当前位置:文档之家› 电力电子复习资料..

电力电子复习资料..

电力电子复习资料..
电力电子复习资料..

第一章概述

可以认为,所谓电力电子技术就是应用于电力领域的电子技术。

电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术都属于信息电子技术。

具体地说,电力电子技术就是使用电力电子器件对电能进行变换和控制的技术。

电能变换的形式共有四种:交流-直流变换、直流-直流变换、直流-交流变换、交流-交流变换。

电力电子器件的制造技术是电力电子技术的基础。

变流技术则是电力电子技术的核心。

美国学者W. Newell认为电力电子学是由电力学、电子学和控制理论三个学科交叉而形成的。

一般认为,电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。

把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路(PIC),这代表了电力电子技术发展的一个重要方向。电力电子集成技术包括以PIC为代表的单片集成技术、混合集成技术以及系统集成技术。

随着全控型电力电子器件的不断进步,电力电子电路的工作频率也不断提高。与此同时,软开关技术的应用在理论上可以使电力电子器件的开关损耗降为零,从而提高了电力电子装置的功率密度。

第二章电力电子器件

2.1:电力电子器件概述

1、电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。电力电子器件一般工作在开关状态

2、电力电子器件的功率损耗:通态损耗、断态损耗、开关损耗(开通损耗、关断损耗)

通态损耗是电力电子器件功率损耗的主要成因。

当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。

3、电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。

4、电力电子器件的分类

(1)按照能够被控制电路信号所控制的程度:半控型器件、全控型器件、不可控器件。

半控型器件是指用控制信号可以控制其导通,但不能控制其关断的电力电子器件。

全控型器件是指用控制信号既可以控制其导通,也可以控制其关断的电力电子器件。

不控型器件是指用控制信号既不能控制其导通,也不能控制其关断的电力电子器件。

(2)按照驱动信号的性质:电流驱动型、电压驱动型。

(3)按照驱动信号的波形:脉冲触发型、电平触发性。

(4)按照载流子参与导电的情况:单极型器件、双极型器件、复合型器件。

2.2:电力二极管

1、电力二极管(Power Diode)自20世纪50年代初期就获得应用,但其结构和原理简单,工作可靠,直到现在电力二极管仍然大量应用于许多电气设备当中。

在采用全控型器件的电路中电力二极管往往是不可缺少的,特别是开通和关断速度很快的快恢复二极管和肖特基二极管,具有不可替代的地位。

电力二极管是以半导体PN结为基础的,实际上是由一个面积较大的PN结和两端引线以及封装组成的。从外形上看,可以有螺栓型、平板型等多种封装。

2、电力二极管的基本特性:

(1)静态特性:即单向导电性,主要是指其伏安特性

(2)动态特性:因为结电容的存在,电压—电流特性是随时间变化的,这就是电力二极管的动态特性,并且往往专指反映通态和断态之间转换过程的开关特性。

3、电力二极管的主要参数:

(1)正向平均电流IF(AV)

指电力二极管长期运行时,在指定的管壳温度(简称壳温,用TC表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。

IF(AV)是按照电流的发热效应来定义的,使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。

(2)正向压降UF

指电力二极管在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。

(3)反向重复峰值电压URRM

指对电力二极管所能重复施加的反向最高峰值电压。

使用时,应当留有两倍的裕量。

(4)最高工作结温TJM

结温是指管芯PN结的平均温度,用TJ表示。

最高工作结温是指在PN结不致损坏的前提下所能承受的最高平均温度。

TJM通常在125~175?C范围之内。

(5)反向恢复时间trr

(6)浪涌电流IFSM

指电力二极管所能承受最大的连续一个或几个工频周期的过电流。

4、电力二极管的主要类型

按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复特性的不同,介绍几种常用的电力二极管。

(1)普通二极管:又称整流二极管(Rectifier Diode),多用于开关频率不高(1kHz以下)的整流电路中。

(2)快恢复二极管:恢复过程很短,特别是反向恢复过程很短(一般在5μs以下)。

(3)快恢复外延二极管:采用外延型P-i-N结构,其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右)。

(4)肖特基二极管(Schottky Barrier Diode——SBD)

属于多子器件

优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此,其开关损耗和正向导通损耗都比快速二极管还要小,效率高。

弱点在于:当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此多用于200V以下的低压场合;反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。

2.3 半控型器件——晶闸管

2.3.1 晶闸管的结构与工作原理

晶闸管(Thyristor)是晶体闸流管的简称,又称作可控硅整流器(Silicon Controlled Rectifier——SCR),以前被简称为可控硅。

1、晶闸管的结构:

