当前位置:文档之家› 温度自动控制系统

温度自动控制系统

温度自动控制系统
温度自动控制系统

温度自动控制系统

摘要

本系统严格按照题中所定参数及要求,构建了一个以MSP430单片机为控制核心的温度自动控制系统。该系统用PSB型负温热敏电阻作为温度传感器,以一种类R-F的方法测量木盒内实时温度,单片机用实时温度与预设温度值一起代入PID算式得出一个温度增量,再用此温度增量线性的控制PWM波的占空比,开关电源的输出电压也会随之变化,即制冷晶片的输入功率发生变化,因此制冷晶片制冷(加热)的功率随PWM波占空比变化,达到自动控温的目的。本系统制冷(加热)效果明显,效率高,界面友好,制作精致,能够胜任题中所定各项要求。关键字:MSP430、PID、温度自动控制、PWM

1系统方案

1.1系统结构框图与方案描述

图1 系统框图

针对题中所给的各项要求,我们提出了如下方案,用计数法测量热敏电阻的阻值,查表可得木盒内温度,经增量式PID算法,计算出实时温度与预设温度之间的PID增量,然后根据此增量线性的调节PWM波的占空比,用控制场效应管的开关来调节开关电源的输出电压,从而调节制冷晶片的功率,达到控制封闭木盒内的温度的目的。用红外遥控作输入接口,设定预设温度,当温度达到预设温度时用发光二极管报警提示,温度曲线及相关信息在LCD上显示。

1.2方案论证

1.2.1温度测量方案

DS18B20的测量速度也较快,选择12bit精度时,750ms可转换一次,此时的精度也可达到0.0625℃,但是DS18B20在温差较小的降温时,对温度的反应不太敏感,测量温度降得较慢,这样会严重影响PID温度控制,造成温度过调幅度会很大,温度需较长时间达到稳定。热敏电阻则对温度的反应灵敏,精度高,完全能够胜任本设计的要求。

我们选用热敏电阻测量温度,因此测温的问题就转化为测电阻的问题了。

测量电阻的方法有 R-V 转换电压测量法和 R-F 转换频率测量法。这两种方法的电路复杂成本高,并且电路中很多元器件直接影响测量精度,因此不适合在本系统中使用。

类 R-F 转换频率的测量法。其中一种由MSP430单片机引脚输出的高低电平通过热敏电阻和标准电阻对电容充放电,并由外部输入捕获中断测量充电时间,然后单片机根据测得的时间和标准电阻阻值计算出热敏电阻的阻值,查表得到温度值。该方案与本系统所用的方案较类似,但在实际测试当中,其精确度没用现用方案准确,所以没有采用。另一种用555定时器和热敏电阻等器件构成振荡器,由MSP430单片机测量振荡器的高低脉宽,根据比值查表即可得到电阻阻值。因为振荡器的频率非常稳定,所以测得的温度精度较高,满足题目要求。 1.2.2 PID 算法

PID 算法分为位置式和增量式,位置式PID 算法的缺点是:由于全量输出,所以每次输出均与过去状态有关,计算时要对e k 进行累加,工作量大;并且,因为计算机输出的u k 对应的是执行机构的实际位置,如果计算机出现故障,输出的将大幅度变化,会引起执行机构的大幅度变化,有可能因此造成严重的生产事故,这在实生产际中是不允许的。我们所采用的增量式PID 算法可以避免这种现象发生。 1.2.3 制冷工艺

题目中要求用10*10*10cm 的木盒,起初测试时我们只用一块制冷片,木盒外部用普通CPU 散热片加风扇,木盒内部用小于2cm 的散热片。由于木盒内部没有空气流动,造成内部温度变化较慢,测试结果不理想。为了加快木盒内部空气流动,我们在内部散热片上加了小风扇,风向为吹向散热片方向,避免由于冷风造成温度测试不准确。改进后木盒内部温度变化较快,效果明显。但由于木箱隔热性不好,当温度降到一定程度时,木箱箱体温度降低,就会从外界吸收热量,影响了制冷效果,在给箱体四周贴上一层较薄隔热层后,问题得到解决。但温度还是不能达到5℃,经过多次试验后,发现是由于单片制冷片功率不够,于是采用多片制冷片串联使用,基本达到题目要求。

2 理论分析与计算

2.1 温度控制算法

2.1.1 PID 算法

本系统自动控制温度控制的是采用增量式PID 算法,所谓增量式PID 是指数字控制器的输出只是控制量的增量Δu k 。当执行机构需要的控制量是增量,而不是位置量的绝对数值时,可以使用增量式PID 控制算法进行控制。

图2 PID 控制系统原理图

常规的模拟PID 控制系统原理框图如图2所示。该系统由模拟PID 控制器和被控对象组成。图中,r(t)是给定值,y(t)是系统的实际输出值,给定值与实际输出值构成控制偏差e(t)

e(t)=r(t)-y(t) 式(1)

e(t)作为PID 控制的输入,u(t)作为PID 控制器的输出和被控对象的输入。所以模拟PID 控制器的控制规律为

]

)()(1)([)(0

?

++

=t

dt

t de Td

dt t e Ti

t e Kp t u 式(2)

其中: Kp ―― 控制器的比例系数

Ti -- 控制器的积分时间,也称积分系数 Td ―― 控制器的微分时间,也称微分系数

对式(2)进行离散化处理:以T 作为采样周期,作为采样序号,则离散采样时间对应着连续时间,用矩形法数值积分近似代替积分,用一阶后向差分近似代替微分,可作如下近似变换:

kT t ≈ ,......)2,1,0(=k

∑?

