当前位置:文档之家› 排列组合问题解法大全

排列组合问题解法大全

排列组合问题解法大全
排列组合问题解法大全

排列组合问题解法大全

一.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.

例1.

,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有

A 、60种

B 、48种

C 、36种

D 、24种 解析:把

,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4

4

24A =种。 二.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素

插入上述几个元素的空位和两端.

例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是

A 、1440种

B 、3600种

C 、4820种

D 、4800种 解析:除甲乙外,其余5个排列数为

55

A 种,再用甲乙去插6个空位有2

6A 种,不同的排法种数是52563600A A =种,选B . 三.特殊元素或特殊位置优限法:优先解决带限制条件的元素或位置,或说“先解决特殊元素或特殊位置”

例3.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 解析:老师在中间三个位置上选一个有

13

A 种,4名同学在其余4个位置上有4

4A 种方法;所以共有143472A A =种. 四.分组分配:n 个不同元素按照某些条件分配给k 个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;

将n 个不同元素按照某些条件分成k 组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。

1.基本的分组问题

例4 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法? (1)每组两本.

(2)一组一本,一组二本,一组三本. (3)一组四本,另外两组各一本.

分析:(1)分组与顺序无关,是组合问题。分组数是624222

CCC =90(种) ,这90种分组实际上重复了6次。我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,

即除以组数的全排列数

3

3A

,所以分法是

222

6423

3

C C C A =15(种)。(2)先分组,方法是615233

CCC ,那么还要不要除以33A ?我们发现,由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有61

52

33

CCC =60(种) 分法。

(3)分组方法是6421

11

CCC =30(种) ,那么其中有没有重复的分法呢?我们发现,其中两组的书的本数都是一本,因此这两组有了顺

序,而与四本书的那一组,由于书的本数不一样,不可能重复。所以实际分法是411

6212

2

C C C A =15(种)。 通过以上三个小题的分析,我们可以得出分组问题的一般方法。

结论1: 一般地,n 个不同的元素分成p 组,各组内元素数目分别为m 1,m 2,…,m p ,其中k 组内元素数目相等,那么分

组方法数是

3

211

12

p

p

m

m m m n

n m n m m m k k

C C

C

C A

---?。

2.基本的分配的问题

(1)定向分配问题

例5 六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法?

(1) 甲两本、乙两本、丙两本. (2) 甲一本、乙两本、丙三本. (3) 甲四本、乙一本、丙一本.

分析:由于分配给三人,每人分几本是一定的,属分配问题中的定向分配问题,由分布计数原理不难解出:分别有

222642C C C =90(种),615233CCC =60(种), 411

621C C C =30(种)。

(2)不定向分配问题

例6六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法?

(1) 每人两本.

(2) 一人一本、一人两本、一人三本. (3) 一人四本、一人一本、一人一本.

分析:此组题属于分配中的不定向分配问题,是该类题中比较困难的问题。由于分配给三人,同一本书给不同的人是不同的分法,所以是排列问题。实际上可看作“分为三组,再将这三组分给甲、乙、丙三人”,因此只要将分组方法数再乘以

3

3A ,即

2226423

3

C C C A 33A =90(种), 615233CCC 3

3A =360(种) 411

62122C C C A 33A =90(种)。 结论2. 一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数。

通过以上分析不难得出解不定向分配题的一般原则:先分组后排列。 例7 六本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种分法?

分析:六本书和甲、乙、丙三人都有“归宿”,即书要分完,人不能空手。因此,考虑先分组,后排列。先分组,六本书怎么分为三组呢?有三类分法(1)每组两本(2)分别为一本、二本、三本(3)两组各一本,另一组四本。所以根据加法原理,分组法是

2226423

3

C C C A +615233CCC +411

62122C C C A =90(种)。再考虑排列,即再乘以3

3A 。所以一共有540种不同的分法。 3.分配问题的变形问题

例8 四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种?

分析:恰有一个空盒,则另外三个盒子中小球数分别为1,1,2。实际上可转化为先将四个不同的小球分为三组,两组各1个,另

一组2个,分组方法有112

432

2

2C C C A (种),然后将这三组(即三个不同元素)分配给四个小盒(不同对象)中的3个的排列问题,即共有1

1

2

4322

2

C C C A 3

4A =144(种)。

例9有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法有多少种?