从外形上来看,晶闸管也主要有螺栓型和平板型两种封装结构。引出阳极A、阴极K 和门极(控制端)G三个联接端。内部是PNPN四层半导体结构。

2、晶闸管的工作原理:

晶体管的特性是:在低发射极电流下α是很小的,而当发射极电流建立起来之后,α迅速增大。在晶体管阻断状态下,I G=0,而α1+α2是很小的。由上式可看出,此时流过晶闸管的漏电流只是稍大于两个晶体管漏电流之和。如果注入触发电流使各个晶体管的发射极电流增大以致α1+α2趋近于1的话,流过晶闸管的电流I A(阳极电流)将趋近于无穷大,从而实现器件饱和导通。由于外电路负载的限制,I A实际上会维持有限值。

2.3.2 晶闸管的基本特性

1、静态特性

正常工作时的特性:当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值(维持电流)以下。

2、动态特性

(1)开通过程:由于晶闸管内部的正反馈过程需要时间,再加上外电路电感的限制,晶闸管受到触发后,其阳极电流的增长不可能是瞬时的。

延迟时间t d (0.5~1.5μs)

上升时间t r (0.5~3μs)

开通时间t gt=t d+t r

延迟时间随门极电流的增大而减小,上升时间除反映晶闸管本身特性外,还受到外电路电感的严重影响。提高阳极电压,延迟时间和上升时间都可显著缩短。

(2)关断过程:由于外电路电感的存在,原处于导通状态的晶闸管当外加电压突然由正向变为反向时,其阳极电流在衰减时必然也是有过渡过程的。

反向阻断恢复时间t rr

正向阻断恢复时间t gr

关断时间t q=t rr+t gr

关断时间约几百微秒。

在正向阻断恢复时间内如果重新对晶闸管施加正向电压,晶闸管会重新正向导通,而不是受门极电流控制而导通。

2.3.3 晶闸管的主要参数

1、电压定额:

(1)断态重复峰值电压U DRM

是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。

国标规定断态重复峰值电压U DRM为断态不重复峰值电压(即断态最大瞬时电压)U DSM 的90%。断态不重复峰值电压应低于正向转折电压U bo。

(2)反向重复峰值电压U RRM

是在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。

规定反向重复峰值电压U RRM为反向不重复峰值电压(即反向最大瞬态电压)U RSM的90%。反向不重复峰值电压应低于反向击穿电压。

(3)通态(峰值)电压U T

晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。

通常取晶闸管的U DRM和U RRM中较小的标值作为该器件的额定电压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压2~3倍。

2、电流定额:

(1)通态平均电流I T(AV)

国标规定通态平均电流为晶闸管在环境温度为40?C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。它是按照正向电流造成的器

电力系统分析总结(复习资料)

1、由发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成的整体,对电能进行不间断的生产和分配,称为电力系统。由变压器、电力线路等变换、输送、分配电能设备所组成的部分成为电力网络。 2、额定频率指按国家标准规定,我国所有交流电力系统的额定频率为50Hz。 3、按电压等级的高低,电力网可分为:1低压网络(<1kV)2中亚电网(1-10kV)3高压电网(35-220kV) 4、超高压电网(330-750kV) 5、特高压电网(>1000kV) 4、用电设备容许电压偏移一般为±5%;沿线路的电压降落一般为10%;;在额定负荷下,变压器内部的电压降落约为5%。 5、负荷的分类:1按物理性能分:有功负荷、无功负荷2按电力生产与销售过程分:发电负荷、供电负荷和用电负荷3按用户性质分:工业、农业、交通运输业和人民生活用电负荷4按负荷供电的可靠性分:一级、二级、三级负荷。 6、我过电力系统常用的4种接地方式:1中性点不接地2中性点经消弧线圈接地3中性点直接接地4中性点经电阻和电抗接地小电流接地方式:优点:①可靠性能高②单相接地时,不易造成人身或轻微的人身和设备安全事故缺点:经济性差、容易引起谐振,危机电网的安全运行大接地电流接地方式:优点:①能快速的切除故障、安全性能好②经济性好。缺点:系统的供电可靠性差(任何一处故障全跳)。 7、消弧线圈的工作原理:单相接地时,可以线圈的电流Il补偿接地点的容性电流消除接地的不利影响。补偿方式:①全补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,IlIk时,Ie为纯感性,一般采用过补偿方法。 8、发电机组的数学模型:发电机组在约束的上、下限运行。通常以两个变量表示,即发出的有功功率和端电压的大小或者发出的有功功率和无功功率的大小。 9、架空线的组成:①导线②避雷线③杆塔④绝缘子⑤金具 10、电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数,如I、V、P等。 11、分裂导线用在什么场合,有什么用处?一般用在大于350kv的架空线路中。可避免电晕的产生和增大传输容量。 12、导线是用来反映的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 13、三绕组变压器的绕组排列方式:①中、低、高②低、中、高排列方式的原则是为了绝缘结构的合理,一般的是将低压、中压绕组排在最里面,高压绕组必须在最外面。 14、标幺值:是指实际有名值与基准值的比值。优点:可以用来简化计算缺点:同一实际值可能对应着多个不同的标幺值。基准值的选取原则:①基准值的单位应与有名值的单位相同 ②所选取的基准值物理量之间应符合电路的基本关系 15、短路:指一切不正常的相与相之间的或相与地之间的通路。三相系统中发生的短路有四种基本类型:三相短路、两相短路、单相接地短路和两相接地短路。短路的主要原因:是电力系统中电气设备载流导体的绝缘损坏。 16、短路计算的任务:在选择电气设备时,要保证电气设备有足够的动稳定性和热稳定性,这都要以短路计算为依据。为了合理地配置各种继电保护装置,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含一些电流计算的内容。 17、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出无穷大功率的电源。无穷大电源是一种理想电源,它的特点:①电源功率为无穷大;无限大功率电源的频率是恒定的,端电压也是恒定的。②电源的内阻为零。 18、短路要做的假设:①由无穷大电源供电②短路前处于稳态③电路三相对称。

