当前位置:文档之家› 一道课本例题解法的质疑与探究

一道课本例题解法的质疑与探究

一道课本例题解法的质疑与探究
一道课本例题解法的质疑与探究

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法 1.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式. 当a>0时,解集为;当a<0时,解集为. 2.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)一元二次不等式的解: (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f(x) g(x) 的形式. (2)将分式不等式转化为整式不等式求解,如: f(x) g(x) >0?f(x)g(x)>0; f(x) g(x) <0 ?f(x)g(x)<0; f(x) g(x) ≥0 ? ?? ? ??f(x)g(x)≥0, g(x)≠0; f(x) g(x) ≤0 ? ?? ? ??f(x)g(x)≤0, g(x)≠0. (2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)

解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2 +bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1} D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2 -2x +1>0,x 的取值围是x ≠1.故选B. 已知-12<1 x <2,则x 的取值围是( ) A.-22 D.x <-2或x >1 2 解:当x >0时,x >1 2;当x <0时,x <-2. 所以x 的取值围是x <-2或x >1 2,故选D. 不等式1-2x x +1>0的解集是 . 解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0, 也就是? ?? ??x -12(x +1)<0,所以-1<x <12. 故填???? ??x |-1<x <1 2,x ∈R . (2014·武汉调研)若一元二次不等式2kx 2 +kx -38 <0对一切实数x 都成立,则k 的 取值围为________. 解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈?;若k <0,则只须38k <(2x 2 +x )min ,解得k ∈(-3,0).故k 的取值围是(-3,0).故填(-3,0). 类型一 一元一次不等式的解法 已知关于x 的不等式(a +b )x +2a -3b <0的解集为? ????-∞,-13,求关于x 的 不等式(a -3b )x +b -2a >0的解集. 解:由(a +b )x <3b -2a 的解集为? ????-∞,-13, 得a +b >0,且3b -2a a +b =-1 3 ,

一道课本三角习题的多解和变式探究

一道课本三角习题的多解和变式探究 罗文军 刘娟娟 (甘肃省秦安县第二中学,741600)(甘肃省秦安县郭嘉镇槐川中学,741609) 在历年高考真题中,有部分解三角形试题以对角互补的四边形为载体(例如2014年新课标Ⅱ卷文科第17题和2015年四川卷理科19题).主要考查余弦定理、三角形面积公式和三角恒等变换等知识,考查函数与方程、数形结合和化归与转化的思想,考查推理论证能力和运算求解能力,旨在考查学生的逻辑推理和数学运算的核心素养,具有很好的区分度和选拔功能.从源头来看,这类试题可以看成如下的源自苏教版课本必修5第11章解三角形第17页习题11.2的第13题. 题目、如图1,已知圆内接四边形ABCD 的边长分别为2AB =, 6BC =,4AD CD ==,如何求出四边形ABCD 的面积? 本文对这道课本习题探究和变式探究,以期达到对学生解答这 类以对边互补的四边形为载体的解三角形问题求解起引导作用. 一、解法探究 将四边形问题转化为解三角形问题是所有解法探求的关键,在已知四边形四条边长的基础上,求某个内角大小是解题的主攻方向,掌握这两点,问题可迎刃而解. 分析1、连对角线BD ,将四边形分解成ABD ?和BCD ?.注意对角互补关系180A C +=o ,分别运用余弦定理表示出公共边BD ,解方程组可得cos A ,从而得到A 和C 的度数.明确了ABD ?和BCD ?的两边一角之和,利用三角形面积公式可得解. 解法1、如图2,连结BD .在ABD ?、BCD ?中分别应用余弦定理,可得 22222224224cos 64264cos BD A BD C ?=+-????=+-???? 因为四边形ABCD 为圆内接四边形,有180A C +=o ,从而 222016cos 5248cos BD A BD A ?=-??=+??,可得1cos 2A =-,120A =o ,所以60C =o . 于是1124sin12064sin 608322 ABD BCD ABCD S S S ??=+=???+???=o o 四边形. 解法2、如图3,在BC 边上取点E ,使得BE BA =,连结DE 合BD .

不等式的解法典型例题及详细答案

不等式的解法·典型例题 【例1】?(x+4)(x+5)2(2-x)3<0. 【例2】?解下列不等式: 【例3】?解下列不等式 【例4】?解下列不等式: 【例5】?|x 2-4|<x+2. 【例6】?解不等式1)123(log 2122<-+-x x x . 不等式·典型例题参考答案 【例1】?(x+4)(x+5)2(2-x)3<0. 【分析】?如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 原不等式等价于(x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】?用“穿针引线法”解不等式时应注意: ①各一次项中x 的系数必为正; ②但注意“奇穿偶不穿”.其法如图(5-2). 【例2】?解下列不等式: 解:(1)原不等式等价于 用“穿针引线法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞). (2) 【例3】?解下列不等式 解:(1)原不等式等价于 ∴原不等式解集为{x|x ≥5}. (2)原不等式等价于 【说明】?解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变. 【例4】?解下列不等式: 解:(1)原不等式等价于 令2x =t(t >0),则原不等式可化为 (2)原不等式等价于 ∴原不等式解集为(-1,2〕∪〔3,6). 【例5】?|x 2-4|<x+2. 解:原不等式等价于-(x+2)<x 2-4<x+2. 故原不等式解集为(1,3). 这是解含绝对值不等式常用方法. 【例6】?解不等式1)123(log 2122<-+-x x x . 解:原不等式等价于 (1)当a >1时,①式等价于 ② (2)当0<a <1时,②等价于 ③