分析:先考虑分组,即10人中选4人分为三组,其中两组各一人,另一组二人,共有112

10982

2

C C C A (种)分法。再考虑排列,甲任务

需2人承担,因此2人的那个组只能承担甲任务,而一个人的两组既可承担乙任务又可承担丙任务,所以共有

112

10982

2

C C C A 22A =2520(种)不同的选法。

例10设集合A={1,2,3,4},B={6,7,8},A 为定义域,B 为值域,则从集合A 到集合B 的不同的函数有多少个?

分析:由于集合A 为定义域,B 为值域,即集合A 、B 中的每个元素都有“归宿”,而集合B 的每个元素接受集合A 中对应的元素的数目不限,所以此问题实际上还是分组后分配的问题。先考虑分组,集合A 中4个元素分为三组,各组的元素数目分别为1、

1、2,则共有11243222C C C A (种)分组方法。再考虑分配,即排列,再乘以33A ,所以共有112

4322

2

C C C A 33A =36(个)不同的函数。 五.相同元素隔板法及应用:

情形1:将n 件相同的物品或(名额)分配给m 个(或位置),允许若干个人或(位置)为空。将n 件物品和m-1个隔板排成一排,占n+m-1个位置,从n+m-1个位置选m-1位置放隔板,有1

-m 1-m +n C 种。

情形2:将n 件相同的物品或(名额)分配给m 个(或位置),每个位置必须有物品,有1

-m 1-n C 种。 例11. 把20个相同的球放入4个不同的盒子,每个盒子都不空,有多少种不同方法?3

19C 把20个相同的球放入4个不同的盒子,每个盒子至少有3个小球,有多少种不同方法?3

11C

把20个相同的球放入编号为2,3,4,5的4个盒子,每个盒子的小球数不少于编号数,有多少种不同方法?3

9C 把20个相同的球放入4个不同的盒子,盒子可以空,有多少种不同方法?3

23C

1.指标分配问题。

例12、某校召开学生会议,要将10个学生代表名额,分配到某年级的6个班中,若每班至少1个名额,又有多少种不同分法?C 5

9

2.求n 项展开式的项数。

例13、求10521

)(x x x +???++展开式中共有多少项?

解:用10个相同的小球代表幂指数10, 用5个标有1x 、2x 、…、5x 的5个不同的盒子表示数1x 、2x 、…、5x ,将10个相同的小球放入5个不同的盒子中,把标有i x (i=1,2,…,5)每个盒子得到的小球数i k (i=1,2,…,5; i

k N ∈)

,记作i x 的i k 次方。这样,将10个相同的小球放入5个不同的盒子中的每一种放法,就对应着展开式中的每一项。由隔板法知,这样的放法共有

414C 种,故10521)(x x x +???++的展开式中共有4

14C 项。

4

14C =

1

23411

121314??????=1001(种)。

所以,10521

)(x x x +???++展开式中共有1001项。

点评:准确理解隔板法的使用条件,是使用隔板法求10521

)(x x x +???++展开式中的项数的理论依据。

3.求n 元一次方程组的非负整数解。

例14、求方程1x +2x +…+5x =7的正整数解的个数。

解:用7个相同的小球代表数7, 用5个标有1x 、2x 、…、5x 的5个不同的盒子表示未知数1x 、2x 、…、5x ,要得到方程1x +2x +…

+5x =7的正整数解的个数,可分以下两步完成。第一步:从7个相同的小球中任取5个放入5个不同的盒子中,仅有1种放法;第二步:把剩余的2个小球放入5个不同的盒中,由隔板法知,此时有4

6C 种放法。由分步计数原理知,共有4

6C 种不同放法。我们把标有i x (i=1,2,…,5)的每个盒子得到的小球数i k (i=1,2,…,5; i

k N

∈+

),记作:i x =i k 。这样,将7个相同的

小球放入5个不同的盒子中的每一种放法,就对应着方程1x +2x +…+5x =7的每一组解(1k ,2k ,…,5k )。

46C =26C =

1

25

6??=15(个) 所以,方程1x +2x +…+5x =7的正整数解共有15个。

六.至多,至少问题排除法

例15.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有

A 、140种

B 、80种

C 、70种

D 、35种

解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有

33394570C C C --=种,选.C

解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有

2112545470C C C C +=台,选C .