∑===≈k

j j t

k j e T jT e T dt t e 0

)()(

式(3)

T

e e T

T k e kT e dt

t de k k 1

]

)1[()()(--=

--≈

上式中,为了表示的方便,将类似于)(kT e 简化成k e 等。

将式(3)代入式(2),就可以得到离散的PID 表达式

][)(1

T

e e Td

e

Ti

T

e Kp k u k k k

j j

k -=-++

=∑

式(4)

其中 k ―― 采样序号,k =0,1,2,……;

u(k)―― 第k 次采样时刻的计算机输出值; e k ―― 第k 次采样时刻输入的偏差值;

e k-1―― 第k -1次采样时刻输入的偏差值; Ki ――积分系数,Ki=Kp*T/Ti ; Kd ――微分系数,Kd=Kp*Td/T ;

增量式PID 控制算法可以通过式(4)推导出。由(4)可以得到控制器的第k-1个采样时刻的输出值为:

][)1(2

11

1T

e e Td

e Ti

T

e Kp k u k k k j j

k ---=--++

=-∑

式(5)

将式(4)与式(5)相减并整理,就可以得到增量式PID 控制算法公式为:

2

12

12

11)21()1()

2()1()(-------+-=++

-++

=+-++-=--=?k k k k k k k k k k k k k Ce Be Ae e T

Td Kp

e T

Td Kp e T

Td Ti T Kp T

e e e Td

e Ti T e e Kp k u k u u

式(6)

其中

)1(T

Td Ti

T Kp A +

+

=,)

21(T

Td Kp B +

=,T

Td Kp

C

=。

由式(6)可以看出,如果单片机控制系统采用恒定的采样周期T ,一旦确定A 、B 、C ,只要使用前后三次测量的偏差值,就可以由式(6)求出控制量。

2.1.2 PWM

PWM (Pulse Width Modulation )——脉宽调制,是一种开关式稳压电源应用,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。

本系统利用PID 算出的温度增量来控制PWM 波的占空比,温度增量越大,PWM 波高电平所点的百分比越大,场效应管开通时间就越长,开关电源的输出电压越大,制冷晶片的功率越大,制冷(或加热)越快。反之,则制冷(或加热)越慢。

本系统中是用MSP430F247单片机的Timer_B 控制输出PWM 波。

2.2 温度自动控制系统电路设计计算

直接把热敏电阻Rx 接在555定时器组成的多谐振荡器电路中,用MSP430单片机的捕获功能来捕获多谐振荡器输出信号的高低电平,热敏电阻Rx 与捕获高低电平的差值成线性关系,查表可得温度值。

将测得的温度值与预设定的温度一起通过PID 算法进行计算,算出温度增量,然后单片机产生一个占空比与此温度增量成线性关系的PWM 波。

制冷晶片的特点是在其允许的电压范围内,电压越大,电流也越大,制冷功率越高。 根据上述特点可知,我们设计了一个用上述PWM 控制的程控电压调节系统,用MSP430单片机产生的PWM 波控制场效应管的开关,从而控制开关电源的输出电压。由于在温度控制中,还会有加热过程,而制冷晶片只需将电源反接,则其冷面与热面也会交换,所以在设计中可用继电器控制供电电源的方向。

3 电路与程序设计

3.1电路设计

3.1.1温度测量电路

本系统所用的温度测量方案是一种类 R-F 转换频率的测量法,电路如图3所示,Rx 为热敏电阻。

R 1

R 2C 1

图3 类R-F 温度测量电路

由555工作原理可知,多谐振荡器输出信号(周期性矩形波)的高电平时间(一个周期内)为t H =In2?(R 1+R 2+R 3),输出信号的低电平时间为t L =In2?R 2。

MSP430单片机的定时器A 计数时钟的频率设置为f ,若捕获到高电平的值为N H ,低电平的值为N L ,所以有:

f t N H H =

f t N L L =

由上4个式子可算出:

12

R fCIn N N R L H x --=

因为f 、C1、R1均为定值,所以Rx 与(N H -N L )成正比。且增大f 还可以提高测量精度,查表可得温度值。

3.1.2 温度自动控制系统电路

图3中电路所测量的温度值与预设的温度值进行PID 运算后,产生相应的PWM 波,输入图4所示的电路。

图4 温度自动控制系统电路

电压转换电路根据不同的PWM 值输出对应电压,进而控制冷晶片的制冷或制热功率,达到控制小木箱温度的目的。

由于场效应管的分布电容较大,因此驱动场效应管的电流不能太小,所以不能直接用MSP430单片机的IO 口驱动,电路中OP300用来提高MSP430单片机的负载能力,驱动场效应管。当制冷晶片全功率工作时,电流会很大,用两个场效应管并联可以分流,减轻每个场效应管的负荷。LM317是一个可调稳压芯片,输出为5V ,提供单片机、高速运放OP300的电源。 3.2 程序设计

遥5 遥遥遥遥遥遥

遥6 遥遥遥TA0

遥遥遥遥遥遥遥

遥7 遥遥遥TA1遥遥遥遥遥遥遥

本系统的控制器采用的是TI公司的MSP430F247单片机,主要实现的控制有:温度测量与计算、PID算法处理、PWM波输出、LCD12864显示控制、继电器控制、红外遥控按键处理及报警控制等。其流程如图5、图6、图7所示。

4 测试方案与测试结果

4.1 测试方案及测试条件

测试环境:室温:29℃

测试器件:带温度测量的数字万用表

表(一)

4.2 测试结果分析

由测试结果可看出,题中的基本要求(1)、(2)、(3),发挥部分(1)、(3)已经可以完全胜任,基本(4)和发挥(2)也基本达到要求,在将温时,温度越往下降,降低的速度越慢,而在升温时,已可以完全达到题目中所定要求。

5 设计总结

在本系统的设计当中,硬件电路并不是很复杂,但开关电源电路需要很大负载电流的设计上,花了一些功夫。软件的设计也没有难点,只是在PID参数的设定上需要注意。在我们的设计当中,最耗时费力的还是小木盒的制作工艺,题目中对木盒的工艺要求很高,在平时的学习当中我们在作品的制作工艺也没有多加注意,因此这次系统设计在这方面花费了大量的时间。

