当前位置:文档之家› 二苯醚型聚酰胺酸在N,N-二甲基乙酰胺体系中的Mark-Houwink方程参数测定

二苯醚型聚酰胺酸在N,N-二甲基乙酰胺体系中的Mark-Houwink方程参数测定

二苯醚型聚酰胺酸在N,N-二甲基乙酰胺体系中的Mark-Houwink方程参数测定
二苯醚型聚酰胺酸在N,N-二甲基乙酰胺体系中的Mark-Houwink方程参数测定

二甲基乙酰胺废液的回收研究

东华大学 硕士学位论文 二甲基乙酰胺废液的回收研究 姓名:刘明晶 申请学位级别:硕士 专业:环境工程 指导教师:陈寅生 20031201

二甲基乙酰胺废液的回收研究 摘要 N,N一二甲基乙酰胺是一种重要的工业溶剂,它对于化合物有很强的溶解能力,主要在橡胶、树脂和纤维生产中使用。同时,它也是生产共混聚醚砜中空纤维膜的重要反应溶剂。每年有大量的DMAC在生产、使用和处景过程中倾倒入水体。这些水体中的有毒物质将对水质环境造成有害影响,并危害人民健康和公众利益。本学位论文主要研究了用萃取法和精馏法回收二甲基乙酰胺的可行性和工艺条件。1.液一液萃取法回收废液中的DMAC。 通过测定几种低沸点萃取剂对DMAC萃取的分配比,选用三氯甲烷(分配比为1.23)作为对DMAC的萃取剂。为了达到快速测定DMAC含量的目的,采用紫外分光光度法,在198rim处测定二甲基乙酰胺吸光度一浓度曲线,利用多项式拟合求得浓度与吸光度关系式:C。。=10.509A一0.3。 我们研究了各种影响因素对萃取平衡的影响,并通过对DMAC一三氯甲烷一水三元体系相图的测定,对萃取模拟实验的理论级数和萃取效果进行了计算。通过五级逆流和四级顺流萃取模拟实验,结果表明:在常温20一35℃,用三氯甲烷萃取DMAC,当溶剂与水相体积比为2:l时,经五级逆流萃取,可将废液中30%(w/w)的D1^Ac含量降至300mg/1以下。废液的p}{值对萃取效果有明显的影响,当废液的pH值较大时,即偏碱性对萃取有利。 2.,精馏法回收废液中的DMAC 首先使用阿贝折光仪测定DMAC一水二元系统折光率一组成数据, 由拟合得折光率一组成关系式:”D2521.3286+0-1684XDMAC一0.0572XM2 c。 利用双循环气液平衡釜测定DMAC一水气液相平衡数据,可知该溶液无

聚酰亚胺的合成方法2

聚酰亚胺的合成方法 聚酰亚胺是一类环链化合物,根据其结构和制备方法,可分成主链含有脂肪链的聚酰亚胺和主链中含有芳环链的聚酰亚胺2大类。其通式为: 聚酰亚胺由四酸二酐与二胺聚合而成,合成方法有一步法、二步法、三步法和气相沉积法。 2.1一步法 一步法是二酐和二胺在高沸点溶剂中直接聚合生成聚酰亚胺,即单体不经由聚酰胺酸而直接合成聚酰亚胺。该法的反应条件比热处理要温和得多,关键要选择合适的溶剂。为提高聚合物的相对分子质量,应尽量脱去水份。通常采用带水剂进行共沸以脱去生成的水,或用异氰酸酯替代二胺和生成的聚酰胺酸盐在高温高压下聚合。此法的控制工艺尚需完善,并正向实用化迈进。反应方程式如图1。 2.2二步法 二步法是先由二酐和二胺获得前驱体聚酰胺酸,再通过加热或化学方法,分子内脱水闭环生成聚酰亚胺。化学亚胺化法,即用脱水剂处理聚酰胺酸;化学环化后生成的聚酰亚胺中含有大量异酰亚胺,该法制得的聚酰亚胺与用加热方法制得的聚酰亚胺,物理和化学性能有差异,特别是异酰亚胺环具有较低的热稳定性和高化学反应活性;应用不同的脱水剂,环化产物中亚胺/异酰亚胺的比例不同,可认为是互变异构的高度不稳定所引起的。 二步法工艺成熟,但聚酰胺酸溶液不稳定对水汽很敏感,储存过程中常发生分解,所以又出现聚酰胺酸烷基酯法、聚酰胺酸硅烷基酯法等改进方法 聚酰亚胺的另一种前驱体聚酰胺酯,是一种相对稳定的聚合物,能以固态或溶液形式长期存放高相对分子质量的聚酰胺酯通常是由芳香二酸二酯经酰氯化后,与芳香二胺进行溶液缩聚或界面缩聚制得;聚酰胺酯受热或在有机碱的催化下发生酰亚胺化反应生成聚酰亚胺,但脱掉的小分子化

合物是醇或α-烯烃而不是水。中间体聚酰胺酯的溶解性好于聚酰胺酸,可溶于常用低沸点有机溶剂,如二氯甲烷、四氢呋喃等,并可获得高浓度溶液而且可通过改变酯基结构使聚酰胺酯性能各异,可用于制备高强高模材料,是合成聚酰亚胺的典型方法。但其酰亚胺化反应活性低,工艺复杂,制造成本高,有待优化。反应方程式如图2。 2.3三步法 三步法是经由聚异酰亚胺得到聚酰亚胺的方法。聚异酰亚胺结构稳定,作为聚酰亚胺的先母体,由于热处理时不会放出水等低分子物质,容易异构化成酰亚胺,能制得性能优良的聚酰亚胺。聚异酰亚胺是由聚酰胺酸在脱水剂作用下,脱水环化为聚异酰亚胺,然后在酸或碱等催化剂作用下异构化成聚酰亚胺,此异构化反应在高温下很容易进行。聚异酰亚胺溶解性好,玻璃化转变温度较低,加工性能优良。聚酰亚胺为不溶、不熔性材料,难于加工,通常采用先在预聚物聚酰亚胺阶段加工,但由于在高温下进行,亚胺化时闭环脱水易使制品产生气孔,导致制品的机械性能和电性能下降,难以获得理想的产品,作为聚酰亚胺预聚的聚异酰亚胺,其玻璃化温度低于对应的聚酰亚胺,热处理时不会放出水分,易异构化成聚酰亚胺,因此用聚异酰亚胺代替聚酰胺酸作为聚酰亚胺的前身材料,可制得性能优良的制品。该法较新颖,正受到广泛关注。 2.4气相沉积法 气相沉积法主要用于制备聚酰亚胺薄膜,反应是在高温下使二酸酐与二胺直接以气流的形式输送到混炼机内进行混炼,制成薄膜,这是由单体直接合成聚酰亚胺涂层的方法。