例16.(1)以正方体的顶点为顶点的四面体共有

A 、70种

B 、64种

C 、58种

D 、52种

解析:正方体8个顶点从中每次取四点,理论上可构成4

8C 四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有4

8

1258C -=个.

(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有

A 、150种

B 、147种

C 、144种

D 、141种

解析:10个点中任取4个点共有410C 种,其中四点共面的有三种情况:①在四面体的四个面上,每面内四点共面的情况为4

6C ,四个面共有4

64C 个;②过空间四边形各边中点的平行四边形共3个;③过棱上三点与对棱中点的三角形共6个.所以四点不共面的情况的种数是4

4

10

6436141C C ---=种.

七.综合问题先选后排

例17.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种? 解析:“先取”四个球中二个为一组,另二组各一个球的方法有2

4C 种,“再排”在四个盒中每次排3个有

3

4

A 种,故共有2344144C A =

种.

(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法? 解析:先取男女运动员各2名,有2

2

54C C 种,这四名运动员混和双打练习有

2

2

A 中排法,故共有222542120C C A =种. 八.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式

()()()()n A B n A n B n A B =+-.

例18.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案? 解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:

()()()()n I n A n B n A B --+?4332

65

54252A A A A =--+=种. 九.对等问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.

例19.

,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是

A 、24种

B 、60种

C 、90种

D 、120种 解析:B 在

A 的右边与

B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即

5

51602

A =种,选

B . 十.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理.

例20.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是

A 、36种

B 、120种

C 、720种

D 、1440种

解析:前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共

66720A =种,选C .

(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 解析:看成一排,某2个元素在前半段四个位置中选排2个,有24

A 种,某1个元素排在后半段的四个位置中选一个有1

4A 种,其余5个元素任排5个位置上有5

5A 种,故共有

125

4455760A A A =种排法.

十一.圆排问题线排法:把n 个不同元素放在圆周n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算

不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列n 个普通排列:12323411,,,;,,,,,;,,,n n n n a a a a a a a a a a a -在圆排列中只算一种,因为旋转后可以重合,故认

为相同,n 个元素的圆排列数有

!

n n

种.因此可将某个元素固定展成线排,其它的1n -元素全排列. 例21.5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法? 解析:首先可让5位姐姐站成一圈,属圆排列有4

4

A 种,然后在让插入其间,每位均可插入其姐姐的左边和右边,有2种方式,故不同的安排方式5

242

768?=种不同站法.

说明:从n 个不同元素中取出m 个元素作圆形排列共有

1m

n A m

种不同排法. 十二.复杂的排列组合问题

1分解与合成法:

例22.(1)30030能被多少个不同偶数整除?

解析:先把30030分解成质因数的形式:30030=2×3×5×7×11×13;依题意偶因数2必取,3,5,7,11,13这5个因数中任取若干个组成成积,所有的偶因数为

012345

55555532C C C C C C +++++=个.

(2)正方体8个顶点可连成多少队异面直线?

解析:因为四面体中仅有3对异面直线,可将问题分解成正方体的8个顶点可构成多少个不同的四面体,从正方体8个顶点中任取四个顶点构成的四面体有4

8

1258C -=个,所以8个顶点可连成的异面直线有3×58=174对.

2.构造模型法

(1)构建方程模型

例23 上一个有10级台阶的楼梯,每步可上一级或两级,共有多少种上台阶的方法? 解:设x 表示上一级台阶的步数,y 表示上两级台阶的步数,则102=+y x ),0,0(Z y y x ∈≥≥。

当2=x

时,4=y ,于是用6步走完10级台阶的方法为26C 种;

同理,当0=x

,4,6,8,10时,y 的取值分别为5,3,2,1,0,则上台阶的方法分别为05C ,47C ,68C ,89C ,10

10

C 种。 所以上台阶的方法共有0

5C +2

6C +4

7C +6

8C +8

9C +8910

10

=C 种。

点评:构建方程模型的关键是找到等量关系,正确列出方程。 (2)构建立体几何模型

例24 如图1中A ,B ,C ,D 为海上四个岛,

要建三座桥,将这四个小岛连接起来,

则不同的建桥方案共有( )