附件一:MSP430单片机最小系统板PCB,适合MSP430F14x、MSP43024x系列

附件二:完整电路图

附件三:详细程序流程图

图1 主程序流程图

图2 定时器TA0中断程序流程图

图3 定时器TA1中断程序流程图

最新室内温度自动调节控制系统课程设计

室内温度自动调节控制系统课程设计

室内温度自动调节控制系统 摘要 在人们日常生产及生活过程中,经常要用到温度的检测和控制。随着微型计算机和传感器技术的迅速发展,自动检测领域发生了巨大变化,室内温度自动检测控制方面的研究有了很大进展。同时现代电子产品性能进一步提高,产品更新换代的节奏越来越快。本次课程设计是基于STC89C52单片机基础板所做的温度检测调节系统,不仅对于学习单片机技术等专业知识有实际意义,而且还可以增强动手能力。 这次设计的系统,硬件电路主要包括单片机最小系统电路,温度采集电路,显示电路,语音播报电路,按键电路,继电器电路等。软件程序主要包括主程序,读出温度子程序,计算温度子程序,显示温度刷新子程序,语音播报程序等。我们利用DS18B20温度传感器采集温度通过STC89C5单片机系统在应用板上利用LCD1602液晶显示屏显示实时测得的温度,通过程序进行语音播报;当温度超过设定的上限时,继电器闭合,并驱动动机工作,以实现降温。 经过调试,结果显示LCD屏准确显示了室温,并能进行语音播报。当温度超过设定上限时,继电器闭合,风扇工作,开始降温;实现了系统设计要求的功能。 关键词:室内温度,自动控制,STC89C52单片机,语音播报。

目录 0 前言 0 1总体方案设计 (1) 1.1设计方案论证 (1) 1.2 主控制器 (2) 1.3 LCD液晶显示 (2) 1.4 温度传感器 (2) 2硬件电路设计 (5) 2.1.主控制器 (5) 2.1.1 电源部分 (6) 2.1.2 串口电路 (6) 2.1.3晶振电路 (7) 2.1.4复位电路 (8) 2.2 显示电路 (8) (8) 2.3 数据采集电路 (8) 2.4语音电路 (9)

中央空调节能自控系统改造方案设计

1.1空调自控系统改造方案 1.1.1控制设备范围 一套制冷系统中的制冷机组、冷冻水循环泵、冷却水循环泵、冷却塔、相关 阀门、膨胀水箱、软化水箱等。 1.1.2空调自控系统 1.1. 2.1.监测功能信息采集优化 A通过冷机通讯接口读取(包括但不限于)以下参数: 冷水机组运行状态、故障报警状态 冷冻水供/回水温度、冷却水供/回水温度 冷冻水温度设定值 运行时间、压缩机运行电流百分比、压缩机运行小时数、压缩机启动次数、蒸发温度、冷凝温度、蒸发压力、冷凝压力。 B冷冻水系统 冷冻水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水补水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水供回水管温度、水流量反馈(AI) 冷冻水泵进口、出口分支管压力(AI) 冷冻水供回水环网压力、冷冻水供回水环网间压差反馈(AI) 冷冻水泵变频器频率反馈(AI) 最不利末端供回水压差

C冷却水系统 冷却水泵、冷却塔风机运行状态、故障报警、手/自动模式反馈(DI) 冷却水供回水管温度、环网水流量反馈(AI) 冷却水泵进口、出口分支管压力反馈(AI) 冷却水泵、冷却塔风机变频器频率反馈(AI) 冷却水补水泵运行状态、故障报警、手/自动模式反馈(DI) D电动蝶阀 压差旁通阀开度反馈(AI) 免费供冷管路上切换电动蝶阀开关状态反馈(DI)E液位监控 膨胀水箱超高、超低水位监测(DI) 软化水补水箱高、低水位监测(DI) F其他参数 室外干球温度、相对湿度(AI) 计算室外湿球温度、焓值 免费供冷系统水泵运行、故障、手/自动状态(DI) 免费供冷板换进出口压力监测(AI) 1.1. 2.2.控制功能 1、冷水机组启/停控制、出水温度设定(通过冷机通讯接口控制) 2、冷冻水系统: 冷冻水泵启/停控制(DO)及反馈

空调自动化控制原理.

空调自动化控制原理说明 自动化系统是智能建筑的一个重要组成部分。楼宇自动化系统的功能就是对大厦内的各种机电设施,包括中央空调、给排水、变配电、照明、电梯、消防、安全防范等进行全面的计算机监控管理。其中,中央空调的能耗占整个建筑能耗的50%以上,是楼宇自动化系统节能的重点[1]。由于中央空调系统十分庞大,反应速度较慢、滞后现象较为严重,现阶段中央空调监控系统几乎都采用传统的控制技术,对于工况及环境变化的适应性差,控制惯性较大,节能效果不理想。传统控制技术存在的问题主要是难以解决各种不确定性因素对空调系统温湿度影响及控制品质不够理想。而智能控制特别适用于对那些具有复杂性、不完全性、模糊性、不确定性、不存在已知算法和变动性大的系统的控制。“绿色建筑”主要强调的是:环保、节能、资源和材料的有效利用,特别是对空气的温度、湿度、通风以及洁净度的要求,因此,空调系统的应用越来越广泛。空调控制系统涉及面广,而要实现的任务比较复杂,需要有冷、热源的支持。空调机组内有大功率的风机,但它的能耗很大。在满足用户对空气环境要求的前提下,只有采用先进的控制策略对空调系统进行控制,才能达到节约能源和降低运行费用的目的。以下将从控制策略角度对与监控系统相关的问题作简要讨论。 2 空调系统的基本结构及工作原理 空调系统结构组成一般包括以下几部分[2] [3]:

(1) 新风部分 空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。新风的导入口一般设在周围不受污染影响的地方。这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。 (2) 空气的净化部分 空调系统根据其用途不同,对空气的净化处理方式也不同。因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。 (3) 空气的热、湿处理部分 对空气进行加热、加湿和降温、去湿,将有关的处理过程组合在一起,称为空调系统的热、湿处理部分。在对空气进行热、湿处理过程中,采用表面式空气换热器(在表面式换热器内通过热水或水蒸气的称为表面式空气加热器,简称为空气的汽水加热器)。设置在系统的新风入口,一次回风之前的空气加热器称为空气的一次加热器;设置在降温去湿之后的空气加热器,称为空气的二次加热器;设置

空调系统的自动控制要求

空调系统的自动控制要求 1、本大楼通风空调自动控制系统并入大厦楼宇自动控制系统,通风空调控制终端设在地下一层BA控制室内及弱电控制室内。 2、冷热源 (1)风冷热泵机组、冷水泵连锁装置:根据系统冷负荷变化,自动或手动控制风冷热泵机组运转台数。开机程序:冷热水泵——→风冷热泵机组蝶阀——→风冷热泵机组,关机程序相反。空调自动控制系统根据供回水总管的温度、流量信号,计算系统的实际空调负荷,并控制机组及其配用的空调水泵的运行台数和运行组合。空调自动控制系统累计每台冷水机组、空调水泵的运行时间,并控制机组和空调水泵均衡运行。 (2)空调水系统采用一次泵定流量(末端变流量)系统。在空调水系统的供回水总管间安装电动旁通调节阀,根据供回水总管间的压力信号来改变旁通水量,以适应系统水流量的变化。运行过程中当电动旁通阀达到最大开启度时,空调自动控制系统调整冷水机组及其配用泵的运行组合,同时电动旁通阀复位至关闭状态。电动旁通阀由专业公司来选择。 (3)净化空调热水系统二次侧采用水泵变速调节的变流量系统。根据换热器二次侧供水温度控制一次侧流量,根据流量变化控制水泵运行台数,在空调水系统的供回水总管间安装压差控制器,根据系统的压差来控制水泵的频率或转速。 3、风机盘管/吊柜(回风工况)控制: 控制系统主要由风机盘管用两位调节的室内温度控制器、三速调节器及装在回水管上的两位电动二通阀组成,系统运行时,室内温

度控制器把温度传感器所检测的室内温度与温度控制器设定温度相比较,并根据比较结果输出相应的电压信号,以控制二通电动阀的动作,通过改变水流量,使室内温度保持在所需要的范围。可用三速开关调节室内循环风量及调节室内温度。 4、新风柜控制: 控制系统由冷暖型比例加积分控制器、装设在送风口的温度传感器及装设在回水管上的比例积分电动二通阀组成。系统运行时,温度控制器把温度传感器所检测的温度与温度控制器设定温度相比较,并根据比较结果输出相应的电压信号,以控制比例积分调节阀的动作,通过改变水流量,使送风温度保持在所需要的范围。空调机组以回风温度作为控制信号;新风机组以送风温度作为控制信号。 5、座地式风柜控制: 控制系统由冷暖型比例加积分控制器、装设在回风口的温度传感器及装设在回水管上的比例积分电动二通阀组成。系统运行时,温度控制器把温度传感器所检测的温度与温度控制器设定温度相比较,并根据比较结果输出相应的电压信号,以控制比例积分调节阀的动作,通过改变水流量,使回风温度保持在所需要的范围。空调机组以回风温度作为控制信号;新风机组以送风温度作为控制信号。 6、所有新风机的进风过滤段均设灰尘量报警探头。当灰尘量过大时报警,提醒对过滤设施进行清洁,满足卫生要求。 7、直流变频多联机系统采用区域控制,系统设集中控制器,控制器设在该区域的办公室内,由专人负责统一控制管理。集中控制器可实现整个区域统一开关,或个别房间的开、关,可实现冬、夏模式转换控制。每个房间只设三速(风速)开关和温度调节功能。自控设备由

基于PLC的大棚温度自动控制系统设计

清华大学 毕业设计(论文) 题目基于PLC的大棚温度自动控制 系统设计 系(院)自动化系 专业电气工程与自动化班级2009级3班 学生姓名雷大锋 学号2009022321 指导教师王晓峰 职称副教授 二〇一三年六月二十日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 年月日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 年月日

基于PLC的大棚温度自动控制系统设计 摘要 大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。 关键词:大棚,温度控制,PLC

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

房间温度自动控制系统

房间温度自动控制系统 自动控制系统由传感器、控制器、执行调节机构组成,它们之间的关 调节对象与被调参数 调节对象在暖通空调中指室内热湿环境、空气品质、洁净度或者冷热源的制冷量和供热量等。被调参数是指表征调节对象特征的可以被测量的量或者物理特性,在暖通空调中的被调参数指房间热湿环境的温度和湿度、冷水机组的冷冻水供水温度、汽/水加热器或者水/水加热器的供水温度、流体流量、室内空气品质的二氧化碳浓度、水箱或者水槽水位等。扰量是指导致调节对象的被调参数发生变化的干扰因素,例如房间内人员、灯光的增减、室外气象参数的变化都是房间热湿环境的扰量,它们引起被调参数的变化。 传感器 传感器又称敏感元件、变送器,它测量被调参数的大小并输出信号。输出信号可以是被调参数的模拟量,如电压、电流、压力等。 控制器 控制器又称调节器,它接收传感器的信号与给定值(按要求设定的被