聚酰胺树脂

植物油酸 植物油酸是用棉油皂角或大豆油皂角为主要原材料,经过一系列化工工艺过程而生成的微黄色透明液体,凝固后为白色软状膏体,具有羚酸通性和不饱和双键的化学特性。可溶于醇、苯、乙醚、三氯甲烷、汽油等有机溶剂。 用途:聚酰胺树脂、醇酸树脂、造纸脱墨剂、石油助剂、选矿剂、塑料增塑剂等。典型指标: 包装:塑料桶或衬塑铁桶,每桶净重180千克 储存:一般存放在阴凉干燥处为宜。运输途中严禁高温、日晒、雨淋。 硬脂酸 硬脂酸是一种高级饱和脂肪酸,为白色或微黄色颗粒、片状。 用途:脱模剂。消泡剂、抛光膏、金属浮选剂、油漆平光剂、也是制造硬脂酸锌、硬脂酸钾、硬脂酸钡的原材料。 典型指标: 包装:塑料编织袋包装。每袋净重25千克。 储存:一般存放在阴凉干燥处为宜。运输途中严禁高温、日晒、雨淋。

二聚酸 二聚酸是由十八碳不饱和脂肪酸通过分子间相互聚合而形成的化合物,是以精馏棉油酸、豆油酸为原料,采用先进的聚合酸化工艺及分离技术制得的具有较高纯度的二元羚酸。二聚酸具有性能稳定、无毒、不挥发、闪点高、燃点高、流动性好、能溶于大本部分有机溶剂的特性,用途广泛。 用途:制造聚酰胺树脂、环氧树脂固化剂、热熔胶、高档油漆、热塑制品、润滑油、脱脂剂、表面活性剂、油田缓蚀剂等。 典型指标: 包装:塑料桶或衬塑铁桶,每桶净重180千克 储存:一般存放在阴凉干燥处为宜。运输途中严禁高温、日晒、雨淋。 聚酰胺热熔胶 聚酰胺热熔胶是由二聚酸与二元胺经缩聚反应形成,该产品具有粘结强度高、柔韧性、耐介质型好的特点。 形状:浅黄色颗粒状或粉状固体。 特性:有很好的熔溶性和低温溶解性,很高的热稳定性和柔韧性。 用途:作为服装、鞋材、皮革、塑料、金属电子元件的粘结。 典型指标: 包装:三合一纸袋包装。每袋净重25千克。 储存:一般存放在阴凉干燥处为宜。运输途中严禁高温、日晒、雨淋。

二甲基乙酰胺合成技术

二甲基乙酰胺合成技术 二甲基乙酰胺,即N,N-二甲基乙酰胺,是一种高沸点、高极性的非质子化溶剂,能溶解多种化合物,且能与水、醚、酮、酯、芳烃等完全互溶,具有热稳定性高、不易水解、腐蚀性低、毒性小等特点。在合成材料、石油加工和石油化学工业等部门有着广泛用途。 1 合成技术文献报道二甲基乙酰胺合成路线比较多;但是目前工业化的路线主要有醋酐法、乙酰氯法和醋酸法3种。 1.1 醋酐法采用醋酐和二甲胺反应制备二甲基乙酰胺,其过程是先将二甲胺水溶液加热至汽化,气体二甲胺经脱水净化后,于常温下通入醋酐中进行酰化,反应为放热反应,当反应温度不再上升即为酰化终点(约170℃)。然后控制酰化液在0-20℃,加入碱液中和,反应生成醋酸钠,至pH=8-9时分离出醋酸钠;再将中和液碱洗涤后,加入醋酸乙酯,共沸脱水,粗蒸后再进行精馏,取164-166.5℃馏分,得到成品二甲基乙酰胺。该法生产消耗醋酐(约95%)1.15-1.20t/t,二甲胺(40%)1.89-1.90t/t。醋酐工艺技术比较简单,产品质量较好,但是生产成本高,且工艺流程较长。 1.2 乙酰氯法乙酰氯法采用二甲胺与乙酰氯反应制备二甲基乙酰胺,采用先进的催化反应和精馏技术,强化了反应过程,能耗降低,分离效果和产品收率都得到大大提高,工艺过程简化,与目前国内现行的醋酐法工艺相比,生产成本较低,经济效益较好。该法工艺过程为在冷却状态先将二甲胺通入乙醚中,然后再慢慢加入乙酰氯和乙醚的混合液,边加边搅拌,立即析出二甲胺盐酸盐白色固体,将其滤出。滤液用水浴回收乙醚,干燥后进行蒸馏,收集164-166.5℃馏分得到成品二甲基乙酰胺,该法缺点是使用乙醚为溶剂,溶剂使用、控制与回收比较关键。 1.3 醋酸法醋酸法是目前国外生产二甲基乙酰胺主要方法,主要以醋酸与二甲胺为原料进行合成,包括催化缩合法和高压缩合法两种。醋酸法生产二甲基乙酰胺,收率不是很高,产物中含有大量未反应的醋酸,由于醋酸与二甲基乙酰胺形成高沸点共沸混合物(通常含有二甲基乙酰胺84.9%,醋酸15.1%),使得反应结束后产品不能按常规方法去精馏提纯分离,必须经过中和、过滤。蒸馏等一系列工序方能完成。醋酸法工艺适合连续化规模化生产。 1.3.1 催化缩合法该法以氧化钼为催化剂,可以提高收率和适当缩短反应时间,加速二甲基乙酰胺的合成,除氧化铝之外,常用催化剂还有硅酸钼、三氧化钨、磷钨酸以及偏钒酸钠等,相对于高压缩合法,该法时间较长。 1.3.2 高压缩合法该法通过醋酸和二甲胺在压力下反应,同时除去反应水,以制备二甲基乙酰胺。高压缩合法的优点是反应时间大大缩短,但是该法设备尤其是带压装置的材料必须耐酸,而且脱水装置必须连接到压力装置上,所以相对于催化缩合法,该方法设备投资费用较高。 1.3.3 反应精馏法反应精馏技术是目前有机合成的一种新的技术,国内科研机构在醋酸催化缩合法基础上改进了工艺,以醋酸为原料,采用反应精馏技术直接合成二甲基乙酰胺,使反应热得到充分利用,反应过程中的能耗低,同时由于反应与精馏于同一系统中,工艺流程大大缩短。具体工艺过程,将一定量的醋酸和催化剂放入带有精馏塔的反应釜中,升温到130℃,将定量的二甲胺以加热状态通入醋酸中进行反应2小时,当塔顶的温度上升至二甲基乙酰胺沸点时候停止反应。并对许多条件进行优化,在无催化剂情况下,二甲基乙酰胺生成速度慢,使大部分醋酸二甲胺盐受热分解,催化剂的加入加快了脱水反应的速度,强化了过程,最佳催化剂用量为2%(质量比,以醋酸计);原料配比,二甲胺与醋酸的摩尔比提高,二甲基乙酰胺的收率和选择性亦不断提高,但是二甲胺量过多,则二甲胺循环量增加,热损失大,设备处理能力低,优化后的二甲胺与醋酸的摩尔比为1.3:1;反应温度和时间,通过