A.8种

B.12种

C.16种

D.20种

解:如图2,构建三棱锥BCD A -,四个顶点表示小岛,六条棱表示连接任意两岛的桥梁,由题意,只需求出从六条棱中

任取三条不共面的棱的不同取法,这可由间接法完成:从六条棱中任取三条棱的不同取法

为3

6C 种,任取三条共面棱的不同取法为4种,所以从六条棱中任取不共面的棱的不同取法为1643

6

=-C 种,故选C 项。

点评:构建恰当的立体几何模型,可以使排列组合问题显得直观清晰、简洁明快。 (3)构建隔板模型

例25 把20个相同的球全部装入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不小于其编号数,则共有 种不同的放法。

解:运用隔板法必须同时具备以下三个条件:①所有元素必须相同;②所有元素必须分完;③每组至少有一个元素。

此例有限条件,不能直接运用隔板法,但可转化为隔板问题,向1,2,3号三个盒子中分别装入0,1,2个球后,还剩余17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有1202

16

=C 种不同的分法。

点评:根据问题的特点,把握问题的本质,通过联想、类比是构建模型的关键。

(4)构建邮箱模型 例26 若集合1A ,2A 满足

A A A =21 ,则称),(21A A 为集合A 的一个分拆,并规定:当且仅当21A A =时,),(21A A 与

),(12A A 为集合的同一种分拆,则集合{}321,,a a a A =的不同分拆种数为 。

解:建立数学模型,如图3,设集合2A C A 为邮筒①,设集合

21A A 为邮筒②,设集合1A C A 为邮筒③,设1a ,2a ,3a 三

个元素为三封信,则问题转化为熟悉的“把三封信投入到三个邮筒共有多少种投递方法”的问题,可分三步进行求 解:

第一步,投1a 共有1

3C 种投法;第二步,投2a 共有1

3C 种投法;第三步,投3a 共有1

3C 种投法。根据分步计数原理共有

13C 13C 2713=C 种投法,即集合{}321,,a a a A =的不同分拆种数为27。

点评:本题属于集合类信息迁移题,若直接分类求解则较繁,这里通过构建邮筒模型转化求解,思路清晰、运算简练。

十三.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处

理.

例27.(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点最多有多少个?

解析:因为圆的一个内接四边形的两条对角线相交于圆内一点,一个圆的内接四边形就对应着两条弦相交于圆内的一个交点,于是问题就转化为圆周上的10个点可以确定多少个不同的四边形,显然有4

10C 个,所以圆周上有10点,以这些点为端点的弦相交于圆内的交点有4

10C 个.

排列组合问题的解法第三计

每周一计第三计——排列组合问题的解法 解决排列组合问题要讲究策略,用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。 (一).特殊元素、特殊位置的“优先安排法” 对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。 例1 : 0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个? 解法一:(元素优先)分两类:第一类,含0:0在个位有 种,0在十位有 种; 第二类,不含0:有1 223A A 种。 故共有( 24A +1123A A )+1223A A =30种。 注:在考虑每一类时,又要优先考虑个位。 解法二:(位置优先)分两类:第一类,0在个位有 种;第二类,0不在个位,先从两个偶数中选一个 放个位,再选一个放百位,最后考虑十位,有 种。 故共有 练习:甲、乙、丙、丁、戊、己六位同学选四人组队参加4*100m 接力赛,其中甲、乙不跑最后一棒,共有多少种不同的安排方法?(此题可有元素优先和位置优先两个角度两种解法,但位置优先则更简单) (二).排除法 对于含有否定词语的问题,还可以从总体中把不符合要求的除去. 例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有543543 2A A A -+=78种. (三).相邻问题“捆绑法” 对于某些元素要求相邻.. 排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。 例3: 5个男生3个女生排成一列,要求女生排一起,共有几种排法? 解:先把3个女生捆绑为一个整体再与其他5个男生全排列。同时,3个女生自身也应 全排列。由乘法原理共有6365A A 种。 (四)。不相邻问题“插空法” 对于某几个元素不相邻的排列问题,可先将其他可相邻元素排好,再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可(注意有时候两端的空隙的插法是不符合题意的) 例4: 5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法? 解:先排无限制条件的男生,女生插在5个男生间的4个空隙,由乘法原理共有 种。 注意:①分清“谁插入谁”的问题。要先排可相邻的元素,再插入不相邻的元素; ②数清可插的位置数;③插入时是以组合形式插入还是以排列形式插入要把握准。 例5: 马路上有编号为1、2、3、…、9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种? 解:由于问题中有6盏亮3盏暗,又两端不可暗,故可在6盏亮的5个间隙中插入3个暗的即可,有3 5 C 种。 (五)。定序问题选位不排 对于某几个元素顺序一定的排列问题,可先在总位置中选出顺序一定元素的位置而不参加排列,然后对其它元素进行排列。 例6: 5人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况? 解:先在5个位置中选2个位置放定序元素(甲、乙)有 种,再排列其它3人有 ,由乘法原理得共有 =60种。 1345240A A =5354A A 25C 3 3 A 25C 3 3A 24 A 1123A A 111233 A A A 2111423330 A A A A +=24A