调参数值)进行比较,并按设定的控制模式对执行调节机构发出调节信号。任一时刻被调参数的实测值与给定值之差称为偏差,控制器对偏差按一定的模式进行计算而给出调节量。 执行调节机构 执行调节机构接受来自控制器的调节信号,对被调介质的流量或能量进行调节。执行调节机构由执行机构和调节机构组成。前者将控制器的调节信号转换成角位移或线位移,再驱动调节机构实施对被调介质的调节。 下面以一次回风加新风的定风量房间温度自动控制系统为例说明自动控制系统的组成及作用。 一次回风加新风的定风量房间自动控制系统同样由传感器、控制器和执行调节机构组成。 传感器包括: (1)温湿度传感器:采集室内回风的温湿度测量值; 温度传感器湿度传感器 (2)压差传感器:可以直接测出压差,并输出连续信号,可用于测量风量;

PWM温度自动控制系统的设计

《计算机控制技术》 课程设计 学生姓名: 学号: 专业班级:电气工程及其自动化(1)班 指导教师: 二○一二年十月二十九日

目录 1.课程设计目的 (3) 2.课程设计题目和要求 (3) 3.设计内容 (3) 4.设计总结 (10) 4.参考书目 (11) 5.附录

1.课程设计目的 通过本课程设计, 主要训练和培养学生的以下能力: (1).查阅资料:搜集与本设计有关部门的资料(包括从已发表的文献中和从生产现场中搜集)的能力; (2).方案的选择:树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意提高分析和解决实际问题的能力; (3).迅速准确的进行工程计算的能力,计算机应用能力; (4).用简洁的文字,清晰的图表来表达自己设计思想的能力。 2.课程设计题目和要求 题目:PWM温度自动控制系统的设计 要求: 1.要求设计温度控制系统,设定温度为230度,采用电阻丝作为加热器件,要求无余差,超调小,加热速度快。 2.硬件采用51系列单片机,采用固态继电器作为控制元件。 3采用keil c作为编程语言,采用结构化的设计方法。 4.要求用protel设计出硬件电路图。 5画出系统控制框图。 6 画出软件流程图。 3.设计内容 3.1 PID控制原理 将偏差的比例,积分和微分通过线性组合构成控制量,用这一控制对被控对象进行控制,这一样的控制器称PID控制器

3.1.1.模拟PID控制原理 在模拟控制系统中,控制器最常用的控制规律是PID控制。为了说明控制器 (t)与实际输出信号n(t)进行比的原理,以图1.1的例子说明。给定输入信号n (t)-n(t),经过PID控制器调整输出控制信号u(t),u(t)对目较,其差值e(t)=n 标进行作用,使其按照期望运行。 常规的模拟PID控制系统原理框图如同1.2所示。该系统有模拟PID和被控对象组成。图中r(t)是给定的期望值,y(t)是系统的实际输出值,给定值与实际输出值,给定值与实际值构成控制偏差e(t): e(t)作为PID控制的输入,u(t)作为PID控制的输出和被控对象的输入。构成PID和被控对象的输入。构成PID控制的规律为: 其中:Kp为控制器的比例系数 Ti为控制器的积分时间,也称积分系数 Td为控制器的未分时间,也称微分系数

空调温度自动控制器最终版

空调温度控制器 课程设计报告

目录 引言 (1) 第一章设计目的 (1) 第二章设计任务与要求 (2) 第三章方案设计与论证 (2) 1 方案一 (2) 2 方案二 (2) 3 方案比较 (3) 4 方案详细介绍 (3) 第四章电路工作原理及说明 (4) 1 温度信号采集模块工作原理 (4) 2温度信号处理与控制模块工作原理 (4) 1 LM324运算放大器功能介绍 (4) 2 LM324功能测试及信号处理 (5) 4 CD4011 芯片功能介绍 (7) 3 电机控制模块工作原理 (8) 第五章电路性能指标的测试 (9) 1 温度信号采集模块性能测试 (9) 2 双限比较器输出信号性能测试 (9) 第六章结论与体会 (10) 结论 (10) 体会 (11) 展望 (11) 第八章参考文献 (12) 附录Ⅰ元器件清单 (12) 附录Ⅱ整体电路原理图 (1)

引言 十九世纪末、二十世纪初,电子技术开始逐渐发展起来,并成为一项新兴技术。它在二十世纪发展最为迅速,应用最为广泛,并且成为了近代科学技术发展的一个重要标志。第一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。 随着科学技术的迅猛发展,电子控制电路在日常生活中有了更为广泛的应用,各种报警专用集成电路、语音/音效集成电路、传感器的不断推出,一些新颖实用的报警器、警示器电路已广泛应用于家庭生活、工农业生产、交通、机动车、通信和防盗、防灾等领域。 目前空调机已经广泛地应用于生产、生活中。而此类家电越来越趋于轻巧型。微型单片机系统以其体积小、性能价格比高,指令丰富、提供多种外围接口部件、控制灵活等优点,广泛应用于各种家电产品和工业控制系统中,在温度控制领域的应用也十分广泛。 随着能源的日趋减少,大气污染愈加严重,节能已是一个不容忽视的问题。众所周知,空调正朝着节能、舒适、静噪于一体的方向发展。鉴于这些方面的综合考虑,设计一种可以实现温度自动控的空调机,将会在节能方面有有新的突破,也必将会取代传统的靠人工实现的温度控制的空调机。通过巧妙的设计和安装可实现美观典雅和舒适卫生的和谐统一,是国际和国内的发展潮流。可以预料,下个世纪的节能空调将会以更快的步伐向前发展。其应用的范围将极为广阔,极大地方便了人们的工作和生活。可以说节能空调将是未来一种新的发展趋势。 电子控制设备中的电路都是由基本功能电路构成的。该课题涉及到模拟电子线路、Multisim软件仿真,数字电子应用等。方案实行中应用电阻分压、运算放大器、三极管控制开关以及继电器电路等。该课题目的是要设计空调温度控制电路,能够控制负温度系数的热敏电阻所在环境内的温度,当空调运行时和空调停止工作时分别由LED1和LED2指示。所设计的电路结构简单、成本低、易于操作、使用寿命较长;采用LED作指示灯,并且控制空调在设定的温度范围之外工作,LED指示灯具有结构简单、寿命长、耗电省、美观鲜艳、易于识别等特点。 第一章设计目的 1 了解并掌握运算放大器的工作原理和使用方法及其注意事项 2 学会查阅元器件资料,辨别元器件,检查并测试元器件 3学会绘制电路图并组装电路,调试电路. 4 熟练掌握各种基本仪器的使用 5 学会并熟练掌握电路仿真软件的使用(Multisim等)