二聚酸综述

二聚酸综述 概述 商品二聚酸,是指以天然油脂的亚油酸为主要组分的直链的不饱和脂肪酸或不饱和脂肪酸酯在白土催化作用下,通过Diels-Alder 环加成反应等自身缩聚的二聚体。它是多种异构体的混合物,其中主要成分是二聚体、少量的三聚体或多聚体以及微量未反应的单体。二聚酸是一种重要的油脂化学品,在涂料、表面活性剂、润滑剂、印刷油墨、热熔胶等工业得到广泛应用。 二聚酸的研究最早始于上世纪20年代。随后美国在1948年以亚麻仁脂肪酸、大豆油脂肪酸为原料实现了二聚酸的工业化生产。美国70年代二聚酸的生产盛极一时,到目前仍保持着稳定上升的势头。如1974年产量为1.6万吨以上,1977年产量为1.8万吨,1979年上升至2万吨。同期日本二聚酸的产量约为美国的三分之一。那时世界二聚酸生产厂家主要集中在美国,有Generai Mill(通用磨坊)公司、Emery、Humko sheffield(埃默里,阿米莎谢菲尔德)化学公司、rizona(亚力桑那)化学公司、Henkel(汉高)公司、union camp(有利凯玛)公司等。随后,英、德等国也相继开展研究与生产。我国于70年代后期开始对二聚酸进行生产开发,最早是在天津市合成材料研究所作为环氧树脂固化剂进行研究,并在天津延安化工厂投入生产。1980年,上海市轻工业研究所与浙江省黄岩化工厂签订了转让二聚酸油墨用聚酰胺树脂和鞋用聚酰胺热熔胶两种产品协议。1982年,浙江省粮科所在海宁斜桥油厂以米糠油为原科生产二聚酸甲酯油墨聚酰胺树脂和

聚酰胺固化剂获得成功。随后,国内一些科研单位和生产厂家参照美国劳特公司二聚酸聚合技术,逐渐摸索出比较合理的工艺路线。特别是本世纪初,二聚酸生产得到快速发展,工艺与装备技术日趋完善。目前国内福建,江西,浙江,江苏,安徽,湖北,河北,四川,山东省等已有10多家油化厂生产二聚酸及其衍生物,产品技术指标和产量逐年提高,应用领域不断扩大。但还是存在规模小、品种少、质量不够稳定等问题,急待进一步提高。工业上用于制备二聚酸的原料,几乎都是十八碳不饱和脂肪酸,如妥尔油脂肪酸、棉油酸、大豆油酸、葵花籽油脂肪酸、低芥酸菜油脂肪酸等。由于原料来源广阔,化学反应性活泼,性能稳定性好,加上本身结构上的特性,使二聚酸成为一种极为有用的化工中间体。二聚酸及其衍生物可以制备聚酰胺树脂、涂料、润滑剂、燃料油添加剂、腐蚀抑制剂等多种重要的精细化工产品。我国近年来植物油脂精炼能力大幅提升,特别是大豆油生产精炼副产品酸化油,产量较大,这为二聚酸的生产提供丰富的原料来源,随着二聚酸应用市场扩大,二聚酸生产的发展前途是广阔的。 2.结构与性能 2.1.结构由于不饱和脂肪酸的聚合是一个复杂的化学反应,参加反应的不饱和脂肪酸分子,可以不同的方式互相结合,因此产生很多的异构体,如双键的顺、反几何异构体,分子“头头”或“头尾”相接造成的组分异构体,线型的或成环的结构异构体等等

常用的固化剂种类及材料特性总结

常用的固化剂种类和性能 环氧树脂是线型的热塑性树脂,本身不会硬化,且不具有任何使用性能,只有加入固化剂,使它由线型结构交联成网状或体型结构,形成不溶不熔物,才具有优良的使用性能;并且固化产物的性能在很大程度上取决于固化剂,因此。固化剂是环氧树脂结合剂中的一个重要组成部分。 凡能和环氧树脂的环氧基及羟基作用,使树脂交联的物质,叫做固化剂,也叫硬化剂或交联剂。 根据固化所需的温度不同可分为加热固化剂和室温固化剂两类。如果根据化学结构类型的不同,可分为胺类固化剂,酸酐类固化剂,树脂类固化剂,咪唑类固化剂及潜伏性固化剂等。按固化剂的物态不同可分为液体固化剂和固体固化剂两类。 常用的固化剂种类和性能

固化后环氧树脂的性能,特别是耐热性和力学强度,主要是由固化剂来提供,不同固化制成制品的耐热性和力学强度相差较大。 环氧树脂常用固化剂材料特性及配方 环氧树脂本身是一个线性结构的化合物,性能很稳定,必须与固化剂一块使用才能具有实用价值。因此固化剂是环氧树脂在使用过程中必不

可少的重要组成部分。环氧树脂的固化剂种类很多,常见的有:脂肪胺类、脂环胺类、芳香胺类、酸酐、聚酰胺类、改性胺类、潜伏性类、树脂类、叔胺类。 由于固化剂的不同会直接影响制品的工艺过程及制品的物理化学性能,所以根据应用的场合来加以选择这些环氧树脂固化剂是十分重要的。如固化工艺是常温固化还是加温固化?制品要求是硬质的还是软质的?是要求耐高温的还是低温的?使用环境是潮湿的还是干燥的?不同的场合使用的固化剂有所不同。总之要根据实际情况选择合适的固化剂,以便发挥出所用环氧树脂体系的最好的性能 1、脂肪多元胺 乙二胺EDA H2NCH2CH2NH2 分子量60 活泼氢当量15 无色液体每100份标准树脂用6-8份性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。用于粘接、浇注、涂料。该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。但它们放热量大、适用期短。一般而言它们分子量越大受配合量影响越小。长期接触脂肪多元胺会引起皮炎,它们的蒸汽毒性很强,操作时须十分注意。 二乙烯三胺DETA H2NC2H4NHC2H4NH2 分子量103 活泼氢当量20.6 无色液体每100份标准树脂用8-11份。固化:20℃2小时+100℃30分钟或20℃4天。性能:适用期50克25℃45分钟,热变形温度95-124℃,抗弯强度1000-1160kg/cm2,抗压强度1120kg/cm2,抗拉强度780kg/cm2,伸长率5.5%,冲击强度0.4尺-磅/寸洛氏硬度99-108。介电常数(50赫、23℃)4.1 功率因数(50赫、23℃)0.009 体积电阻2x1016 Ω-cm 常温固化、毒性大、放热量大、适用期短。 三乙烯四胺TETA H2NC2H4NHC2H4NHC2H4NH2 分子量146 活泼氢当量24.3 无色粘稠液体每100份标准树脂用10-13份固化:20℃2小时+100℃30分钟或20℃7天。性能:适用期50克25℃45分钟,热变形温度98-124℃,抗弯强度950-1200kg/cm2,抗压强度1100kg/cm2,抗拉强度780kg/cm2,伸长率4.4%,冲击强度0.4尺-磅/寸洛氏硬度99-106。常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。 四乙烯五胺TEPA H2NC2H4(NHC2H4)3NH2 分子量189 活泼氢当量27 棕色液体每100份标准树脂用11-15份性能同上。