电力电子技术期末复习资料汇总

电力电子技术复习题库 第二章: 1.使晶闸管导通的条件是什么? ①加正向阳极电压;②加上足够大的正向门极电压。 备注:晶闸管承受正向阳极电压,并在门极施加触发电流。 2.由于通过其门极能控制其开通,但是不能控制其关断,晶闸管才被称为(半控型)器件。 3.在电力电子系统中,电力MOSFET通常工作在( A )状态。 A. 开关 B. 放大 C. 截止 D. 饱和 4.肖特基二极管(SBD)是( A )型器件。 A. 单极 B. 双极 C. 混合 5.按照电力电子器件能够被控制电路信号所控制的程度可以分为: ①不可控器件;②半控型器件;③全控型器件 6.下列电力电子器件中,(C)不属于双极型电力电子器件。 A. SCR B. 基于PN结的电力二极管 C. 电力MOSFET D. GTR 7.按照驱动电路加在电力电子器件控制端和公共端之间信号的性质,可以将电力电子器件(电力二极管除外)分为(电流驱动型)和(电压驱动型)两类。 8.同处理信息的电子器件类似,电力电子器件还可以按照器件部电子和空穴两种载流子参与导电的情况分为(单极性器件)、(双极型器件)和(复合型器件)。 9.(通态)损耗是电力电子器件功率损耗的主要成因。当器件的开关频率较高时,(开关)损耗会随之增大而可能成为器件功率损耗的主要因素。(填“通态”、“断态”或“开关”) 10.电力电子器件在实际应用中,一般是由(控制电路)、(驱动电路)和以电力电子器件为核心的(主电路)组成一个系统。 11. 按照电力电子器件能够被控制电路信号所控制的程度,肖特基二极管(SBD)属于(不可控)

型器件。 12.型号为“KS100-8”的晶闸管是(双向晶闸管)晶闸管,其中“100”表示(额定有效电流为100A ),“8”表示(额定电压为800V)。 13.型号为“KK200-9”的晶闸管是(快速晶闸管)晶闸管,其中“200”表示(额定有效电流为200A),“9”表示(额定电压为900V )。 14.单极型器件和复合型器件都是(电压驱动)型器件,而双极型器件均为(电流驱动)型器件。(填“电压驱动”或“电流驱动”) 15. 对同一晶闸管,维持电流I H<擎住电流I L。(填“>”、“<”或“=”) 16.维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管阳极电流大于维持电流(保持晶闸管导通的最小电流); 要使晶闸管由导通变为关断,可使阳极电流小于维持电流可以使晶闸管由导通变为关断。在实际电路中,常采用使阳极电压反向、减小阳极电压,或增大回路阻抗等方式使晶闸管关断。 17.GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能? 答:CTO的开通控制方式与晶闸管相似,但是可以通过门极施加负的脉冲电流使其关断。 GTO 和普通晶闸管同为PNPN 结构,由P1N1P2和N1P2N2构成两个晶体管V1、V2,分别具有共基极电流增益1 a 和2 a ,由普通晶闸管的分析可得:1 a + 2 a =1 是器件临界导通的条件。 1 a + 2 a >1,两个等效晶体管过饱和而导通;1 a + 2 a <1,不能维持饱和导通而关断。 GTO 之所以能够自行关断,而普通晶闸管不能,是因为GTO 与普通晶闸管在设计和工艺方面有以下几点不同: ②GTO 在设计时2 a 较大,这样晶体管V2控制灵敏,易于GTO 关断; ②GTO 导通时的1 a + 2 a 更接近于1,普通晶闸管1 a + 2 a 31.15,而GTO 则为1 a + 2 a 1.05,GTO 的饱和程度不深,接近于临界饱和,这样为门极控制关断提供了有利条件; ③多元集成结构使每个GTO 元阴极面积很小,门极和阴极间的距离大为缩短,使得P2极区