一道课本例题的探究开发

一道课本例题的探究开发 663312云南省广南县篆角乡中心学校 陆智勇 课本的例题不仅仅是传授知识、巩固方法、培养能力、积淀素养的载体,如果我们对它们进行特殊联想、类比联想、可逆联想和推广引申,这些例题也可作为探究教学的重要材料。笔者尝试着从课本例题入手,合理开发课本例题,引导学生反思、深化与推广,并结合数学探究教学作了初步的探讨. 题目:如图(1),AD 是△ABC 的高,点P,Q 在BC 上,点R 在AC 上,点S 在AB 上,边BC=60cm ,高AD=40cm,四边形PQRS 是正方形. (1)相似吗?与ABC ASR ?? (2)求正方形PQRS 的边长. 分析:由于四边形PQRS 为正方形,所以SR ∥BC ,故ASR ?∽ABC ?.利用相似三角形对应高的比等于相似比列方程求解. 解:(1)ASR ?∽ABC ?.理由: 是正方形,因为PQRS 所以SR ∥BC. 所以 .,ACB ARS ABC ASR ∠=∠∠=∠ 所以ASR ?∽ABC ? . (2)由(1)可知ASR ?∽ABC ?.根据“相似三角形对应高的比等于相似比,可得 设正方形PQRS 的边长 为 AE=(40- χ )cm, 所以 解得: 所以正方形PQRS 的边长为24cm. 此题是北师大版九年义务教育课程标准实验教科书八年级数学下册第147页 .BC SR AD AE =,cm χ. 24=χ60 4040χχ= -

的一道例题。该题是典型的利用“相似三角形对应高的比等于相似比”解决实际问题的例题。笔者在教学过程中没有停留在问题的解决上,而是以此题为切入口,精心设计了一组变式,恰当设置问题梯度,使难易程度尽量贴近学生的最近发展区,使设计的问题触及学生的兴奋点,把学生从某种抑制状态下激奋起来,使之产生一种一触即发的效果。 变式1:如图(2),△ABC 的内接矩形EFGH 的两邻边之比EF :FG=9:5,长边在BC 上,高AD=16cm,BC=48cm,求矩形EFGH 的周长。 分析:因为EFGH 为矩形,则AN ⊥HG.这样△AHG 的高可写成AD-DN=AD-FG.再由△AHG ∽△ABC ,即可以找到HG、FG与已知条件的关系,求出矩形EFGH 的周长. 解:因为EFGH 为矩形,所以HG ∥EF,HG=EF. 所以△AHG ∽△ABC. 所以 则 解得: 所以矩形EFGH 的周长为56cm. 变式2:如图(3),已知边长为10cm 的等边三角形ABC ,内接正方形HEFG 。求正方形HEFG 的面积。 分析:因为AD 是等边三角形ABC 的高,所以根据等腰三角形的三线合一性质可以求出AD 的长,由△AEH ∽△ABC,可得相似三角形对应高的比等于相似比,即可求出正方形的面积。 . AD AN BC HG =.5,9χχ==FG EF 设16516489χχ-=. 2=χ

二元一次方程组解法练习题含答案

二元一次方程组解法练习题精选 一.解答题(共16小题) 1.求适合的x,y的值. 2.解下列方程组 . 6.已知关于x,y的二元一次方程y=kx+b的解有和. (1)求k,b的值. (2)当x=2时,y的值. (3)当x为何值时,y=3? 7.解方程组: (1);(2).8.解方程组: 9.解方程组: 10.解下列方程组: 12.解二元一次方程组: ; . 15.解下列方程组: (1)(2). 16.解下列方程组:(1)(2)

二元一次方程组解法练习题精选(含答案) 参考答案与试题解析 一.解答题(共16小题) 1.求适合的x,y的值. 解二元一次方程组. 考 点: 分 先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消析: 去未知数x,求出y的值,继而求出x的值. 解 解:由题意得:, 答: 由(1)×2得:3x﹣2y=2(3), 由(2)×3得:6x+y=3(4), (3)×2得:6x﹣4y=4(5), (5)﹣(4)得:y=﹣, 把y的值代入(3)得:x=, ∴. 点 本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法. 评: 2.解下列方程组 (1) (2) (3)