N,N-二甲基乙酰胺

1、物质的理化常数 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:急性中毒:主要有眼和上呼吸道刺激症状、头痛、焦虑、恶心、呕吐、腹痛、便秘等。肝损害一般在中毒数日后出现,肝脏肿大,肝区痛,可出现黄疸。经皮肤吸收中毒者,皮肤出现水泡、水肿、粘糙,局部麻木、瘙痒、灼痛。 慢性影响:有皮肤、粘膜刺激,神经衰弱综合征,血压偏低。尚有恶心、呕吐、胸闷、食欲不振、胃痛、便秘及肝功能变化。 二、毒理学资料及环境行为 毒性:低毒类。

急性毒性:LD50400mg/kg(大鼠经口);4720mg/kg(兔经皮);LC509400mg/m3,2小时(小鼠吸入);人吸入30~60ppm,消化道症状,肝功可异常,有黄疸,尿胆原增加,蛋白尿;人吸入10~20ppm(有时30ppm),头痛,食欲不振,恶心,肝功和心电图正常。 亚急性和慢性毒性:大鼠吸入2500mg/m3,6小时/天,5天,80%死亡,肝肺有病变;人吸入5.1~49mg/m3×3年,神衰症候群,血压偏低,肝功能变化。 危险特性:易燃,遇高热、明火或与氧化剂接触,有引起燃烧爆炸的危险。能与浓硫酸、发烟硝酸猛烈反应,甚至发生爆炸。与卤化物(如四氯化碳)能发生剧烈反应。 燃烧(分解)产物:一氧化碳、二氧化碳、氧化氮。 3.现场应急监测方法: 气体检测管法 气体速测管(德国德尔格公司产品) 4.实验室监测方法: 气相色谱法《作业环境空气中有毒物质检测方法》陈安之主编 色谱/质谱法《水和有害废物的监测分析方法》周文敏等编译 5.环境标准: 6.应急处理处置方法: 一、泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 废弃物处置方法:用焚烧法。废料溶于易燃溶剂后,再焚烧。焚烧炉排出的气体要通过碱洗涤器除去有害成分,从纤维沉降槽和聚氯乙烯反应器的洁净溶剂中回收N,N-二甲基甲酰胺。 二、防护措施

美国空气聚酰胺固化剂大全

聚酰胺及聚酰胺加成物: 固化剂类型用途 ANCAMD 221*70 聚酰胺溶剂型的船舶漆,防腐漆,混凝土的底漆,密封漆和面漆 ANCAMD 221 聚酰胺溶剂型的船舶漆,防腐漆,混凝土的底漆,密封漆和面漆ANCAMD 350A 聚酰胺高固体份涂料,胶粘剂,封装,注塑料。 ANCAMD 2050 聚酰胺加成物高固体份涂料,混凝土底漆和涂料,密封剂和腻子,水池涂料,船舶涂料。 ANCAMD 2353 聚酰胺高固体份船舶和维护涂料,混凝土底漆和涂料。 Sunmide 305-70X 聚酰胺溶剂型防护涂料,例如:底漆,面漆和环氧煤焦油涂料。 Sunmide 305 聚酰胺溶剂型防护涂料,例如:底漆,面漆和环氧煤焦油涂料。Sunmide 307D-60 聚酰胺通用型环氧涂料,富锌涂料和砂纸粘结剂 Sunmide 328A 聚酰胺普通工业用和土木工程用粘接剂。环氧内衬涂料和耐化性油漆 Sunmide 315 聚酰胺涂料、密封剂、粘接剂。 Sunmide 153-60S 聚酰胺基胺通用性环氧漆和涂料 Sunmide 381 聚酰胺加成物高固体份涂料,焦油环氧漆,储罐内衬涂料Sunmide 353N 聚酰胺加成物通用型涂料的底涂和中涂,重防腐涂料,快干型底漆和潮湿表面底漆。 Sunmide 350 聚酰胺加成物溶剂型防护涂料 ANCAMD 2396 酰胺基胺混凝土底涂和粘结剂,自流平和磨光地坪,瓷砖灌浆和耐化性灌浆。 ANCAMD 2426 酰胺基胺高固体份和100%固体份涂料和底漆,符合FDA 21CFR 标准,应用于酿酒和饮用水储罐内衬。 ANCAMD 501 酰胺基胺地坪涂料,修补材料,混凝土粘接。 ANCAMD 502 酰胺基胺地坪漆,混凝土修补,泥浆。

聚酰胺是什么材料

聚酰胺也就是所谓的尼龙,由内酸胺开环聚合制得,也可由二元胺与二元酸缩聚等得到的。亦是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称,因此,不仅品种多,产量大,且应用广泛,但如根据分子结构来分,则一般为两大类: 一类是由二胺和二酸缩聚而得的聚己二酸己二胺,其长链分子的化学结构式为: H-[HN(CH2)XNHCO(CH2)YCO]-OH 这类锦纶的相对分子量一般为17000-23000根据所用二元胺和二元酸的碳原子数不同,可以得到不同的锦纶产品,并可通过加在锦纶后的数字区别,其中前一数字是二元胺的碳原子数,后一数字是二元酸的碳原子数。例如锦纶66,说明它是由己二胺和己二酸缩聚制得;锦纶610,说明它是由己二胺和癸二酸制得。 另一类是由己内酰胺缩聚或开环聚合得到的,其长链分子的化学结构式为:H-[NH(CH2)XCO]-OH