电力电子技术复习资料

电力电子技术 复习资料 一、名词解释 (每小题2分,共10分) 1.自然换相点 2.GTR 3.换相重叠角γ 4.同步 5.脉宽调制法 二、填空题(每空1分,共20分) 1.晶闸管的动态参数有断态电压临界上升率du/dt 和通态电流临界上升率等,若du/dt 过大,就会使晶闸管出现________,若di/dt 过大,会导致晶闸管________。 2.单相全控桥可控整流电路中功率因数cos φ 比单相半波可控整流电路的功率因数提高了________倍。各管上承受的最大反向电压为________。 3.三相零式可控整流电路带电阻性负载工作时,在控制角α>30°时,负载电流出现________。晶闸管所承受的最大反向电压为________。 4.在单相全控桥整流电路带反电势负载时,若交流电源有效值为U 2,反电势为E 时,不导电角δ=________,若晶闸管不导通时,输出电压应为______。 5.三相零式可控整流电路,在电阻性负载时,当控制角α≤30°,每个晶闸管的导通角θ=________。此电路的移相范围为________。 6.三相全控桥可控整流,其输出电压的脉动频率为________,十二相可控整流,其输出电压的脉动频率为________。 7.在晶闸管触发脉冲产生电路中,常用的同步电压有________和________两种。 8.单结晶体管又称为________,利用它伏安特性的________,可作成弛张振荡器。 9.在晶闸管触发脉冲产生的电路中,为满足不会产生逆变失败所需的最小逆变角 βmin 值,常将________和________相叠加,从而有效地限制了逆变角β的大小。 10.在逆变器中,晶闸管的自然关断法,是利用负载回路中的电感L 和________在产生振荡时,电路中的电流具有________的特点,从而使晶闸管发生自然关断。 三、画图题(6分) 说明下面斩波电路的类型及其工作原理,画出输出电压o u 、输出电流o i 波形 四、问答题(第1小题6分,第2小题8分,共14分) 1.对整流电路的输出电压进行谐波分析后,能得出什么结论?

《电力电子技术课程标准

《电力电子技术》课程标准 一、课程信息 课程名称:电力电子技术课程类型:电气自动化专业核心课 课程代码:0722006 授课对象:电气自动化专业 学分:3.0 先修课:电路、电子技术 学时:50 后续课:交流调速系统 制定人:杨立波制定时间:2010年10月10日 二、课程性质 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养本专业人才中占有重要地位。通过本课程的学习,使学生熟悉各种电力电子器件的特性和使用方法;各种电力电子电路的结构、工作原理、控制方法、设计计算方法及实验技能;熟悉各种电力电子装置的应用范围及技术经济指标。为后续课程打好基础。 三、课程设计 1、课程目标设计 (1)能力目标 总体目标:1、培养学生综合分析问题、发现问题和解决问题的能力。 2、培养学生运用知识的能力和工程设计的能力。 具体目标:1、单相、三相可控整流技术的工程应用 2、降压斩波变换技术的工程应用 3、升压斩波变换技术的工程应用 4、交流调压或交流调功技术的工程应用 5、变频技术的工程应用 6、有源、无源逆变技术的工程应用 (2)知识目标 1、熟悉和掌握晶闸管、电力MOSFET、IGBT等电力电子器件的结构、原理、特性和使用方法; 2、熟悉和掌握各种基本的整流电路、直流斩波电路、交流—交流电力变换电路和逆变电路的结构、工作原理、波形分析和控制方法。 3、掌握PWM技术的工作原理和控制特性,了解软开关技术的基本原理。

4、了解电力电子技术的应用范围和发展动向。 5、掌握基本电力电子装置的实验和调试方法。 2、课程内容设计 (1)设计的整体思路:以工作过程和教学进程为设计依据,以相对独立的知识为模块。(2)模块设计表:

电力系统复习提纲

1 电力系统概述 1 1 电力系统及其发展 1 1 1 电力系统 知道电力系统的概念 1 1 2 电力系统发展简史和我国的电力系统 1 1 3 电力系统的负荷和负荷曲线 1 1 4 电力系统中的发电厂 1 1 5 电力网的结构与结线 知道电力网结线的方式 1 1 6 电压等级和额定也压 了解电力系统额定电压等级 1 1 7 电力系统运行的特点和要求 1 1 8 电力系统中性点接地方式 答:中性点直接接地或经小阻抗接地;中性点不接地或经消弧线圈接地,或者经大阻抗接地。 1 1 9 直流输电与柔性交流输电 1 2 电力系统基本元件概述 简要了解各基本元件的概念组成即可 2 电力系统元件数学模型 2 1 三相电力线路 2 1 1 电力线路电阻 2 1 2 电力线路电感 2 1 3 电力线路并联电导 2 1 4 电力线路并联电容 以上大致了解即可 2 1 5 电力线路的稳态方程和等值电路 这部分有计算,重点关注例2.3,同时要知道特征阻抗,自然功率等概念 ①除非截面积特别大,否则一般用直流电阻代替有效电阻。 ②一般三相导线之间距离不相等,三相之间的互感不相同,所以较长的架空线路普

遍采用整换位循环。 ③为什么采用分裂导线?答:a.增大导线截面积,提高输电能力;b.分裂导线的圆半径req明显大于每根导体的半径r,故正序电抗x1变小,同时也改变了导线周围的电场分布,等效的增大了导线半径,从而增大了每相导线的电纳b1,从而使特征阻抗Zc减小,自然功率Pe升高,使输电能力提高;c.减少了电晕放电,减少了无线电干扰. ④等值阻抗Z1=电阻r1+j正序电抗x1;等值对地导纳Y1=等值对地电导g1+j正序电纳b1. ⑤特征阻抗Zc=(Z1/Y1)?,传播系数γ=(Z1*Y1)?=β+jα. ⑥无损耗电路(g1=0,r1=0)末端接纯有功功率负荷,则功率Pe=U22/Zc称为自然功率. ⑦提高输电电路输电能力的方法:1.提高输电电压等级2.降低特征阻抗,一是输电线路采用紧凑型布局,二是采用分裂导线。 ⑧在线路输送功率不等于自然功率时,线路各点电压有效值将不再相同,当P>Pe 时,线路中间电压将降低,线路两端将输送无功功率,当P<Pe时,则相反. ⑨例2.3,π型等值电路,计算. 2 2 变压器 了解三相变压器绕组连接方式,知道变压器分接头的概念及常见的分接头种类 知道变压器短路电压,绕组漏抗的概念和计算方法(后面有用) 了解容量比的概念 自耦变压器不做要求 ①电力变压器有一侧的三相绕组为△接法时,能有效的削弱变压器中的三次谐波分量,所以得到广泛应用。 ②升压变压器由于功率是从低压侧送往中、高压测所以希望低压绕组与高压和中压绕组都有紧密的耦合,以减小电压降落,所以缠绕在铁芯上由内及外分别为中压绕组、低压绕组、高压绕组;降压变压器的功率流向是由高压侧流向中、低压侧,一般中压侧

电力电子技术复习资料doc

一、填空 1、请在正确的空格内标出下面元件的简称: 电力晶体管GTR;可关断晶闸管GTO;功率场效应晶体管MOSFET;绝缘栅双极型晶体管IGBT ;IGBT是MOSFET和GTR的复合管。 2、晶闸管对触发脉冲的要求是要有足够的驱动功率、触发脉冲前沿要陡幅值要高和触发脉冲要与晶闸管阳极电压同步。 3、多个晶闸管相并联时必须考虑均流的问题,解决的方法是串专用均流电抗器。 4、在电流型逆变器中,输出电压波形为正弦波,输出电流波形为方波。 5、型号为KS100-8的元件表示双向晶闸管晶闸管、它的额定电压为800V伏、额定有效电流为100A。 6、180°导电型三相桥式逆变电路,晶闸管换相是在同一桥臂上的上、下二个元件之间进行;而120o导电型三相桥式逆变电路,晶闸管换相是在不同桥臂上的元件之间进行的。 7、当温度降低时,晶闸管的触发电流会增加、正反向漏电流会下降;当温度升高时,晶闸管的触发电流会下降、正反向漏电流会增加。 2、由晶闸管构成的逆变器换流方式有负载换流和强迫(脉冲)换流。 3、按逆变后能量馈送去向不同来分类,电力电子元件构成的逆变器可分为有源逆变器与无源逆变器两大类。 4、有一晶闸管的型号为KK200-9,请说明KK 快速晶闸管; 200表示表示200A,9表示900V。 5、单结晶体管产生的触发脉冲是尖脉冲脉冲;主要用于驱动小功率的晶闸管;锯齿波同步触发电路产生的脉冲为强触发脉冲脉冲;可以触发大功率的晶闸管。 1、普通晶闸管的图形符号是,三个电极分别是阳