(4).考 点: 解二元一次方程组. 分析:(1)(2)用代入消元法或加减消元法均可; (3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解. 解答:解:(1)①﹣②得,﹣x=﹣2, 解得x=2, 把x=2代入①得,2+y=1, 解得y=﹣1. 故原方程组的解为. (2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3, 把y=3代入①得,2x﹣3×3=﹣5, 解得x=2. 故原方程组的解为. (3)原方程组可化为, ①+②得,6x=36, x=6, ①﹣②得,8y=﹣4, y=﹣. 所以原方程组的解为. (4)原方程组可化为:,

数据库课本例题

Use basetest 【例1】查询全体学生的记录 【例2】查询全体学生的姓名和性别。 【例3】查询全体学生的姓名和出生年份。 【例4】在例3的基础上,将字段名替换成中文名显示。 【例5】显示学生表student中前5行数据。 【例6】查询学生课程表sc中选修了课程的学生学号。 【例7】查询SC表中选修了课程的学生学号、姓名、院系、课程号和成绩。 【例8】以student为主表查询例7。 【例9】查询表student中年龄大于20岁的学生姓名性别和各自的年龄大小。 【例10】查询年龄在21岁到23岁(包括21和23岁)之间的学生信息。 【例11】查询所有姓黄的学生的姓名、性别、年龄、院系 【例12】查询数学系(MA)学生的姓名、性别和年龄。 【例13】查询没有选修课(cpni)的课程名和学分。 【例14】查询cs系中男生的学号和姓名。 【例15】查询在sc表中选课了的女生的学号和姓名。 【例16】按学生年龄的降序对学生进行排序。 【例17】按院系、学号等对学生情况进行分组。 【例18】按院系、学号等对女学生情况进行分组。 【例19】按院系、性别查看学生的平均年龄。 【例20】在例19的基础上使用WITH CUBE关键字。 【例21】在例19的基础上使用WITH ROLLUP关键字。 【例22】求sc表中选修了课程的学生的总成绩。 【例23】计算选修了课程学生的平均成绩。 【例24】查询选修了课程的学生选修课程的数目 【例25】查询CS系中年龄最大的学生的姓名以及年龄 【例26】查询学号为05007的学生的选修课程的平均成绩和最高成绩 【例27】查询选修了课程5的学生信息,并计算平均成绩和最高成绩,以成绩高低排序。 查询所有系中年龄最大的学生的姓名以及年龄 【例28】查询选修了课程6的学生学号和姓名 【例29】查询选修了数据库的学生信息。 【例30】查询选修了课程6的学生学号、姓名和性别。 【例31】查询除了IS系的其他系中年龄不大于IS系中最小年龄学生的学生信息。 【例32】查询IS系的学生以及年龄大于20岁的学生。 【例33】对例32使用UNION ALL子句。

运筹学例题解析

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1 、x 2 单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线 z=2 x 1+x 2与约 束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

人教版五年级课本例题及课后作业1-4单元

第一章小数乘法 一、计算 1、直接计算。 3.5×3= 0.72×5= 2.05×4= 12.4×7= 1.2×0.8= 0.56×0.04= 6.7×0.3= 0.29×0.07= 0.86×7= 0.37×0.4= 7×0.86= 0.6×0.39= 2、竖式计算 2.3×12= 2.4×6.2= 3.7× 4.6= 6.5× 8.4= 3.5×16= 12.5×42= 1.8×23×= 1.06×25= 27×0.43= 3、近似数 得数保留一位小数: 0.8×0.9 1.2×1.4 0.37×8.4 得数保留两位小数: 1.7×0.45 0.86×1.2 2.34×0.15 4、脱式计算 72×0.81+10.4 7.06×2.4-5.7 50.4×1.9-1.8

5、简便计算 4.8×0.25 2.33×0.5×4 1.5×105 1.2×2.5+0.8×2.5 0.25×4.78×4 0.65×201 0.034×0.5×0.6 102×0.45 二、填空题 1、一个数(0除外)乘大于1的数,积比原来的数() 一个数(0除外)乘小于1的数,积比原来的数() 2、根据简便计算方法填空: 0.7×1.2= ×0.7 (0.8×0.5)×0.4= ×(×0.4) (2.4+3.6)×0.5= ×0.5+3.6× 3、根据65×39=2535,在下面的()里填上合适的数。 25.35=()×() 2.535=()×() 253.5=()×()0.2535=()×() 4、在下面的○里填上“>”或“<”。 756×0.9○756 1×0.94○1 4.25×1.1○4.25 31.4×1.2○31.4 三、解决问题 1、非洲野狗的最高速度是56千米/时。鸵鸟的最高速度是非洲野狗的1.3倍,鸵鸟的最高速度是多少呢? 2、蓝鲸的体重是150吨,体长25.9米。世界上最大的一个巨杉,质量是蓝鲸的18.7倍,高是蓝鲸体长的3.2倍,这棵巨杉重多少吨?高多少米? 3、小娟加印了14张照片,每张照片0.55元,她一共花了多少钱? 4、要下雨了,小丽看见远处有闪电,4秒后听到了雷声,闪电的地方离小丽多远?(雷声在空气中的传播速度是0.34千米/秒) 5、宣传栏的长为1.2米,宽为0.8米。现在宣传栏的玻璃碎了,需要换一块玻璃,已知玻璃每平方米为16.5元,买这块玻璃要多少钱?