根据其单元结构所含碳原子数目,可得到不同品种的命名。例如锦纶6,说明它是由含6个碳原子的己内酰胺开环聚合而得。 锦纶6、锦纶66及其他脂肪族锦纶都由带有酰胺键(-NHCO-)的线型大分子组成。锦纶分子中有-CO-、-NH-基团,可以在分子间或分子内形成氢键结合,也可以与其他分子相结合,所以锦纶吸湿能力较好,并且能够形成较好的结晶结构。 锦纶分子中的-CH2-(亚甲基)之间因只能产生较弱的范德华力,所以-CH2-链段部分的分子链卷曲度较大。各种锦纶因今-CH2-的个数不同,使分子间氢键的结合形式不完全相同,同时分子卷曲的概率也不一样。另外,有些锦纶分子还有方向性。分子的方向性不同,纤维的结构性质也不完全相同。 以上就是有关聚酰胺是哪种材料的一些简单分析,希望对大家进一步的了解有所帮助。

聚酰胺酸的合成及其酰亚胺化研究_李焱

聚酰胺酸的合成及其酰亚胺化研究 李焱,于俊荣,刘兆峰 (东华大学纤维材料改性国家重点实验室,上海200051) 摘要:采用均苯四酸二酐(PMDA)和4,4'-二氨基二苯醚(ODA)为单体,N,N-二甲基乙酰胺(DMAc)为溶剂,合成聚酰亚胺的前驱体聚酰胺酸(PAA)。研究了溶剂体系、反应温度、时间、投料比和总固含量等因素对所得聚酰胺酸特性黏度的影响。试制了聚酰胺酸和聚酰亚胺(PI)薄膜,对其进行了红外光谱分析及力学性能测试。 关键词:聚酰亚胺;聚酰胺酸;缩聚;特性黏度 中图分类号:TQ342.731文献标识码:A文章编号:1001-7054(2006)04-0006-04 1引言 聚酰亚胺(PI)具有独特的化学、物理性能,包括:优异的耐热性能,优良的力学性能,良好的尺寸和氧化稳定性,耐化学药品性和耐辐照性能,较好的绝缘性和介电性能以及突出的韧性和柔软性[1,2]。聚酰亚胺的制备方法,通常有一步法和两步法[3]。本论文采用两步法,首先合成聚酰亚胺的前驱体聚酰胺酸(PAA),即将芳香族二胺溶于非质子极性溶剂,然后加入均苯四酸二酐,在氮气保护下完成低温溶液缩聚,制得PAA预聚体溶液,然后对其进行酰亚胺化初步研究。 2实验 2.1试剂 4,4'-二氨基二苯醚(ODA):二胺,上海试剂厂,化学纯;均苯四酸二酐(PMDA):二酐,上海试剂厂,化学纯;N,N-二甲基乙酰胺(DMAc):上海试剂厂;N-甲基吡咯烷酮(NMP):巴斯夫公司。 2.2聚酰胺酸溶液的制备 聚酰胺酸的合成反应在氮气保护下进行,以保持反应物不被氧化且保持干燥。先按一定比例将二胺和溶剂加入三口烧瓶中,在搅拌下使二胺完全溶解,然后分批加入二酐,在低温下搅拌反应得到淡黄色透明的聚酰胺酸溶液,低温保存待用。2.3聚酰胺酸溶液特性黏度的测定 聚酰胺酸的特性黏度用乌式黏度计测定[4]。通过测定聚酰胺酸溶液的流出时间t和纯溶剂的流出时间t0,计算溶液的相对黏度ηr=t/t0和增比黏度ηsp=(t-t0)/t0,并计算PAA的特性黏度[η]:[η]=lnηr/c(1) 式中:c为待测溶液浓度。实验中,根据投料量计算所得PAA的理论浓度,然后采用稀释法将合成所得PAA溶液稀释至c为0.5g/dL左右。实验温度25℃,采用乌氏黏度计,毛细管直径为0.5 ̄0.6mm。 2.4聚酰胺酸薄膜的制备及其酰亚胺化过程取少量PAA溶液,在玻璃板上推膜后,放入烘箱,在60℃下烘2h,得到PAA薄膜。将PAA膜置于马福炉中,直接将温度升至300℃保持1h,得到PI薄膜(Ⅰ);采用程序升温的方法,在100℃下烘1h,200℃下烘1h,然后调至300℃再烘干0.5h,得到PI薄膜(Ⅱ)。 2.5薄膜的力学性能测试 收稿日期:2005-09-20 作者简介:李焱(1981 ̄),男,出生于吉林省,硕士研究生。

二聚酸型聚酰胺热熔树脂配方设计技术

二聚酸型聚酰胺热熔树脂配方设计技术 一,前言 二元羧酸与二元胺等mol聚合反应生成聚酰胺热熔树脂是缩聚反应,又称缩合聚合反应,是含有活性官能团的单体经缩合反应相互连接而得到高分子量的聚合物。缩聚反应制成的二聚酸型聚酰胺热熔树脂其化学结构组成不同,主要是单元体不同而存在差异。参加缩聚反应的单体只有两个官能团,则生成直链聚合物。参加缩聚反应的单体有两个以上的官能团,则交链高聚合后就会生成不溶、不熔的三维网状聚合物,也称为热固性树脂。三聚酸和二乙烯三胺则属含有二个以上官能团的单体。其含量越多,交链程度越高,产品结构越复杂。 在单体合成聚合物的反应过程中,有聚合能力的低分子原料称单体,分子量较大的聚合原料称大分子单体,像聚醚胺属于大分子单体。两种以上单体参加的聚合,称共聚反应,产物称为共聚物。二聚酸型聚酰胺热熔树脂基本上是共聚物。 聚合反应分成逐步聚合和链式(线性)聚合两大类。二聚酸型聚酰胺热熔树脂是逐步聚合反应,每一步的速率常数和活化能大致相同。反应初期,大部分单体很快消失,聚合成二至四聚体等中间产物,酰胺化反应生成的水阻碍了聚合反应的顺利进行,当不断排除生成水的同时低聚物继续反应,使产物的分子量逐步增大。因此,可认为单体转化率基本上不依赖于聚合时间的延长,但产物的分子量随聚合时间的延长,温度的升高,排除生成水的彻底逐渐增大。最终真空熔融缩聚使分子量进一步增大。