极A ,阴极K 和门极G晶闸管的导通条件是阳极加正电压,阴极接负电压,门极接正向电压形成了足够门极电流时晶闸管导通

电力系统复习试题汇总(2011_4_)

1.什么是电力系统日负荷曲线?日负荷曲线有什么特点? 电力系统日负荷曲线是描述一天 24 小时有功负荷的变化情况的曲线。 特点是:由于企业生产情况及作息制度不一样,不同行业用户的日负荷曲线形状可能有很大的差异。 2 ,何谓负荷率和最小负荷系数? 日平均负荷: 240 12424d av W P Pdt ==? (GW ,kW ) (9-2) 负荷率: max av m P k P = (无量纲) (9-3) 最小负荷系数:min max P P α= (无量纲) (9-4) 3.什么是年最大负荷曲线? 年最大负荷曲线描述一年内每月(或每日)最大有功功率负荷变化的情况,主要用来安排发电设备的检修计划,同时为制订发电机组或发电厂的扩建或新建计划提供依据。 4.什么是年持续负荷曲线? 年持续负荷曲线:按一年中系统负荷的数值大小及其持续小时数顺序排列而绘制成的曲线。 5.什么是年最大负荷利用小时数?你知道各类用户年最大负荷利用小时数的数值范围吗? 根据年持续负荷曲线可以确定系统负荷的全年耗电量为 8760 0W Pdt =? (9-3) 若P=Pmax ,经过Tmax 小时后所消耗的电能恰好等于全年的实际耗电量W ,则称Tmax 为最大负荷利用小时数,即 8760max 0max max 1W T Pdt P P ==? (9-4) 各类用户年最大负荷利用小时数的数值范围:见表9-2。 6.各类负荷曲线在电力系统运行中有什么用处。 日负荷曲线是电力系统安排发电计划和确定运行方式的重要依据。 年最大负荷曲线主要用来安排发电设备的检修计划,也为制订发电机组或发电厂的扩建或新建计划提供依据。 7.什么是负荷的电压静态特性? 频率维持额定值不变,负荷功率与电压的关系称为负荷的电压静态特性。 8.什么是负荷的频率静态特性? 负荷端电压维持额定值不变时,负荷功率与频率的关系称为负荷的频率静态特性。 9.电力系统计算中综合负荷常采用哪儿种等值电路? 最常采用的综合负荷等值电路有:含源等值阻抗(或导纳)支路,恒定阻抗(或导纳)支路,异步电动机等值电路(阻抗值随转差而变的阻抗支路)以及这些电路的不同组合。

《电力电子技术》复习资料

电力电子技术第五版复习资料 第1章绪论 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现 (4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 第2章电力电子器件 1 电力电子器件与主电路的关系 (1)主电路:指能够直接承担电能变换或控制任务的电路。 (2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。 2 电力电子器件一般都工作于开关状态,以减小本身损耗。 3 电力电子系统基本组成与工作原理 (1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 (2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。 (3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。 (4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。 4 电力电子器件的分类 根据控制信号所控制的程度分类 (1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET和IGBT。 (3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。 根据驱动信号的性质分类 (1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。如SCR、GTO 、GTR。 (2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。 根据器件内部载流子参与导电的情况分类 (1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。 (2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。 (3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。 5 半控型器件—晶闸管SCR 晶闸管的结构与工作原理

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

电力系统分析(下)考试复习资料(精简版)