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

室内温度自动调节控制系统

室内温度自动调节控制系统 摘要 在人们日常生产及生活过程中,经常要用到温度的检测和控制。随着微型计算机和传感器技术的迅速发展,自动检测领域发生了巨大变化,室内温度自动检测控制方面的研究有了很大进展。同时现代电子产品性能进一步提高,产品更新换代的节奏越来越快。本次课程设计是基于STC89C52单片机基础板所做的温度检测调节系统,不仅对于学习单片机技术等专业知识有实际意义,而且还可以增强动手能力。 这次设计的系统,硬件电路主要包括单片机最小系统电路,温度采集电路,显示电路,语音播报电路,按键电路,继电器电路等。软件程序主要包括主程序,读出温度子程序,计算温度子程序,显示温度刷新子程序,语音播报程序等。我们利用DS18B20温度传感器采集温度通过STC89C5单片机系统在应用板上利用LCD1602液晶显示屏显示实时测得的温度,通过程序进行语音播报;当温度超过设定的上限时,继电器闭合,并驱动动机工作,以实现降温。 经过调试,结果显示LCD屏准确显示了室温,并能进行语音播报。当温度超过设定上限时,继电器闭合,风扇工作,开始降温;实现了系统设计要求的功能。 关键词:室内温度,自动控制,STC89C52单片机,语音播报。

目录 0 前言 (1) 1总体方案设计 (2) 1.1设计方案论证 (3) 1.2 主控制器 (3) 1.3 LCD液晶显示 (3) 1.4 温度传感器 (3) 2硬件电路设计 (6) 2.1.主控制器 (6) 2.1.1 电源部分 (7) 2.1.2 串口电路 (7) 2.1.3晶振电路 (8) 2.1.4复位电路 (9) 2.2 显示电路 (9) 2.3 数据采集电路 (9) 2.4语音电路 (10) 2.5按键电路 (11) 3 软件设计 (11) 3.1 主程序设计..................................................................................... 错误!未定义书签。 3.2 温度转换程序 (13) 3.3 温度显示程序 (13) 4 调试分析 (14) 4.1 硬件调试 (14) 4.1.1硬件调试方法 (14) 4.1.2 电源调试 (14) 4.1.3 语音模块调试 (14) 4.2 软件调试 (14) 5 结论 (17) 参考文献 (18) 附录1 电路原理图 (19) 附录2 .PCB图 (20) 附录3主程序 (21)

基于51单片机的水温自动控制系统的设计

基于51单片机的水温自动控制系统的设计 学生:汪凡,信息工程学院 指导教师:朱嵘涛,信息工程学院 一、题目来源 题目来源于生产/社会实际。 二、研究背景及其意义目的 随着社会主义现代化的发展,在科学技术突飞猛进的今天,人工智能起到不可忽视的作用。尤其是各种智能化的仪器、仪表在农、工业的广泛应用给社会带来了极大的便利。文章就是一个利用温度来实现简单智能控制的例子。它完成了从温度的采集、转换、显示以及控制的一系列任务。由于篇幅关系,文章并未深入探讨温度的具体实例。例如根据温度来控制热水器、电风扇等与温度有关的设备,提供了一个通过温度来控制设备的基本思想和原理。 测温仪器在各个领域的应用,智能化是现代温控系统发展的主流方向,特别是今年来,温度控制系统已应用到生活的各个方面,但是温度控制一直是一个未开发的领域,是与人们息息相关的一个问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景和实际意义。温度是科学技术中最基本的物理量之一。物理、化学、生物等学科都离不开温度,在工业生产等许多领域,温度常常是表征对象和过渡状态的重要物理量。各行各业对温度的要求越来越高,可见温度的测量和控制是非常重要的。单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。随着温度控制器应用越来越广泛,各种试用于不同场和的温度控制器应运而生。 目前市场上经销的温度控制系统大多是采用模拟电路及继电器控制,存在电路繁琐,可调节性差,受温度影响大,响应速度慢,有噪音等缺点,针对这些缺点我们对它进行了再次设计。实现满足题目要求的水温自动控制系统需要解决以下两个方面的问题:一是高精度的水温测量电路及其数据处理的实现,另一个是控制方法及其控制电路实现的研究。数字控制方法远远优于模拟控制方法。目前,实现水温的高精度控制常采用数字控制方法,可用的控制算法有开关控制、经典PID控制、模糊控制等。为了追求控制系统具有最小的稳态误差、最好的动态过