二聚酸型聚酰胺热熔树脂聚合物产品的品位与质量是由构成它的基本分子参数决定的,如平均分子量分布、共聚物的单体组成结构等。 二,二聚酸型聚酰胺热熔树脂常用原料 2.1二元羧酸 二聚酸,高纯二聚酸,氢化二聚酸,氢化高纯二聚酸,已二酸,庚二酸,辛二酸,壬二酸,癸二酸,十二碳二酸,十三碳二酸,十四碳二酸等。 2.2,二元胺 乙二胺,1,2丙二胺,1,3丙二胺,1,4环己二胺,环已二胺,丁二胺,戊二胺,已二胺,2甲基戊二胺,N烷基丙二胺,异佛尔酮二胺,哌嗪,孟烷二胺,二聚胺,高纯二聚胺,聚醚胺D230,聚醚胺D400,聚醚胺D2000,环已二胺,环已基对二甲胺,二甲苯二胺,二甲基哌嗪,对苯二胺等。 2.3,链终止剂单羧酸 乙酸,丙酸,丁酸,异丁酸,已酸,己二烯酸,辛酸,异辛酸,壬酸,异壬酸,癸酸,月桂酸,棕榈酸,硬脂酸,油酸,异硬脂酸等。三,二聚酸型聚酰胺热熔树脂熔融缩聚反应注意事项 二聚酸型聚酰胺热熔树脂官能团的配比和反应程度对单体的纯度要求较高,要保证官能团之间的配比为等mol比。如果其中一官能团过量百分之一摩尔,产物的聚合度就不能达到100%。此外,反应程度(官能团转化的百分数)也必须高,否则聚合度也不会高。

聚酰胺酸粘度受哪些因素影响呢

聚酰胺酸作为聚酰亚胺的前躯体,其具体的粘度是很重要的数据之一。但是,总是有因素可能会对其粘度有着一定的影响效果。为了解开这个疑惑,下面我们就来看看是怎么样的吧。 1、加料顺序对聚酰胺酸粘度的影响 合成聚酰胺酸溶液的加料方式按单体加料顺序分为二种:正加料法;反加料法。 为了确定正加料法和反加料法对聚酰胺酸溶液粘度的影响,在反应条件相同,采用此两种加料法,测定其各自粘度,通常情况下是正加料法得到的聚酰胺酸粘度较大,因为二酐容易与水反应,防止溶剂中水对实验的影响先溶解二胺,再加入二酐后其能优先于二胺反应,能减小水对于实验的影响,故通常正加料法得到聚合物的粘度较大。 2、单体摩尔比对聚酰胺酸粘度的影响 在合成聚酰胺酸溶液的反应中,必须严格的保证单体的等当量,才能得到高分子量的聚合物,任何因素引起的单体当量的偏离必然会导致聚合物分子量的降低。引起单体当量偏离的原因有单体的纯度、实验的精度、及体系中存在的副反应。在这几个因素中前两个可以通过单体提纯和提高实验精度来加以避免。而体系中存在以下几个副反应,以及二酐和溶剂络合的副反应。这些副反应的存在破

坏了单体的等当量。 3、反应温度对聚酰胺酸粘度的影响 二酐与二胺的开环缩聚反应是放热反应,反应温度低有利于提高聚酰胺酸溶液粘度。二酐是反应活性较高的单体,易与含活泼氢的官能团发生缩聚反应,二胺的活性也较高,在聚合前易发生氧化,因此在合成过程中加料应在较低的温度下进行。 4、反应时间对聚酰胺酸粘度的影响充分的反应时间是得到高聚合度的聚酰胺酸溶液的重要条件。本实验采用正加料法,在反应时间分别为1,2,3,4,5,6h的条件下进行缩聚反应,其他反应条件相同:反应初始温度-15℃,质量分数13%,二酐与二胺的摩尔配比为1.00。 以上这些就是影响聚酰胺酸粘度的一部分因素,大家可以稍微作为参考,可以更好地提高粘度,材料得到更好地运用。 卓祥科技的团队专注于自动乌式粘度分析行业至少七年以上,且一直拥有几十位专业的高分子材料研发/生产/实验人员的鼎力支持。同时也一直专注于研发高分子材料等领域的采用粘度分析仪器,设计灵感凝聚了几十家高分子材料生产商的实验人员和科研院所研发人员的智慧。应不同市场所需,公司已先后成功研发推出了AVM系列全自动粘度仪、IV6000系列全自动乌式粘度仪等多种系列产品。

二聚酸型聚酰胺热熔胶应用及研究进展

工业界的知己 新技术的桥梁
二聚酸型聚酰胺热熔胶 应用及研究进展
Research progress of application for polyamide hot-melt adhesive based on dimer-acid
上海轻工业研究所有限公司 上海理日化工新材料有限公司
孙静

工业界的知己 新技术的桥梁
简介 brief introduction
二聚酸 dimer-acid 植物油 vegetable 动物油 animal
二聚酸型聚酰胺 polyamide based dimer-acid
脂肪族二元酸 aliphatic bicarboxylic acid 二元胺 aliphatic diamine 其他共聚单体 other components

工业界的知己 新技术的桥梁
基本性能 basic features
优点 advantage
熔点明显,固化快 sharp melting point, fast setup 耐油、耐化学性能好 good resistance to oil and solvents 对极性材料粘接好 good adhesion to polar substrates
缺点 disadvantage
韧性差、易发脆 low flexibility

工业界的知己 新技术的桥梁
产品形式 product type
粒状 pellets 棒状 条状 枕状 块状
sticks strips pillows blocks

N,N-二甲基乙酰胺

N,N-二甲基乙酰胺 一概述 1基本情况 名称:N,N-二甲基乙酰胺(简称DMAC) 分子式:C4H9NO 分子量:87.12 CAS号:127-19-5 性质 无色透明液体,可燃。能与水、醇、醚、酯、苯、三氯甲烷和芳香化合物等有机溶剂任意混合。冰点-20℃,沸点166℃,96℃(10.7kPa),85-87℃(4.4kPa),74-74.5℃(3.47kPa),66-67℃(2.0kPa),62-63℃(1.6kPa),相对密度0.9366(25/4℃),0.9599(0/4℃),折射率1.4380。闪点(开杯)70℃。 制备方法 1.乙酐法二甲胺与醋酐在0-20℃时进行酰化反应,然后用液碱低温中和除去醋酸,分离出醋酸钠,中和液再进行碱洗,精馏,取沸程164-166.5℃馏分为成品。原料消耗定额:乙酐(95%)1150kg/t、二甲胺(40%)1898kg/t。 2.乙酰氯法。由二甲胺与乙酰氯反应,也可制备得到二甲基乙酰胺。该工艺与国内现行乙酐法工艺相比,生产成本降低,经济效益有所提高。 3.醋酸法。抚顺市化工设备研究院采用醋酸与二甲胺合成法,取得了良好成果。该工艺特点是采用先进的催化反应精馏技术,使反应强化,能耗降低,分离效果和产品收率大大提高,工艺过程简化。该工艺与醋酐法合成二甲基乙酰胺工艺相比,生产成本降低,经济效益有所提高。中国目前多用。 4.羰基合成法。国外研究将三甲胺和一氧化碳进行羰基化合成,生成N,N-二甲基乙酰胺的方法。反应中用铁、钴、镍的碘化物或溴化物作催化剂。 用途 DMAC主要用作合成纤维(丙烯腈)和聚氨酯纺丝及合成聚酰胺树脂的溶剂,也用于从C8馏分分离苯乙烯的萃取蒸馏溶剂,并广泛用于高分子薄膜、涂料和医药等方面。目前在医药和农药上大量用来合成抗菌素和农药杀虫剂。还可用作反应的催化剂、电解溶剂、油漆清除剂以及多种结晶性的溶剂加合物和络合物。