1.综合负荷的定义答:系统中所有电力用户的用电设备所消耗的电功率总和就是电力系统的负荷,亦称电力系统的综合用电负荷。它是把不同地区、不同性质的所有的用户的负荷总加起来而得到的。 2. 综合负荷、供电负荷和发电负荷的区别及关系答:综合用电负荷加上电力网的功率损耗就是各发电厂应该供给的功率,称为电力系统的供电负荷。供电负荷再加上发电厂厂用电消耗的功率就是各发电厂应该发出的功率,称为电力系统的发电负荷。 2.日负荷曲线和年负荷曲线的慨念答:负荷曲线按时间长短分,分为日负荷曲线和年负荷曲线。日负荷曲线描述了一天24小时负荷的变化情况;年负荷曲线描述了一年内负荷变化的情况。 习题9-1:某系统典型日负荷曲线如题图所示,试计算:日平均负荷;负荷率m k ,最小负荷系数a 以及峰谷差m P ?。 解:(1)日平均负荷 85MW MW 24 2 7041204902804100280450270=?+?+?+?+?+?+?+?= av p (2)负荷率 7083.0120 85 max === P P k av m (3)最小负荷系数4167.0120 50 max min === P P a (4)峰谷差MW 70MW )50120(min max =-=-=?P P P m 9-3某工厂用电的年待续负荷曲线如题图9-3所示。试求:工厂全年平均负荷,全年耗电量及最大负荷利用小时数T max 。 解:(1)全年平均负荷 MW 548.06MW 8760 3760 403000602000100)(=?+?+?= y av p (2)全年耗电量 h kW 10304.5 h kW 10)3760403000602000100(838760 ??=???+?+?==? Pdt W (3)最大负荷利用小时数 h 5304h 1010010304.5W 138 max 87600max max =??===?P Pdt P T ? 2.电压降落、电压损耗、电压偏移的定义有所不同 答:网络元件的电压降落是指元件首末端两点电压的相量差,即12()V V R jX I -=+;把两点间电压绝对值之差称为电压损耗,用V ?表示,12V V V ?=-;电压偏移是指网络中某点的实际电压同网络该处的额定电压之差,可以用KV 表示,也可以用额定电压的百分数表示。若某点的实际电压为V ,该处的额定电压为N V ,则用百分数表示的电压偏移为,电压偏移(%)100N N V V V -= ? ? 3.电压降落公式的分析(为何有功和相角密切相关,无功和电压密切相关?); 答: 从电压降落的公式可见,不论从元件的哪一端计算,电压降落的纵、横分量计算公式的结构都是一样的,元件两端的电压幅值差主要由电压降落的纵分量决定,电压的相角差则由横分量确定。高压输电线的参数中,电抗要比电阻题图9-3年持续负荷曲线

电力电子技术复习题答案

电力电子技术复习题答 案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第二章: 1.晶闸管的动态参数有断态电压临界上升率du/dt和通态电流临界上升率等, 若du/dt过大,就会使晶闸管出现_ 误导通_,若di/dt过大,会导致晶闸管_损坏__。 2.目前常用的具有自关断能力的电力电子元件有电力晶体管、可关断晶闸管、 功率场效应晶体管、绝缘栅双极型晶体管几种。简述晶闸管的正向伏安特性答: 晶闸管的伏安特性 正向特性当IG=0时,如果在器件两端施加正向电压,则晶闸管处于正向阻断状态,只有很小的正向漏电流流过。 如果正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通。 随着门极电流幅值的增大,正向转折电压降低,晶闸管本身的压降很小,在1V左右。 如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态,IH称为维持电流。 3.使晶闸管导通的条件是什么 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 4.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶 闸管(GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于半控型器件的是 SCR 。 5.晶闸管的擎住电流I L 答:晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。 6.晶闸管通态平均电流I T(AV)

答:晶闸管在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。标称其额定电流的参数。 7.晶闸管的控制角α(移相角) 答:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。 8.常用电力电子器件有哪些 答:不可控器件:电力二极管。 半控型器件:晶闸管。 全控型器件:绝缘栅双极晶体管IGBT,电力场效应晶体管(电力MOSFET),门极可关断晶闸管(GTO),电力晶体管。 9.电力电子器件有几种工作状态(电力电子器件有哪四种工作状态) 答:四种,即开通、截止、反向击穿、正向击穿。 10.维持晶闸管导通的条件是什么怎样才能使晶闸管由导通变为关断 答:维持晶闸管导通的条件是晶闸管的电流大于使晶闸管维持导通所必需的最小电流。 晶闸管由导通变为关断:去掉正向电压,施加反压,使晶闸管的电流低于维持电流。 11.简述晶闸管的正常工作时的特性。 答: 当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。 晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶

电力电子技术课程综述.doc

HefeiUniversity 合肥学院电力电子技术课程综述 系别:电子信息及电气工程系 专业:自动化 班级: 姓名: 学号:

目录 摘要: (3) 绪论 (4) 1.1电力电子技术简介: (4) 1.2电力电子技术的应用: (4) 1.3电力电子技术的重要作用: (5) 1.4电力电子技术的发展 (5) 本课程简介 (6) 2.1电力电子器件: (6) 2.1.1根据开关器件是否可控分类 (6) 2.1.2 根据门极)驱动信号的不同 (6) 2.1.3 根据载流子参与导电情况之不同,开关器件又可分为单极型器件、双极型器 件和复合型器件。 (6) 2.2 DC-DC变换器 (7) 2.2.1主要内容: (7) 2.2.2直流-直流变换器的控制 (7) 2.3 DC-AC变换器(无源逆变电路) (8) 2.3.1电压型变换器 (8) 2.3.2电流型变换器 (8) 2.3.3脉宽调制(PWM)变换器 (9) 2.4 AC-DC变换器(整流和有源逆变电路) (9) 2.4.1简介 (9) 2.4.2工作原理 (9) 2.5 AC-AC变换器 (10) 2.5.1 简介 (10) 2.5.2 分类 (10) 2.6 软开关变换器 (10) 2.6.1分类 (10) 2.6.2 重点 (10) 总结 (11) 参考文献 (11)