太阳能热水器自动温度控制器设计_王彤

接启动一个拨号服务器。然后,在计算机B 中的pc Anywhere 软件中启动一个通过拨号连接的Clinet (客户端),拨通计算机A ,建立起连 接以后,就可以进行通信了 。 图1被控端计算机的屏幕显示在主控端上 图2主控端搜索被控端计算机A 图3在计算机C 中渐入A 的IP 地址 当需要多台计算机终端进行协同交互时,(比如有三台计算机A ,B ,C )。首先启动A 为Host ,B 为Clinet ,建立A 和B 的连接,在重新启动一个计算机B 上的pc Anywhere 被设为Host ,C 为Clinet 。建立C 与B 的hos t 之间的联系。这样A ,B ,C 三台计算机上同时显示计算机A 屏幕上的内容,三台计算机之间即可进行交互工作。 5总 结 综上所述,远程监控技术随着Internet 的不断发展而得到广泛应用,同时,随着控制、计算机、通信及网络技术的发展,信息交换沟通的领域正在迅速覆盖控制应用的现场设备、控制及管理的各个层次。信息技术的飞速发展,引发了自动化结构的深刻变革,逐步形成了以网络集成自动化系统为基础的信息系统。目前在过程自动化、制造自动化、楼宇、家庭及交通等领域得到了广泛的应用。 值得提出的是近年来,随着远程控制技术发展的日趋成熟,黑客技术也在不断发展,对网络安全造成了极大的威胁,黑客的主要攻击手段之一,就是使用远程控制技术,渗透到对方的主机系统里。从而实现远程操作目标主机。其破坏力之大,决不容忽视的。因此,我们必须加强安全意识,合理安全的应用远程控制技术。 参 考 文 献 [1]何牧泓.轻松玩转远程控制.重庆出版社,2002. [2]崔彦锋,许小荣.VB 网络与远程控制编程实例教程.北京希望出版社, 2002.[3]王 达.计算机网络远程控制.清华大学出版社,2003.作者简介:樊丽萍,女,硕士研究生,研究方向:计算机控制及应用,通信地址:大连铁道学院303#(116028)E -mail :xiao fanshi wo @https://www.doczj.com/doc/8a17578946.html, ;袁爱进,男,研究生导师,研究方向:现场总线技术。作者注:辽宁省教育厅重大项目“工业现场智能化设备的嵌入式软件构件平台研究” 文章编号:1671-1041(2004)05-0029-02 太阳能热水器自动温度控制器设计 王 彤 (丹东电子研究设计院有限责任公司,辽宁丹东118000) 摘要:介绍了太阳能热水器的自动控制器的功能和组成,阐述了控制系统的 工作原理,硬件和软件设计及相关技术问题,实际应用表明该系统可靠性高、操作简单,具有良好的经济和社会效益。关键词:自动控制;单片机中图分类号:T P273 文献标识码:A The design of automatic temperature controller of solar heater W ANG Tong (Dandong Electronic research &Design institute Co .,Ltd .Dandong 118000China ) Ab stract :Fu nctio n an d co mpo sitio n o f au to matic temp era tu re co ntr olle r of so la r h e ate r a re in trod uce d in th is p a pe r .Also d escribe s t he wo rk p rinciple o f th e co nt rol syste m ,t he ha rd wa re d esign ,t he sof twa re d esig n a nd corre lative t ech niq ue pro b -le m .Th e pra ctical a p plica tion h a s sh ow n th at th is system is o f go od re lia blity a nd e as y op e ratio n ,a n d sig nifican t eco no mic an d so cia l be n efit .Ke y Wo rds :a u toma tic con tro l ;sin gle -chip micr ocomp u ter 收稿日期:2004-04-23 电子邮件来稿 目前,市场上销售的太阳能热水器大多没有自动控制功能,使用 起来不灵活方便,为此,为太阳能热水器加装自动控制功能,具有广泛的市场。 1自动控制系统技术要求 (1)设定温度的范围为25℃至65℃。 (2)输入信号为水温传感器产生的温度信号;水位传感器产生的水量信号。 (3)输出信号为控制水温电信号(控制加热电热管)和控制水流量调节阀信号(控制加水电磁阀)。 (4)配有输入功能键盘:完成自动/手动、手动加水键、手动加热键、温度设定键、水位档选择键。 (5)具有两位LED 数码显示电路,显示温度设定值、实际温度测量值,六个发光二极管指示六档水位(10%、30%、50%、70%、90%、100%)。 2系统硬件设计及原理 太阳能热水器加装自动控制功能,主要是加装一个数据采集系 统和一个电脑控制板。根据太阳能热水器的技术要求及经济方面的考虑,我们选用89C51单片机为核心控制器[1],组成热水器温度控制系统。系统由89C51单片机、数据采集系统、水位选择电路、温度显 29 仪器仪表用户 科研设计与成果 欢迎订阅欢迎撰稿欢迎发布广告产品信息

室内湿度自动控制系统的研究

2015届本科毕业设计 室内湿度自动控制系统的研究 姓名:孙东东 系别:物理与电气信息学院 专业:电气工程及其自动化 学号:110314110 指导教师:赵永红 2015年5月3日

目录 摘要与关键词………………………………………………………………………………………II 0 引言 (1) 1 系统方案的设计 (1) 1.1 系统总体设计 (1) 1.2系统的设计原理 (1) 2 湿度信号的采集 (2) 2.1 湿度测量的名词术语 (2) 2.2湿度检测元件 (3) 3 信号分析与处理电路的设计 (3) 3.1相对湿度检测电路的原理及结构图 (3) 3.2湿度调节模块的设计 (4) 3.2.1湿度的调节原理 (4) 3.2.2湿度调节硬件结构图 (4) 3.3A/D转换器的特点 (5) 3.4 AT89C51单片机 (6) 3.5 LED简介 (8) 3.6 按键模块的设计 (9) 4 系统软件设计 (10) 5 结语 (10) 参考文献 (11) 致谢 (11)