聚酰胺酸粘度的影响因素

聚酰胺酸粘度的影响因素 聚合物的分子量对聚合物的机械强度影响较大。聚酰胺酸作为聚酰亚胺的前躯体,其分子量的大小直接影响聚酰亚胺的机械强度。只有合成了高分子量的聚酰胺酸才能得到性能优良的聚酰亚胺。聚合物的分子量可以由聚合物的粘度进行表征,因此合成高粘度的聚酰胺酸溶液是制备高强度聚酰亚胺的第一步。影响聚酰胺酸分子量的因素很多,本实验通过对聚酰胺酸粘度的测定,讨论分析了加料顺序、单体摩尔比、反应温度、反应体系质量分数、反应时间,贮存条件六个因素对聚酰胺酸粘度的影响,确定了聚酰胺酸合成的较优的工艺条件,为制备聚酰亚胺材料奠定基础。 1、加料顺序对聚酰胺酸粘度的影响 合成聚酰胺酸溶液的加料方式按单体加料顺序分为二种: (1)正加料法(二胺溶于溶剂中,向反应混合物中加入二酐); (2)反加料法(二酐溶于溶剂中,向反应混合物中加入二胺)。 为了确定正加料法和反加料法对本实验聚酰胺酸溶液粘度的影响,在反应条件相同,采用此两种加料法,测定其各自粘度,通常情况下是正加料法得到的聚酰胺酸粘度较大,因为二酐容易与水反应,防止溶剂中水对实验的影响先溶解二胺,再加入二酐后其能优先于二胺反应,能减小水对于实验的影响,故通常正加料法得到聚合物的粘度较大。 加料方式确实对聚酰胺酸溶液分子量有着很大的影响。在相同反应条件下,正加料所得聚酸胺酸溶液的粘度η大于反加料法所得聚酸胺酸溶液的粘度η。这主要是因为在反加料法中,由于二酐过量,聚酰胺酸溶液中带有孤对电子的N 有向二酐中的电子吸收体C 进攻的趋势,这样会使聚酰胺酸溶液分子链发生断裂,得不到高分子量的聚酰胺酸溶液。其过程如图3-1所示:

2、单体摩尔比对聚酰胺酸粘度的影响 在合成聚酰胺酸溶液的反应中,必须严格的保证单体的等当量,才能得到高分子量的聚合物,任何因素引起的单体当量的偏离必然会导致聚合物分子量的降低。引起单体当量偏离的原因有单体的纯度、实验的精度、及体系中存在的副反应。在这几个因素中前两个可以通过单体提纯和提高实验精度来加以避免。而体系中存在以下几个副反应,如图3-2所示,以及二酐和溶剂络合的副反应。这些副反应的存在破坏了单体的等当量。 合成条件相同的情况下:反应初始温度-15℃,反应时间4 h,质量分数13%进行缩聚反应,二酐与二胺的摩尔配比分别为0.97,0.98,0.99,1.00,1.01,1.02,1.03,进行缩聚反应测得的二酐与二胺摩尔配比与聚酰胺酸溶液粘度η的关系如图3-3所示。结果表明,当二酐与二胺摩尔比为1时得到聚酰胺酸的粘度最大。

pa聚酰胺

聚酰胺 聚酰胺(PA,俗称尼龙)是美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。聚酰胺主链上含有许多重复的酰胺基,用作塑料时称尼龙,用作合成纤维时我们称为锦纶,聚酰胺可由二元胺和二元酸制取,也可以用ω-氨基酸或环内酰胺来合成。根据二元胺和二元酸或氨基酸中含有碳原子数的不同,可制得多种不同的聚酰胺,目前聚酰胺品种多达几十种,其中以聚酰胺-6、聚酰胺-6 6和聚酰胺-610的应用最广泛。 聚酰胺-6、聚酰胺-66和聚酰胺-610的链节结构分别为[NH(CH2)5CO]、[NH(CH 2)6NHCO(CH2)4CO]和[NH(CH2)6NHCO(CH2)8CO]。聚酰胺-6和聚酰胺-66主要用于纺制合成纤维,称为锦纶-6和锦纶-66。尼龙-610则是一种力学性能优良的热塑性工程塑料。 PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。PA的品种繁多,有PA6、PA66、PAll、PAl2、PA46、PA610、PA612、PAl010等,以及近几年开发的半芳香族尼龙PA6T 和特种尼龙等很多新品种。尼龙-6塑料制品可采用金属钠、氢氧化钠等为主催化剂,N-乙酰基己内酰胺为助催化剂,使δ-己内酰胺直接在模型中通过负离子开环聚合而制得,称为浇注尼龙。用这种方法便于制造大型塑料制件。 性能:尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为1.5-3万尼龙具有很高的机械强度,软化点高,耐热,磨擦系数低,耐磨损,自润滑性,吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂,电绝缘性好,有自熄性,无毒,无臭,耐候性好,染色性差。缺点是吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。尼龙与玻璃纤维亲合性十分良好。 聚酰胺主要用于合成纤维,其最突出的优点是耐磨性高于其他所有纤维,比棉花耐磨性高10倍,比羊毛高20倍,在混纺织物中稍加入一些聚酰胺纤维,可大大提高其耐磨性;当拉伸至3-6%时,弹性回复率可达100%;能经受上万次折挠而不断裂。聚酰胺纤维的强度比棉花高1-2倍、比羊毛高4-5倍,是粘胶纤维的3倍。但聚酰胺纤维的耐热性和耐光性较差,保持性也不佳,做成的衣服不如涤纶挺括。另外,用于衣着的锦纶-66和锦纶-6都存在吸湿性和染色性差的缺点,为此开发了聚酰胺纤维的新品种——锦纶-3和锦纶-4的新型聚酰胺纤维,具有质轻、防皱性优良、透气性好以及良好的耐久性、染色性和热定型等特点,因此被认为是很有发展前途的。 由于聚酰胺具有无毒、质轻、优良的机械强度、耐磨性及较好的耐腐蚀性,因此广泛应用于代替铜等金属在机械、化工、仪表、汽车等工业中制造轴承、齿轮、泵叶及其他零件。聚酰胺熔融纺成丝后有很高的强度,主要做合成纤维并可作为医用缝线。 锦纶在民用上可以混纺或纯纺成各种医疗及针织品。锦纶长丝多用于针织及丝绸工业,如织单丝袜、弹力丝袜等各种耐磨解释的锦纶袜,锦纶纱巾,蚊帐,锦纶花边,