排列组合问题的20种解法

排列组合问题的20种解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 复习巩固分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在 1 第2类办法中有 m种不同的方法,…,在第n类办法中有n m种不同 2 的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做 1 第2步有 m种不同的方法,…,做第n步有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 占了这两个位置 . 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中 间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也 看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 4 4 3

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得1 1 3434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5 2 2 522480A A A =种不同的排法 C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

【智博教育原创专题】排列组合的常见题型及其解法大全(包含高中所有的题型)

★绝密 备战2014专题 主编:冷世平

排列组合的常见题型及其解法排列组合问题,通常都是出现在选择题或填空题中,问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口,实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。 ◆处理排列组合应用题的一般步骤为: ①明确要完成的是一件什么事(审题);②有序还是无序;③分步还是分类。 ◆处理排列组合应用题的规律 ⑴两种思路:直接法,间接法;⑵两种途径:元素分析法,位置分析法。 排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。首先,谈谈排列组合综合问题的一般解题规律: ⑴使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。 ⑵排列与组合定义相近,它们的区别在于是否与顺序有关。 ⑶复杂的排列问题常常通过试验、画“树图”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。 ⑷按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。 ⑸处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。 ⑹在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。 总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等;其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。 【策略1】特殊元素(位置)用优先考虑 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 【例1】6人站成一横排,其中甲不站左端也不站右端,有种不同站法。 【分析】解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 【法一】(优先考虑特殊元素)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上,有120种站法,故站法共有480种; A种方法;剩下四【法二】(优先考虑特殊位置)先从除甲外的五个元素中任取两个站在两端,有2 5 A种方法,共计有480种。 个人作全排列有4 4 用0,2,3,4,5五个数字,组成没有重复数字的三位数,其中偶数共有个。30 【策略2】相邻问题用捆绑法 将相邻的元素内部进行全排列,绑成一捆,看作一个整体,视为一个元素,与其他元素进行排列。

排列组合问题教师版

二十种排列组合问题的解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标 1.进一步理解和应用分步计数原理和分类计数原理. 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事. 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或 是分步与分类同时进行,确定分多少步及多少类. 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位,从1,3,5三个数中任选一个共有13C 排法; 然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种排法; 最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法; ∴由分步计数原理得113 4 34288C C A = 443

排列组合方法归纳大全

排列组合方法归纳大全 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为

四.定序问题倍缩空位插入策略 例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 练习题: 1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 六.环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法练习题:6颗颜色不同的钻石,可穿成几种钻石圈 七.多排问题直排策略 例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是

排列组合的二十种解法情况总结

排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 4 4 3

排列组合解法大全

排列组合解法大全 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪, 4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排 好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进 行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法 种数是:73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4 7A 种方法,其余的三个位

最新排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集,所 有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类, 又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。 随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。 5.隔板法: 不可分辨的球即相同元素分组问题

排列组合的二十种解法总结

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力。 3.学会应用数学思想和方法解决排列组合问题。 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事。 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数? 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。 先排末位共有13C ,然后排首位共有1 4C , 最后排其它位置共有3 4A , 由分步计数原理得113 4 34288C C A =。 4 4 3