室内湿度自动控制系统的研究 摘要 系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值。 关键词 湿度控制;传感器;单片机;自动控制 Research of indoor humidity automatic control system Abstract This system has adopted the accurate measuring circuit (is it blow accurate symmetrical square wave generator , logarithm enlarge and halfwave rectifier , temperature compensation , temperature correct and strain wave circuit odd parts of circuit not to make up automatically to wrap up), can measure the relative humidity of the surrounding air automatically and accurately , and after measuring the data and changing through A/D, send it in the processor (AT89C51 ), Then through the programming of the software, after changing the value of relative humidity of the environment at present into the decimal digit, and then in charge of the number to show; And, through software programming, in addition, corresponding control circuit (such some circuit as photoelectric coupling and relay ,etc. make up ), design the relative humidity of the present environment of regulation that can be automatic: When the indoor air humidity is too high, the control system starts the exhauster automatically, reduce the vapor in the indoor air, in order to achieve the goal of reducing air humidity; When the indoor air humidity is too low, the control system starts the steam engine automatically, increase the vapor of the air , in order to achieve the goal of increasing humidity , makes the air humidity keep at ideal state; The initial value of the humidity that the keyboard is set up and adjusted. Keywords humidity control;sensor; single chip ;automation control

温湿度的自动控制系统

引言 目前我国土地沙漠化日益严重,所以在沙漠种植植物,防沙固土便显得很重要。但是,沙漠植物的存活率一直很低,在沙漠种植植物,如果存活不了,那么既不能改善环境,又浪费了人力物力资源。沙漠植物存活的环境由多个因子组成,如温度、光照、湿度及二氧化碳浓度等。时下,我国沙漠环境控制目前仍靠人工经验来管理,严重影响了沙漠植物生产的效益,阻碍了环境的发展进度,因此,采用先进的人工智能技术,科学、合理地控制影响植物的环境因子,通过计算机控制设备进行环境控制,以便给植物生长创造一个最佳的环境条件,既做到防沙固土,同时又改善了环境,这对沙漠环境施行自动检测和控制是非常必要的。沙漠设施的关键技术是环境控制,主要是温湿度的控制,其目的是提高控制及作业精度。温湿度控制仪的发展相当迅速,近几十年内,由于电子行业的迅速发展和集成电路和高集成电路的产生,控制仪走向微型化、多功能化。温湿度传感器在工农业生产、气象、环保、医学等领域得到越来越广泛的应用。温湿度控制仪目前普遍采用的方案: 方案:采用集温湿度传感器于一体的 SHT11 芯片为主要芯片的控制仪。由于传统的模拟式湿度传感器(方案一)一般不仅要设计信号调理电路,还要经过复杂的校准和标定过程,其测量精度难以保证。而SHT11是瑞士Sensiri-on公司生产的具有二线串行接口的单片全校准数字式新型相对湿度和温度传感器,可用来测量相对湿度、温度和露点等参数,具有数字式输出、免调试、免标定免外围电路及全互换的特点。该传感器将CMOS芯片技术与传感器技术融合,为开发高集成度、高精度、高可靠性的温湿度测控系统提供了解决方案。

目录 1. 整体设计 (1) 1.1 设计要求及框图 (1) 1.2 元器件的选择 (2) 1.2.1 单片机的选择 (2) 1.2.2 温度传感器的选择 (2) 1.2.3 显示模块的选择 (2) 1.2.4 系统设计方案的确定 (2) 2. 系统的硬件设计 (4) 2.1 单片机的最小系统 (4) 2.2 温湿度传感器SHT11 (4) 2.3 LCD 显示--LCD1604 (5) 2.3.1 LCD1604的连接电路 (5) 2.3.2 LCD1604的连接电路 (5) 2.4 报警电路的设计 (6) 2.5 控制电路的设计 (7) 3. 软件系统设计 (8) 3.1 软件设计的整体思想 (8) 3.2 程序流程图设计 (8) 4. 调试 (10) 4.1 软件调试 (10) 4.2 硬件调试 (10) 4.3 液晶模块调试 (11) 4.4 报警电路调试 (1) 结论 (13) 致谢 (14) 参考文献 (14) 附录 (16) 附录A:系统电路图 (16)

第3组 温度自动控制系统

温度自动控制系统 摘要:本系统主要由温度采集电路,放大器,A/D转换电路,控制电路和键盘显示电路等组成。软件采用了自动温漂处理,数字滤波。可实现温度自调,显示温度分辨率达0.1℃及温度调节过程的曲线。 一、方案比较与论证 根据题目要求,本设计可划分为几个重要的模块:温度采集模块、信号转换模块、自动控制模块等。 1、温度采集模块 方案一:采用DS18B20传感器,可直接输出数字信号,但在-10°C 到+85°C 时的精度只能达到0.5℃,达不到题目要求。 方案二:采用铂电阻传感器,温漂小,线性度好,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。温度采集可达0.1℃。可达到题目要求。 经比较,我们采用铂热电阻桥式电路对温度的采集。 2、自动控制模块 方案一:采用手动控制双继电器实现对制冷片的电极换档,简单易行。 方案二:采用DC-5V双继电器控制半导体制冷期间电极的转换,由于51单片机I/O口难以驱动继电器电感,采用NPN三极管放大,实现对继电器的控制,实现自能化,而且结构简单,价格便宜。 所以选择方案二。 3、信号转换模块 方案一:采用单级运算放大器,对温度采集信号的放大,有较好的频带宽度,但是反馈深度较大。 方案二:采用多级差动比例运算放大电路对温度采集的信号进行放大,反馈深度较小,随着级数的增加,反馈深度减小,及对采集信号的放大越稳定。 采集信号的越稳定,越有利于温度真实值的显示,所以选择方案二。

二、系统设计 1、总体设计 根据题目设计要求,总体系统框图如图一所示,温度采集后,经过转换电路获得数字信号,通过51单片机处理,实现对电路自动控制的目的,使制冷片按 图一 系统方框图 2、单元电路的设计与分析 (1)、温度采集电路 此电路采用铂电阻桥式电路,根据铂温度/电阻特性,0 ℃

相关主题
文本预览
相关文档 最新文档