz, using advanced CMOS technology, the direct frequency synthesizer, mainly by the programmable DDS systems, high-performance module converter (DAC) and high-speed comparator three parts, to achieve full Digital program-controlled frequency synthesizer. Key words AD9851, AT89C51, waveforms, schematics, Common Connection

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

函数信号发生器的设计与制作

Xuchang Electric V ocational College 毕业论文(设计) 题目:函数信号发生器的设计与制作 系部:电气工程系_ 班级:12电气自动化技术 姓名:张广超 指导老师:郝琳 完成日期:2014/5/20

毕业论文内容摘要

目录 1引言 (3) 1.1研究背景与意义 (3) 1.2研究思路与主要内容 (3) 2 方案选择 (4) 2.1方案一 (4) 2.2方案二 (4) 3基本原理 (5) 4稳压电源 (6) 4.1直流稳压电源设计思路 (6) 4.2直流稳压电源原理 (6) 4.3集成三端稳压器 (7) 5系统工作原理与分析 (8) 5.1ICL8038芯片性能特点简介 (8) 5.2ICL8038的应用 (8) 5.3ICL8038原理简介 (8) 5.4电路分析 (9) 5.5ICL8038内部原理 (10) 5.6工作原理 (11) 5.7正弦函数信号的失真度调节 (11) 5.8ICL8038的典型应用 (12) 5.9输出驱动部分 (12) 结论 (14) 致谢 (15) 参考文献 (16) 附录 (17)

1引言 信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波(含方波)、正弦波的电路被称为函数信号发生器。 1.1研究背景与意义 函数信号发生器是工业生产、产品开发、科学研究等领域必备的工具,它产生的锯齿波和正弦波、矩形波、三角波是常用的基本测试信号。在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波信号产生器作为时基电路。例如,要在示波器荧光屏上不失真地观察到被测信号波形,要求在水平偏转线圈上加随时间线性变化的电压——锯齿波电压,使电子束沿水平方向匀速搜索荧光屏。对于三角波,方波同样有重要的作用,而函数信号发生器是指一般能自动产生方波正弦波三角波以及锯齿波阶梯波等电压波形的电路或仪器。因此,建议开发一种能产生方波、正弦波、三角波的函数信号发生器。函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如 ICL8038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。所以,可选择的方案多种多样,技术上是可行的[1]。 1.2研究思路与主要内容 本文主要以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术实验使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从几赫到几百千赫的低失真正弦波、三角波、矩形波等脉冲信号。基于ICL8038函数信号发生器主要电源供电、波形发生、输出驱动三大部分组成。电源供电部分:主要由集成三端稳压管LM7812和LM7912构成的±12V直流电压作为整个系统的供电。波形发生部分:主要由单片集成函数信号发生器ICL8038构成。通过改变接入电路的电阻或电容的大小,能够得到几赫到几百千赫不同频率的信号。输出驱动部分:主要由运放LF353构成。由于ICL8038的输出信号幅度较小,需要放大输出信号。ICL8038的输出信号经过运放LF353放大后能够得到输出幅度较大的信号[2]。

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

函数信号发生器

函数信号发生器 函数信号发生器 作者:华伟锋卞蕊樊旭超 2013-8-8

函数信号发生器 摘要 直接数字频率合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快等优点,在雷达及通信等领域有着广泛的应用前景。本文介绍了DDS(直接数字频率合成)的基本原理和工作特点,提出以DDS芯片AD9850芯片为核心利用MSP430F5438单片机控制,辅以必要的外围电路,构成一个输出波形稳定、精度较高的信号发生器。该信号发生器主要能产生标准的正弦波、方波与三角波(锯齿波),波形可手动切换,频率步进可调,软件系统采用菜单形式进行操作,LCD液晶显示可实时显示输出信号的类型、幅度、频率和频率步进值,操作方便明了,还增加了很多功能。 关键词:AD9850;信号发生器;MSP430F149单片机;DDS;LCD液晶; Abstact:Direct Digital Synthesis (DDS) is an important frequency synthesizer technology, with high resolution, fast frequency conversion, etc., in radar and communications and other fields have a wide range of applications. This article describes the DDS (direct digital frequency synthesis) of the basic principles and work, we proposed to DDS chip AD9850 chip as the core using MSP430F5438 MCU control, supplemented by the necessary peripheral circuits to form a stable output waveform, high precision signal generator . The signal generator can generate standard primary sine wave, square wave and triangular wave (sawtooth), the waveform can be manually switched, frequency step adjustable software system used to operate the menu form, LCD liquid crystal display can be real-time display of the output signal type , amplitude, frequency and frequency step value, easy to understand, but also adds a lot of functionality. Key words:AD9850; signal generator; MSP430F5438MCU; DDS; LCD liquid crystal;