排列组合的二十种解法(最全的排列组合方法总结)

教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有 2m 种不同的方 法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有3 4A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的 排法

超全超全的排列组合的二十种解法

排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。定义的前提条件是m≦n,m与n均为自然数。①从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。②从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。 ③用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。从6种颜色中取出4种进行排列呢。 解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。 A(6,6)=6x5x4x3x2x1=720。 A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。 [计算公式] 排列用符号A(n,m)表示,m≦n。 计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)! 此外规定0!=1,n!表示n(n-1)(n-2) (1) 例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。 组合的定义及其计算公式 1 组合的定义有两种。定义的前提条件是m≦n。 ①从n个不同元素中,任取m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。 ②从n个不同元素中,取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。 ③用例子来理解定义:从4种颜色中,取出2种颜色,能形成多少种组合。 解:C(4,2)=A(4,2)/2!={[4x(4-1)x(4-2)x(4-3)x(4-4+1)]/[2x(2-1)x(2-2+1)]}/[2x(2-1)x(2-2+1)]=[( 4x3x2x1)/2]/2=6。 [计算公式] 组合用符号C(n,m)表示,m≦n。 公式是:C(n,m)=A(n,m)/m! 或C(n,m)=C(n,n-m)。

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

排列组合问题解法

排列组合问题的求解策略 杨昌叶 求解排列组合的综合问题,一般是先选元素(组合),后排列,按元素的性质“分类”和按事件发生连续性过程“分步”,在计数时注意不重复,不遗漏。常见的解题策略有以下几种: 1. 特殊位置(或元素)优先安排 例1. 从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中,甲、乙两人不去巴黎游览,则不同的选择方案共有( ) A. 300种 B. 240种 C. 144种 D. 96种 (05年福建卷) 解析:因为甲、乙不去巴黎,故从其余4人选1人去巴黎有C 41 种方法,再从剩余5人中选3人去其余3市,有A 53种方法,所以共有方案C A 4153240=(种) ,故选(B )。 2. 合理分类与准确分步 例2. 从集合{O ,P ,Q ,R ,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复),每排中字母P 、Q 和数字0至多只出现一个的不同排法种数是____________(用数字作答)。 (05年浙江卷) 解析:(1)每排中只有数字0的排法有C C A 91 32 44 ; (2)每排中只有字母P 或Q 的排法都有C C A 31 92 44 ; (3)每排中无数字0,字母P 、Q 的排法有C C A 32 92 44 。 所以不同的排法种数共有: ()C C C C C C A 91323192329244 28424++=

3. 排列、组合混合问题先选元(组合)后排列 例3. 四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共_________________种(用数字作答)。 (全国高考) 解析:先将4个球分成3组,每组至少1个(即必有一组为2个),分法有C 42 种,然后再将这3组球放入4个盒子中每盒最多装一组,则恰有一个空盒的放法种数为C A 4243144 =(种)。 4. 正难则反、等价转化 例4. 在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有_____________个。 (05年全国卷) 解析:用排除法解决。 (1)总的四位数有C A 5153 ; (2)个位数字为0的四位数有A 53; (3)个位数字为5的四位数有C A 4142。 所以符合条件的四位数个数共有: C A A C A 51535341423006048192--=--= 另解:直接求有4442 ??A 法(想一想,为什么?) 5. 相邻问题捆绑处理 例5. 四棱锥的8条棱代表8种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同放法种数为( )

排列组合方法大全

排列组合方法归纳大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m 1种不同的方法,在第2类办法中有 m种不同的 2 方法,…,在第n类办法中有 m种不同的方法, n 那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m 1种不同的方法,做第2步有 m种不同的方法,…, 2 做第n步有 m种不同的方法,那么完成这件事共 n 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是

分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求, , 以 先排末位共有13 C 然后排首位共有14 C 最后排其它位置共有34A 由分步计数原理得1134 3 4 288C C A 练习题:7种不同的花种在排成一列的花盆里,若 两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 443

例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部 进行自排。由分步计数原理可得共有522 522480 A A A 种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 解:分两步进行第一步排2个相声和3个独唱共有5 5 A种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6 A不同的方法,由分步计数原理,节目的不同顺序共有 54 56 A A种