值域的解法及例题

一、配方法 适用类型:二次函数及能通过换元法等转化为二次函数的题型. 【例1】求函数的值域. 解:为便于计算不妨: 配方得: , 利用二次函数的相关知识得,从而得出: . 【例2】已知函数y=(ex-a)2+(e-x-a)2(a∈R,a≠0),求函数y的最小值. 解析:y=(ex-a)2+(e-x-a)2=(ex+e-x)2-2a(ex+e-x)+2a2-2. 令t=ex+e-x,f(t)=t2-2at+2a2-2. ∵t≥2,∴f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定义域为[2,+∞). ∵抛物线y=f(t)的对称轴为t=a, ∴当a≤2且a≠0时,ymin=f(2)=2(a-1)2; 当a>2时,ymin=f(a)=a2-2. 练习○1 求y = sin2x - 6sinx + 2值域. ○2 当1≤x≤1000时,求y=(lgx)2-2lgx+3值域. 二、换元法 【例3】求函数的值域. 适用类型:无理函数、三角函数(用三角代换). 解析:由于题中含有不便于计算,但如果令:注意从而得:变形得即: 【例4】设a,b∈R,a2+2b2=6,则a+b的最小值是______. 解:∵a,b∈R,a2+2b2=6, ∴令a=6cosα,2b=6sinα,α∈R. ∴a+b=6cosα+3sinα=3sin(α+φ). ∴a+b的最小值是-3;故填-3. 练习○3 已知是圆上的点,试求的值域. 三、反函数法(变量分类法) 【例5】求函数的值域. 解:原式中x∈R,将原式化为由○1解出x,得;(也可由直接得到) 因此函数值域是(-1,1) 四、不等式法 利用不等式法求解函数最值,主要是指运用均值不等式及其变形公式来解决函数最值问题的一种方法.常常使用的基本不等式有以下几种: a2+b2≥2ab(a,b为实数);a+b2≥ab(a≥0,b≥0);ab≤a+b22≤a2+b22(a,b为实数). 【例6】设x,y,z为正实数,x-2y+3z=0,则的最小值为________. 解析:因为x-2y+3z=0,所以y=x+3z2,因此y2xz=x2+9z2+6xz4xz. 又x,z为正实数,所以由基本不等式,得y2xz≥6xz+6xz4xz=3,当且仅当x=3z时取“=”.

一道课本例题的探究与拓展

在运动中探索在变化中思考 江苏省东台市五烈镇中学杨荫林 (获2013江苏省教育科学研究院中学数学组二等奖) 摘要在我们自主学习,合作交流中,要认真观察、实验、归纳,大胆提出猜想。为了证实或推翻提出的猜想,我们要通过分析,概括、抽象出数学概念,通过探究、推理,建立数学理论。我们要积极地运用这些理论去解决问题。在探究与应用过程中,我们的思维水平会不断提高,我们的创造能力会得到发展。在数学学习过程中,我们将快乐成长。 在我们的教科书中设计了一些具有挑战性的内容,包括思考、探究、链接,以及习题中的“思考〃应用”、“探究〃拓展”等,以激发我们探索数学的兴趣。在掌握基本内容之后,选择其中一些内容作思考与探究,我们会更加喜欢数学。 关键词命题运动变化两圆内切、外切、外离、内含。 普通高中新课程标准实验教科书中有一部分例题和习题,它本身提出的的问题是非常明确具体的,但如果我们在自主学习的过程中不是以得到例习题所提问题的解答为满足,而是进一步加强合作、探索实践创新,交流我们的学习成果,我们发现新课程标准实验教科书中的例习题的背后还有好多资源有待去研究与拓展。本文以(苏教版)普通高中课程标准实验教科书选修4-1《几何证明选讲》1.2圆的进一步认识,1.2.2圆的切线,2.弦切角例4为例P32,作初步的探究与拓展。 一. 原题中两圆内切 命题1如图1,两圆内切于点P,大圆的弦AD与小圆相离,PA、PD交小圆于点E、F,直线EF交大圆于点B、C,求证:(1)EF∥AD;(2)∠APB=∠CPD. B D 如图1 如图2 变化1如果大圆的弦AD与小圆相离,变化为与小圆相切,那么有 命题2如图2,两圆内切于点P,大圆的弦AB切小圆于点C.求证:∠APC=∠BPC. 设PA,PB交小圆于E,F,则请你探究下列各等式是否成立? (1)CE=CF;(2)⊿ACE∽⊿CPF;(3)PC2=PA·PF;(4)PE·BC=PF·AC;(5)PA·PB-PC2=AC·BC; (6)S ⊿ACE :S ⊿BCF =PE:PF. 变化2如果大圆的弦AD与小圆相离,变化为与小圆相交,那么有 命题3如图3,两圆内切于点P,大圆的弦AD交小圆于点B,C.求证:∠APB=∠CPD