聚酰胺树脂

植物油酸 植物油酸就是用棉油皂角或大豆油皂角为主要原材料,经过一系列化工工艺过程而生成的微黄色透明液体,凝固后为白色软状膏体,具有羚酸通性与不饱与双键的化 学特性。可溶于醇、苯、乙醚、三氯甲烷、汽油等有机溶剂。 用途:聚酰胺树脂、醇酸树脂、造纸脱墨剂、石油助剂、选矿剂、塑料增塑剂等。 典型指标: 包装:塑料桶或衬塑铁桶,每桶净重180千克 储存:一般存放在阴凉干燥处为宜。运输途中严禁高温、日晒、雨淋。 硬脂酸 硬脂酸就是一种高级饱与脂肪酸,为白色或微黄色颗粒、片状。 用途:脱模剂。消泡剂、抛光膏、金属浮选剂、油漆平光剂、也就是制造硬脂酸锌、硬脂酸钾、硬脂酸钡的原材料。 典型指标: 包装:塑料编织袋包装。每袋净重25千克。 储存:一般存放在阴凉干燥处为宜。运输途中严禁高温、日晒、雨淋。 二聚酸 二聚酸就是由十八碳不饱与脂肪酸通过分子间相互聚合而形成的化合物,就是以精馏棉油酸、豆油酸为原料,采用先进的聚合酸化工艺及分离技术制得的具有较高纯度的二元羚酸。二聚酸具有性能稳定、无毒、不挥发、闪点高、燃点高、流动性好、能溶于大本部分有机溶剂的特性,用途广泛。 用途:制造聚酰胺树脂、环氧树脂固化剂、热熔胶、高档油漆、热塑制品、润滑油、脱脂剂、表面活性剂、油田缓蚀剂等。 典型指标:

包装:塑料桶或衬塑铁桶,每桶净重180千克 储存:一般存放在阴凉干燥处为宜。运输途中严禁高温、日晒、雨淋。 聚酰胺热熔胶 聚酰胺热熔胶就是由二聚酸与二元胺经缩聚反应形成,该产品具有粘结强度高、柔韧性、耐介质型好的特点。 形状:浅黄色颗粒状或粉状固体。 特性:有很好的熔溶性与低温溶解性,很高的热稳定性与柔韧性。 用途:作为服装、鞋材、皮革、塑料、金属电子元件的粘结。 典型指标: 包装:三合一纸袋包装。每袋净重25千克。 储存:一般存放在阴凉干燥处为宜。运输途中严禁高温、日晒、雨淋。 聚酰胺树脂 聚酰胺树脂就是一种用高纯度二聚酸与多元胺为原料,以独特的配方设计,先进的工艺流程,一流的设备缩合而成的性能优良的苯溶聚酰胺树脂。该树脂制成的油墨具有附着力好、光泽度高、其流动性与成膜性能均最佳。 形状:浅黄色颗粒固体。 用途:凹版油墨、柔版油墨、纸张油墨、罩光油等。 典型指标:

二甲基乙酰胺MSDS 化学品安全技术说明书

二甲基乙酰胺msds 安全技术说明书 化学品中文名:N,N-二甲基乙酰胺二甲基乙酰胺;乙酸二甲酰胺 化学品俗名或商品名:DMAC 英文名:N,N-Imethyl Acetamide,Acetic acid dimethyl amid , DMA 分子式:C4H9NO分子量:87.12 CAS号:127-19-5 RTECS:号:AB7700000 EC编号:616-011-00-4 主要用途:主要应用领域:聚酰亚胺、药物合成、合成纤维(腈纶和氨纶)。 第二部分危险性概述 危险性类别:可燃液体 二甲基乙酰胺侵入途径:蒸气吸入、皮肤及眼睛接触,皮肤吸收,食入。 健康危害:急性中毒主要有严重的刺激症状、头痛、焦虑、恶心、呕吐、腹痛、消化 道出血、便秘、肝损害及血压升高。可经皮肤吸收,对皮肤有刺激性。慢性作用有皮肤、粘膜刺激,神经衰弱综合症,血压偏低。尚有恶心、呕吐、胸闷、食欲不振、胃痛、便秘及肝大和肝功能变化。 环境危害:该物质对环境可能有危害,对水体应给予特别注意。 燃爆危险:遇明火,高热能引起燃烧爆炸。能与浓硫酸、发烟硝酸强烈反应,甚至发 生爆炸。与卤化物(如四氯化碳)能发生强烈反应。若遇高热,容器内压增大,有开裂和爆炸的危险。 第三部分成分/组成信息 有害物成分二甲基乙酰胺浓度99%CAS No.127-19-5 第四部分急救措施 皮肤接触二甲基乙酰胺:立即脱去污染的衣着,立即用流动清水彻底冲洗至少15分钟,就医。眼睛接触:立即提起眼睑,用大量清水彻底冲洗至少15分钟,就医。 吸入二甲基乙酰胺:迅速脱离现场至空气新鲜处。保持呼吸道畅通。呼吸困难时给输氧、呼吸停止 时,立即进行人工呼吸。就医。 食入二甲基乙酰胺:如误食了DMAC,不要人为诱发呕吐,而应立即喝几杯水,就医。 第五部分消防措施 危险特性:二甲基乙酰胺易燃,遇明火,高热能引起燃烧爆炸。该物质分解可产生二甲胺、乙酸。 在火灾中释放刺激性或有毒烟雾(或气体一氧化氮)。在高于70℃的环境中,气相与空气混合可形成爆炸性混合物。在铁存在下可与高度卤化的化合物,如四氯化碳或六氯化苯以及强氧化剂发生强烈的放热反应。若遇高热,容器内压增大,有开裂和爆炸的危险。 有害燃烧产物:二甲胺、乙酸、一氧化碳、二氧化碳、氮氧化物等。灭火方法:灭火剂:二氧化碳、泡沫、干粉、砂土。 第六部分泄露应急处理 防护措施:建议应急处理人员戴好防毒面具,穿一般消防防护服。

相关主题
文本预览
相关文档 最新文档