排列组合问题的类型及解答策略

排列组合问题,联系实际,生动有趣,但题型多样,思路灵活,不易掌握。实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用。本文介绍十二类典型排列组合问题的解答策略,供参考。 一、相邻问题捆绑法 例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种 A. 720 B. 360 C. 240 D. 120 解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。由分步计数原理可知,共有=240 种不同排法,选C。 评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。 二、相离问题插空法 例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算) 解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。由分步计数原理可知,任何两个舞蹈节 目不得相邻的排法为种。 评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。 三、定序问题缩倍法 例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。 解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作 一次的挂法,故共有不同的信号种数是=10(种)。 评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。这类问题用缩小倍数的方法求解比较方便快捷。 四、标号排位问题分步法 例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有() A. 6种 B. 9种 C. 11种 D. 23种 解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。所以先将1填入2至4号的3 个方格里有种填法;第二步把被填入方格的对应数字,填入其它3个方格,又有种填

排列组合问题的常见解法

高考数学排列组合问题的常见解法 排列、组合是高考必考题,它联系实际,生动有趣,但题型多样,思路灵活,比较抽象,容易发生重复和遗漏现象。选择灵活的统计策略是正确解决排列组合问题的关键,下面通过典型问题,介绍几类常见解法。 一、位异则分 元素(或位置)“地位”不相同时,不可直接用排列、组合数公式,则要根据元素(或位置)的特殊性莉分简单的几类,将各类排列组合类求出,再由加法原理求出总数。 例1 求用0,1,2,3,4,5六个数字组成的,比2030大的无重复数字的四位数可分以下三类: 解比2030大四位数可分以下三类: 第一类:3×××,4×××,5×××,有3A ; 第二类:21××,23××,24××,25××,有4A ; 第三类:203×,204×,205×,有4A ; 故比2003大四位数共有3A +4A +3A =237个。 二、至少就隔 对于“至少”型的组合问题,先转化成“至少一个”型的组合问题,再用n个隔板插在元素(或位置)间隙(不包括首尾)中,将元素(或位置)分成需要的(n+1)份,则比较快捷。 例2 6个人捐10本书,每人至少捐一本,有多少种不同的捐法?解由于10本书是没有区别的,将10本书排成一行,用5个隔板插在10本书的9个间隙中,共有C 种不同插法,下图是其中的一种插法(O表示书,∣表示隔板): OO∣O∣O∣O∣OO∣OOO 它表示第一个人捐2本(第一个隔板前的书)、第二个人捐1本

(一、二隔板之间的书)……第五个人捐2本(四、五个隔板之间的书)、第六个人捐3本(第五个隔板后的书)。 所以,有C =126种不同的捐法。 例3 从4个班选出10名学生参加数学奥林匹克竞赛,每班至少2人,共有多少选法? 解由于10个名额是没有区别的,每班至少2人,先每班分配1个,还有6个名额,则每班至少1人就行了。按例2的解法易知共有选法C =10种选法。 三、相邻则捆 若元素(或位置)相邻,则将它们“捆”在一起,看成一个元素进行计算,然后再交换相邻元素(或位置)算出总数——捆绑法。例4 5男3女站成一排照相,其中3个女孩要站在一起,共有多少种站法? 解先将三个女孩“捆”成一个元素,连同其余5人共6个元素,任意排列,再交换3个女孩的位置,故共有A ·A =4320种站法。 四、不邻就插 对于一些元素(或位置)不相邻的排列组合问题,应先将其它元素(或位置)先排好,再把不相邻元素(或位置)已排好的元素(或位置)之间(包括首尾两侧)——插空法。 例5 5男3女站成一排照相,其中3个女孩都不站在一起,共有多少种站法? 解先将5个男孩排好,将3个女孩插在5个男孩之间(包括首尾两侧)的6个空隙中,则有A ·A =14400种站法。 五、正难则反 当“正面进攻”很难找到解题途径或运算很繁时,可以先解决其对立面的情况,从而使正面问题得到解决。 例6 四面体的顶点和各棱的中点,共10个点,在其中取出4个不共面的点,不同的取法有()种。

相关主题
文本预览
相关文档 最新文档