课本练习题

1、(求出下列各圆的周长。 (1)r=2.6dm (2 ) r=5.5cm (3 ) d=12cm (4 )r=15dm 2. 一辆自行车车轮的外直径是0.71米。如果车轮平均每分转100周,这辆自行车每分前进多少米? 3.一张圆桌桌面的直径是1.8米,桌面的面积是多少平方米? 4.淘气沿一个圆形花坛走一圈,走了18.84米。这个花坛的占地面积是多少平方米? 5、在一张长8厘米、宽6厘米的长方形纸上剪一个最大的洞,这个圆的面积是多少?剩余部分的面积是多少? 6、圆规两脚间的距离为1.5cm, 那么所画圆的周长和面积各是多少? 7、沿一块直径为20米的圆形菜地围一圈篱笆,篱笆的长是多少?菜地的占地面积是多少? 8、有个圆形喷水池的周长是12.56米,它的占地面积是多少平方米? 9、一根绳子长64.8米,在一棵大树的树干上绕了10圈后还余2米。这棵树树干的横截面面积是多少? 10、画一个长4厘米、宽3厘米的长方形,再在长方形中画一个最大的圆。求出圆的面积和剩余部分的面积。 11、在一块草坪中间有一个喷水头,最远可以喷4米。喷水头转动一周可以浇灌多大面积的草坪? 12、钟表的分针长15厘米,时针长12厘米。 (1)1小时分针针尖走过了多少厘米? (2)一小时分针针尖扫过的面积是多少平方厘米? 13、用两根长度都是6.28厘米的铁丝,分别围成一个圆和一个正方形,哪个图形的面积大?相差多少平方厘米? 14、小方绕一个圆形花坛走一圈是25.12米。这个花坛的占地面积是多少平方米? 15、一只钟的时针长3厘米。一昼夜时针针尖走过了多少厘米? 16、一只羊被拴在草地中央,绳子长6米。小羊能吃到草的面积是多少? 17、某汽车的轮胎外直径为60厘米,汽车行驶1千米,轮子大约转了几圈?(结果保留整数) 18、在直径是4米的圆形花坛外面有一条宽1米的环形小路,这条小路的面积是多少? 19、现在有一根长125.6米的绳子,要围一块尽可能大的土地。你认为该怎么围?围成的是什么图形?面积是多少? 20、(1)20米比25米少百分之几? (2)25米比20米多百分之几? 21、光明小学篮球队有25人,合唱队有40人。合唱队人数比篮球队人数多百分之几?题中把()看作单位“1”,“合唱队人数比篮球队人数多百分之几”是指()是()的百分之几。 1

一元一次方程解法及例题

一)知识要点: 1.一元一次方程的概念: 只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程. 一元一次方程的标准形式是:ax+b=0 (其中x是未知数,a,b是已知数,且a≠0),它的解是x=- . 我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0 (a≠0).例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程. 2.解一元一次方程的一般步骤: (1)方程含有分母时要先去分母,使过程简便,具体做法为:在方程的两边都乘以各分母的最小公倍数.要注意不要漏掉不含分母的项,如方程x+ =3,去分母得10x+3=3就错了,因为方程右边忘记乘以6,造成错误. (2)去括号:按照去括号法则先去小括号,再去中括号,最后去大括号.特别注意括号前是负号时,去掉负号和括号,括号里的各项都要变号.括号前有数字因数时要注意使用分配律. (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.注意移项要变号. (4)合并项:把方程化成最简形式ax=b (a≠0). (5)把未知数的系数化成1:在方程两边都除以未知数的系数a,得到方程的解x= . 解方程时上述步骤有些可能用不到,并且也不一定按照上述顺序,要根据方程的具体形式灵活安排求解步骤.

(二)例题: 例1.解方程(x-5)=3- (x-5) 分析:按常规此方程应先去分母,去括号,但发现方程左右两边都含有x-5项,所以可以把它们看作一个整体,移项,合并,使运算简便. 移项得:(x-5)+ (x-5)=3 合并得:x-5=3 ∴x=8. 例2.解方程2x-3(x+1)/6 =4/3 -(x+2)/3 因为方程含有分母,应先去分母. 去分母:12x-3(x+1)=8-2(x+2) (注意每一项都要乘以6) 去括号:12x-3x-3=8-2x-4 (注意分配律及去括号法则) 移项:12x-3x+2x=8-4+3 合并:11x=7 系数化成1:x=7/11 . 例3.1/9{1/7[1/5((x+2)/3 +4)+6]+8}=1 解法1:从外向里逐渐去括号,展开求 去大括号得:1/7[1/5((x+2)/3+4)+6]+8=9 去中括号得:1/5((x+2)/3+4)+6+56=63 整理得:1/5((x+2)/3+4)=1 去小括号得:(x+2)/3+4=5 去分母得:x+2+12=15 移项,合并得:x=1.