实验 函数信号发生器的原理与使用

电子科学系实验报告 系班组实验日期年月日姓名学号同组姓名 实验操作评定:好、较好、基本掌握、较差指导老师 实验二函数信号发生器的原理与使用 二、实验目的: 二、实验仪器和设备 三、实验内容 内容: 1 熟悉掌握函数发生器各个操作部件的功能 2. 实验验证各个功能的实现过程 3 用示波器观察各种输出信号 4 验证个功能指标是否符合仪器的标示 5 总结说明仪器的特点及应用 四、实验原理 使用一个激发装置(即信号源)来激励一个系统,以便观察、分析它对激励信号的反映如何,这是电子测试技术的标准实验之一。在设计、制造飞机时,需要事先了解机体及其有关设备在各种气流、雷击、雨水、温变干扰下的反映情况;在发展冶炼技术时,需要了解炉内物态随炉脸温度燃油器喷口温度而变化的动态过程;在分析一个电子线路时,常常需要了解输出信号频率及振幅与输入信号频率及振幅之间的关系。这样,在进行上述过程的硬件或软件的模拟实验时.就需要人为地产生各种模仿的信号。系统在这些模仿的信号的激励下产生各种反应,因此,称它们为激励信号。产生这些信号的仪器设备称为信号源。 信号源包括函数信号发生器、脉冲信号发生器、音频信号发生器、任意波形信号发生器以 及扫描频率发生器等多种设备,用于各种各样的工程测试。图11.1所示的产品系列树反映出信号源之间的关系,其中直接数字器件合成(DDS)是一种较新的技术,它利用了最

现代化的数字器件的能力,成为系列产品的主干,发展出函数发生器相任意波形发生器这样高水平的产品。 基本的函数发生器提供正弦波、方波和三角波,频率范围在1MHz到约50MHz之间。图11.2显示的是一个包含两个运算放大器的基本函数发生器。器件A1是一个积分器,它提供一个三角波输出信号,它所产生的三角波信号通过正弦波形成电路而产生正弦波信号输出。器件A2是一个电压比较器,它产生一个方波信号。大多数普通价格的函数发生器都以一些单片式集成电路(IC)为基础,并能提供正弦波、方波和三角波。价格较高者则能提供触发信号*只有较宽的频率范围祁较稳定的频率.具有可变的上升时间(对方波而言)和可变的直流补偿.具有较高的频率准确度和较强的输出驱动能力,旦波形失真度小。

单片机信号发生器设计--论文

12 目录 1. 系统设计 1.1 设计要求 1.2方案设计与论证 1.2.1 信号发生电路方案论证 1.2.2 单片机的选择论证 1.2.3 显示方案论证 1.2.4 键盘方案论证 1.3 总体系统设计 1.4 硬件实现及单元电路设计 1.4.1 单片机最小系统的设计 1.4.2 波形产生模块设计 1.4.3 显示模块的设计 1.4.4 键盘模块的设计 1.5 软件设计流程 1.6源程序 2. 输出波形的种类与频率的测试 2.1 测试仪器及测试说明 2.2 测试结果 3. 设计心的及体会 4. 附录 4.1 参考文献 4.2 附图

1、系统设计 经过考虑,我们确定方案如下:利用AT89S52单片机采用程序设计方法产生锯齿波、正弦波、矩形波三种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,通过键盘来控制三种波形的类型选择、频率变化,最终输出显示其各自的类型以及数值。 本系统利用单片机AT89S52采用程序设计方法产生锯齿波、正弦波、矩形波三种波形,再通过D/A转换器DAC0808将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,能产1Hz—3kHz的波形。通过键盘来控制三种波形的类型选择、频率变化,并通过液晶屏1602显示其各自的类型以及数值,系统大致包括信号发生部分、数/模转换部分以及液晶显示部分三部分,其中尤其对数/模转换部分和波形产生和变化部分进行详细论述。 1.1、设计要求 1)、利用单片机采用软件设计方法产生三种波形 2)、三种波形可通过键盘选择 3)、波形频率可调 4)、需显示波形的种类及 1.1 课题的来源与技术背景 不论是在生产还是在科研与教学上,信号发生器都是电子工程师仿真实验的最佳工具。随着我国经济和科技的发展,对相应的测试仪器和测试手段也提出了更高的要求,信号发生器己成为测试仪器中至关重要的一类,因此开发信