演绎推理解题技巧和例题答案

演绎推理解题技巧和例题答案 演绎推理是从一般到个别的推理,推理的主要形式是三段论,由大前提、小前提、结论三部分组成。例如: 所有的昆虫都是6 条腿,(大前提)竹节虫是昆虫,(小前提)所以竹节虫一定是6 条腿。(结论)凡是长羽毛的动物都是鸟,(大前提)企鹅是长有羽毛的动物,(小前提)所以企鹅是鸟。(结论)凡是容易导电的物体都是导体,(大前提)棉线不容易导电,(小前提)所以棉线不是导体。(结论)演绎推理的大前提是一般性的规律,小前提是具体事物的性状。由于一般包括了个别,凡是一类事物共有的属性,其中每一个别事物必然具有。所以当前提正确、推理形式合乎逻辑的时候,推出的结论必然是正确的。演绎推理是一种重要的认识方法,可以使人从一般性的原理推导出某种个别事物有无某种性状或属于哪类物体演绎推理是逻辑证明的工具,人们可以选取确实可靠的命题作为前提,经过推理证明或反驳某个命题. 演绎推理是作出科学预见的一种手段。把一般原理运用于具体场合,作出正确的推论,就是科学预见。 演绎推理是设计实验、发展假说的一个必要环节。科学假说需要经过实践的检验,检验的方法就是:以假设的理论为大前提,根据不同的条件,推导出可以相比的结论,从而设计对比实验,加以证明. 公务员考试中演绎推理演绎推理主要考察应试者的逻辑推理能力。在这种题型中,每道试题给出一段陈述,这段陈述被假设为是正确的,不容置疑的。题后的四个备选答案是与这段陈述有关的四个推理,其中有一个是不需要任何附加条件或说明就可以从陈述直接推导出来的,要求应试者选出这个正确答案。 从做题的要求也可以看出,做演绎推理题目必须紧扣题干内容,以题目中的陈述为依据,根据形式逻辑的推论法则推出正确结论。题中的陈述是被假设为正确的不要对其作出怀疑或否定,给自己解题带来不必要的干扰。对于演绎推理题目中比 较难的,多种条件相互制约或是数理逻辑的题目,可以忽略其具体情境,在草稿纸上抽象出其数理模型,加以逻辑运算这样比较容易得出结论。 解答演绎推理题时,要注意以下事项: 1、紧扣题干内容,不要对题中陈述的事实提出任何怀疑,不要被与题中陈述不一致的常理所干扰; 2、紧紧依靠形式逻辑有关推论法则严格推理,注意大前提、小前提、结论三者间的关系。 3、必要时,可以在草稿纸上根据你设计的符号来表示推论过程,帮助你记住一些重要信息和推出正确结论。实例讲解例题彭平是一个计算机编程专家,姚欣是一位数学家。其实,所有的计算机编程专家都是数学家。我们知识,今天国内大多数综合性大学都在培养着计算机编程专家。据此,我们可以认为:A:彭平是由综合性大学所培养的。 B:大多数计算机编程专家是由综合性大学所培养的。C:姚欣并不是毕业于综合性大学。 D:有些数学家是计算机编程专家。解答:这是一道考察逻辑推理能力的典型试题,观察A、B、C、D 四个选项,似乎都有一定道 理,但并不都对。毫无疑问,题中的四个陈述被认为是完全正确的,可各陈述的逆命题并非一定成立,这是一个很简单的道理。陈述1、彭平是一个计算机编程专家;陈述2 、姚欣是一 位数学家;陈述3、所有的计算机编程专家都是数学家,陈述4、今天国内大多数综合性大学 都在培养着计算机编程专家。陈述4 中表示时间和范围的词“今天”、“国内”、“大多数”说明计算机编专家可以在其他时间、地点、学校内培养出来,因此选项A 是错的。另外,陈述4 中的“大多数”是说明“大学”的,并非说明“计算机编程专家”,因此,结论B 也是不对的。陈述4 并不能说明综合性大学不培养数学家,况且“今天国内大多数”以外的综合性大学是否可培养数学家不能排除,所以选项C 是毫无根据的。从陈述3 可知,数学家的人数要比计算机编程专家多,数学家中有部分人是计算机编程专家,同时这也意味数学家中有部分人不是计算机编程专家,因此结论D 是由陈述3 直接推出来的,是不需要附加任何假设和补充而得出的结论,D 是正确答案。 例题售价2 元一市斤的洗洁精分为两种:一种加除臭剂,另一种没有除臭剂。尽管两种洗洁精效果相同,但没有加除臭剂的洗洁精在持久时间方面明显不如有除臭剂的洗洁精。因为后者: A 味道更好些 B 具有添加剂 C 从长远来看更便宜 D 比其他公司的产品效果好 解答:答案为A。先浏览一遍四个选项,带着问题去看陈述。从陈述来看,文中没有提到各公司产品比较问题,售价都是 2 元一斤,所以 C、D 两项可以排除。文中也没有提到两种洗洁精没有放添加剂的问题。故选项 B 也应排除。因此,A 正确。 例题:对于穿鞋来说,正合脚的鞋子比过大的鞋子好。不过,在寒冷的天气,尺寸稍大点别并不大。这 意味着: 的毛衣与一件正合身的毛衣的差 A:不合脚的鞋不能在冷天穿。 B:毛衣的大小只不过是式样的问题,与其功能无关。 C:不合身的衣服有时仍然有穿用价值。 D:在买礼物时,尺寸不如用途那样重要。 解答:题干中有两个陈述。陈述1 、对于穿鞋来说,正合脚的鞋子比过大的鞋子好。陈 述、在寒冷的天气,尺寸稍大点的毛衣与一件正合身的毛衣的差别并不大。这两个陈述都没2 有 提到冷天穿鞋方面的问题,也没提到买礼物问题,所以A 和D 都不对;题中也没提到毛衣的功 能问题,所以选项B 是推不出来的;只有选项C 是可以从陈述中直接推出的,是不需要附加任何假设和补充而得出的结论,故正确答案是 C。演绎推理题型讲解(2 )例题3:若风大,就放飞风筝。若气温高,就不放飞风筝。若天空不晴朗,就不放飞风筝。假设以上说法正确,若放飞风筝,则以下哪些说法是正确的:()Ⅰ风大Ⅱ天空晴朗Ⅲ气温高 A、Ⅰ B、Ⅱ C 、Ⅲ D、Ⅰ和Ⅲ 解析:此题看起来很简单,许多人可能会选择答案A,但是正确答案是B 。 思路一:我们分析一下三个前提:第一个,风大,放飞风筝,第二个,气温高,就不放飞风筝第一个前提被第二个前提限定,也就是说风大,但气温高,不能放飞风筝,答案D 是不成立的。有些人只考虑第一个前提,而没有考虑第二个前提,就会选择A。 第二个前提,气温高,不放飞风筝;但气温不高的时候,是否放飞风筝不确定。第三个前提,若天空不晴朗,就不放飞风筝;可以推出,天空晴朗,就放飞风筝。而且,第三个条件不受第一和第二个条件的限制。 根据以上分析我们来观察一下A、B、C、D 四个答案,A、C、D 是错误的,答案是B。上述解法是一个正常的推理过

一道课本习题的探究

一道课本习题的探究 江西省吉安师范学校杨文光(343000) 习题已知数列{}n a 的第1项是1、第2项是2、以后各项由12n n n a a a =+(3n ≥)给出,写出这个数列的前5项.(人教社2003年6月第1版的全日制普通高级中学教科书(必修)《数学》第一册(上)110P ) 问题能否求出这个数列的通项公式?解析设112()n n n n a pa q a pa +=+,与n a = 1 2 n n a a +比较系数,得 112515151 ()222n n n n a a a a ++=+.或1152 n n a a +=1 215 15 ()22 n n a a +,从而有11515151 ()222 n n n n a a a a +++=+(2n ≥)①或1 11515 15 ()222 n n n n a a a a +++=(2n ≥)②.对于①,因215153 22 a a ++=,故数列151 {}2 n n a a ++ 是首项为53 2 +,公比为(51)/2+的等比数列, 于是有1 1515351()222 n n n a a ++++=③; 对于②,同理可得 1 n a +1 153515()222 n n a +=④.由③-④,得1 11 1 (51)(1 5)522n n n n n a +++++= , 故所求数列的通项公式为 11 1 (15)(15)52n n n n a ++++=. 练习 1(人教社2003年6月第1版的全日制普通高级中学教科书(必修)《数学》第一册(上)135P 复习参考题A 组5(1)的改编题)在数列{}n a 中,11a =, 22a =,212n n n a a a ++=+,求它的通项公式. (答案:(12)(12)22 n n n a += .) 2(2005年高考广东卷)已知数列{}n x 满足 21/2x x =,1 2()/2n n n x x x =+,3,4,n =",若lim n x x →∞ 2=,则1x =( ) A .3/2 B .3 C .4 D .5 (提示:由12()/2n n n x x x =+,得1/2n n x x += 1 2 /2n n x x +,于是1/2n n x x +=1 2 /2n n x x +="= 211/2x x x +=.所以11lim(/2)n n x x x x →∞ +=. 即1lim n x x x →∞ =+1lim /23n x x →∞ =.故选(B).) 用矩阵法求平面的法向量 福建省漳州市立人学校 林明金(363000) 高中数学课标教材选修2—1第三章主要介绍用向量法解决立体几何中点、线、面的问题.从3.6节以后研究直线与平面、平面与平面的位置关系及夹角、以及点与面的距离都是借助平面的法向量来求解,而教材中介绍求平面的法向量都是采用待定系数法.如何让学生快速、高效地求出平面的法向量, 无疑十分重要.笔者在教学实践中引导学生采用矩阵法求平面的法向量,取得了明显的效果:省时,高效,易求.1引例 例1(湘教版P 123页练习题1)已知平面内有三个点(,3,)、(,,)B 、(6,3,),求平面的一个法 44福建中学数学2008年第2期 21A 4127C