EDA实验 函数信号发生器

EDA设计实验 题目:函数信号发生器 作者: 所在学院:信息科学与工程学院 专业年级: 指导教师: 职称: 2011 年 12 月 11 日

函数信号发生器 摘要:函数信号发生器在生产实践和科技领域有着广泛的应用。本设计是采用了EDA技术设计的函数信号发生器。此函数信号发生器的实现是基于VHDL语言描述各个波形产生模块,然后在QuartusⅡ软件上实现波形的编译,仿真和下载到Cyclone芯片上。整个系统由波形产生模块和波形选择模块两个部分组成。最后经过QuartusⅡ软件仿真,证明此次设计可以输出正弦波、方波、三角波,锯齿波,阶梯波等规定波形,并能根据波形选择模块的设定来选择波形输出。 关键字:函数信号发生器;Cyclone;VHDL;QuartusⅡ 引言: 函数信号发生器即通常所说的信号发生器是一种常用的信号源,广泛应用于通信,雷达,测控,电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格要求的电信号设备是最普通、最基本也是应用最广泛的电子仪器之一,几乎所有电参量的测量都要用到波形发生器。随着现代电子技术的飞速发展,现代电子测量工作对函数信号信号发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波性,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度、及分辨率高等。本文基于

EDA设计函数信号发生器,并产生稳定的正弦波、方波、锯齿波、三角波、阶梯波。 正文: 1、Quartus II软件简介 1)Quartus II软件介绍 Quartus II 是Alera公司推出的一款功能强大,兼容性最好的EDA工具软件。该软件界面友好、使用便捷、功能强大,是一个完全集成化的可编程逻辑设计环境,具有开放性、与结构无关、多平台完全集成化丰富的设计库、模块化工具、支持多种硬件描述语言及有多种高级编程语言接口等特点。 Quartus II是Altera公司推出的CPLD/FPGA开发工具,Quartus II提供了完全集成且与电路结构无关的开发包环境,具有数字逻辑设计的全部特性,包括:可利用原理图、结构框图、VerilogHDL、AHDL和VHDL完成电路描述,并将其保存为设计实体文件;芯片平面布局连线编辑;功能强大的逻辑综合工具;完备的电路功能仿真与时序逻辑仿真工具;定时/时序分析与关键路径延时分析;可使用SignalTap II逻辑分析工具进行嵌入式的逻辑分析;支持软件源文件的添加和创建,并将它们链接起来生成编程文件;使用组合编译方式可一次完成整体设计流程;自动定位编译错误;高效的期间编程与验证工具;可读入标准的EDIF网表文件、VHDL网表文件和Verilog网表文件;能生成第

任意信号发生器毕业设计开题报告书

苏州科技学院 毕业设计开题报告 设计题目任意信号发生器的硬件设计(基于89C51实现)院系电子与信息工程学院 专业电子信息工程 班级电子0911 学生姓名XXXXXXX 学号 设计地点 指导教师 2013 年3月31 日

设计题目:任意信号发生器的硬件设计(基于89C51实现)课题目的、意义及相关研究动态: 一、课题目的: 信号发生器是一种能产生模拟电压波形的设备,这些波形能够校验电子电路的设计。信号发生器广泛用于电子电路、自动控制系统和教学实验等领域,它是一种可以产生正弦波,方波,三角波等函数波形的一起,其频率范围约为几毫赫到几十兆赫,在工业生产和科研中利用信号发生器输出的信号,可以对元器件的性能鉴定,在多数电路传递网络中,电容与电感组合电路,电容与电阻组合电路及信号调制器的频率,相位的检测中都可以得到广泛的应用。因此,研究信号发生器也是一个很重要的发展方向。 常用的信号发生器绝大部分是由模拟电路构成的,但这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积和功耗都很大,而本课题设计的函数信号发生器,由单片机构成具有结构简单,价格便宜等特点将成为数字量信号发生器的发展趋势。 本课题采用的是以89c51为核心,结合 DAC0832实现程控一般波形的低频信号输出,他的一些主要技术特性基本瞒住一般使用的需要,并且它具有功能丰富,性能稳定,价格便宜,操作方便等特点,具有一定的推广作用。 二、课题意义: (1)任意信号发生器主要在实验中用于信号源,是电子电路等各种实验必不可少的实验设备之一,掌握任意信号发生器的工作原理至关重要。 (2)任意信号发生器能产生某些特定的周期性时间任意波形(正波、方波、三角波)信号,频率范围可从几个微赫到几十兆赫任意信号发生器在电路实验和设备检测中具有十分广泛的用途。 (3)本课题主要研究开发一个基于51单片机的实验用任意信号发生器,不但成本较低而精度较高,最重要的是开发简单易于调试,具有一定社会价值和经济价值。 (4)任意信号发生器作为一种常见的电子仪器设备,既能够构成独立的信号源,也可以是高新能的网络分析仪,频谱仪以及自动测试装备的组成部分,任意信号发生器的关键技术是多种高性能仪器的支撑技术,因为它是能够提高质量的精密信号源及扫描源,可使相应系统的检测过程大大简化,降低检测费用并且提高检测精度。

如何使用函数信号发生器

如何使用函数信号发生器 认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

相关主题
文本预览
相关文档 最新文档