课本典型例题

课本典型例题、习题 必修1 【集合】 1.期中考试,某班数学优秀率为70%,语文优秀率为75%.问:上述两门学科都优秀的百分率至少为多少? 【函数概念与基本初等函数I】 1. 已知一个函数的解析式为2 x y =,它的值域为[1,4],这样的函数有多少个?试写出其中两个函数. 2. 解下列方程: (1))12(log )3(log 22+=x x (2))2(log )12(log 255-=+x x (3))1lg(1lg -=-x x 3.解下列不等式: (1)25 2 >+x (2) 633<-x (3)3)2(log 3>+x (4)1)1lg(<-x 4.利用计算器,求方程x x -=3lg 的近似解(精确到0.1) 5.分别就2 1,45,2===a a a 画出函数x y a y a x log ,==的图像,并求方程x a a x log =的解的个数. 探究:当10<

一道课本例题引发的探究

一道课本例题引发的探究 【摘 要】高中数学教材绝大多数例习题都是很经典的,教师应该鼓励学生对其进行积极的探究,引导学生乐于把现有的问题进行演变、引申,发展学生的创新思维,培养他们的探究能力。 【关键词】例习题 问题 探究 引申 高中数学教材绝大多数例习题都是很经典的,教师应该鼓励学生对其进行积极的探究,通过探究让学生大胆的提出问题、解决问题。这样不仅能加深概念、法则、定理等基础知识的理解与掌握,更重要是开发了学生的智力,培养学生的探究能力。现以人教版选修2—1第41页例3的教学为例,并谈谈自己的一些想法。 一、问题的提出 (选修2—1第41页例3)设点A 、B 的坐标(5,0)、(-5,0)。直线AM 、BM 相交于点M ,且它们的斜率之积是-9 4 ,求点M 的轨迹方程。 解答:(略) 本题由学生用直译法做,没有太大的问题。 二、问题的引申 1、逆向思维,大胆猜想: 牛顿说过:“没有大胆的猜想,就做不出伟大的发现。”翻开数学史册,可以发现数学的历史就是一部充满猜想的历史。可见猜想与数学发现是形影不离的。我们可以通过例题,引导学生进行大胆猜想与合情推理,发展他们发现问题的能力。针对例3的答案为椭圆方程,学生不禁会问一般的椭圆是不是都有这样的性质呢? 猜想1:椭圆0(122 22>>=+b a b y a x 上长轴的两顶点A 、B 与任意一 点P (不同于A 、B )连线PA PB 、的斜率之积为定值. 解答:(略) 有了例3的解答,这个问题让学生自主解决。 2、大胆假设,归纳引申:

先通过大胆假设,再从特殊问题入手,归纳出一般性的结论。这样有利于学生形成良好的认知结构。变式问题中弦AB 是长轴,能不能改成一般过原点的弦呢? 我们可以先与学生一起来探究一个特殊的问题,归纳出方法,再引申出一般性的命题。 问题:椭圆22 132x y +=上任意一点P 与过中心的弦AB 的两端点A 、B 连线P A P B 、与对称轴不平行,求直线PA PB 、的斜率之积。 证明:设111(,),(,),P x y A x y 则111(,),B x y --2222 111,13232 x y x y ∴+ =+=,两式相减得: 22221132x x y y --∴=, 22122 12 3 y y x x -∴=-- 22111221112 3 PA PB y y y y y y k k x x x x x x -+-∴?=?==- -+- 让学生自主探究,再让学生归纳引申出一般的问题。 命题1: 椭圆0(122 22>>=+b a b y a x 上任意一点P 与过中心的弦AB 的两 端点A 、B 连线P A P B 、与对称轴不平行,则直线PA PB 、的斜率之积 为定值. 证明:设111(,),(,),P x y A x y 则111(,),B x y --1,122122122 22=+=+∴b y a x b y a x ,两式相减 得: 22122212b y y a x x --=- 22 2 12212a b x x y y -=--∴ 22 1111a b x x y y x x y y K K PB PA -=++?--=?∴为定值. 3、极限思想,知识串联; G ?波利亚说:“类比是一个伟大的引路人”。我们这时引导学生,然后提问:椭圆的极限位置是圆,此性质可以类比圆中什么性质呢?让学生分组探讨,进行类比与归纳。探讨后部分学生提出了对性质的解释:是圆的性质“圆上一点对直径所张成的角为直角”在椭圆中的推广。 这个解释充分揭示了椭圆的本质属性,因而能简洁解决问题。再引导类比圆中的性质,可以引申出以下命题.

相关主题
相关文档 最新文档