摘要:电力电子技术是在电子、电力与控制技术上发展起来的一门新兴交 叉学科,被国际电工委员会(IEC)命名为电力电子学(Power Electronics)或称为电力电子技术。近20年来,电力电子技术已渗透到国民经济各领域,并取得了迅速的发展。作为电气工程及其自动化、工业自动化或相关专业的一门重要基础课,电力电子技术课程讲述了电力电子器件、电力电子电路及变流技术的基本理论、基本概念和基本分析方法,为后续专业课程的学习和电力电子技术的研究与应用打下良好的基础。 关键词:电力电子技术控制技术自动化电力电子器件 Abstract: Power electronic technology is in Electronics, electric Power and control technology developed on an emerging interdisciplinary, is the international electrotechnical commission (IEC) named Power Electronics (Power Electronics) or called Power electronic technology. Nearly 20 years, power electronic technology has penetrated into every field of national economy, and have achieved rapid development. As electrical engineering and automation, industrial automation or related professional one important courses, power electronic technology course about power electronics device, power electronic circuits, the basic theory of converter technology, the basic concept and basic analysis for subsequent specialized course of study and power electronic technology research and application lay a good foundation. Keywords:Power electronic technology control technology automation power electronics device

电力系统复习题(新)

暂态 第1章稳态习题 1. 什么是电力系统?有哪些特点和基本要求? 答:电力系统是由发电机、变压器、输电线路、用电设备(负荷)组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。 电力系统的特点是:电能不能大量储存,发电、供电、用电必须同时完成,过渡过程非常迅速。对电能质量要求很高,电能质量的优劣,直接影响各行各业。电力生产的事故,也是其它行业的灾难。 电力系统的基本要求:①保证可靠地持续供电;②保证良好的电能质量;③保证系统运行的经济性。 2.我国电力系统的现状如何? 答:①发电装机容量、发电量持续增长。截止2007年底,全国新增装机容量10,009万千瓦,总量达到71,329万千瓦。其中,水电新增1,306.5万千瓦,火电新增8,158.35万千瓦。同时,华能玉环电厂、华电邹县电厂、国电泰州电厂共七台百万千瓦超超临界机组的相继投运,标志着中国已成功掌握世界先进的火力发电技术,电力工业已经开始进入―超超临界‖时代。此外,中国电网建设快速发展,新增220千伏及以上输电线路回路长度4.15万公里,新增220千伏及以上变电设备容量18,848万千伏安。 ②电源结构不断调整。上大压小的举措提高了火电行业平均单机装机容量,增强了行业的 总体经济效益,提高了环境效益。对于新能源的各项政策及规划,将引导降低火电在电力中的占比,增加水电、核电、风电的比例,优化电力结构。 ③西电东送和全国联网发展迅速。我国能源资源和电力负荷分布的不均衡性,决定了―西电 东送‖是我国的必然选择。西电东送重点在于输送水电电能。按照经济性原则,适度建设燃煤电站,实施西电东送。 目前,西电东送已进入全面实施阶段:贵州到广东500千伏交、直流输变电工程已先后投产运行,向广东送电规模已达1088万千瓦。三峡到华东、广东±500千伏直流输变电工程先后投产。蒙西、山西、陕西地区向京津唐电网送电能力逐步增加。华北与东北、福建与华东、川渝与华中等一批联网工程已经投入运行, 2003年跨区交换电量达到862亿千瓦时。 截至2005年7月,除海南外已经初步实现了全国联网,初步实现了跨区域资源的优化配置,区域电网间的电力电量交换更加频繁,交易类型出现了中长期、短期、超短期、可中断交易等多种模式,呈现多样化的良好局面,由于跨区跨省电力交易比较活跃,部分联网输电通道长期保持大功率送电。西电东送、全国联网工程对调剂电力余缺、缓解电力供应紧张和促进资源优化配置起到重要作用。 ④可再生能源发电取得进步:A.风力发电建设规模逐步扩大。从―七五‖开始建设风电场, 到2004年底,内地已建成43个风电场,累计装机1292台,总装机容量达到76.4万千瓦,占全国电力装机的0.17%。单机容量达到2000千瓦。B.地热发电得到应用。到1993年底,西藏地热发电的总装机达到28.13兆瓦,约占全国地热发电装机(包括台湾在内)的94%;年发电量9700万千瓦时,占拉萨电网约20%。C.太阳能发电开始起步。至1999年,光伏发电系统累计装机容量超过13兆瓦。2004年建成容量为1兆瓦的太阳能发电系统,这是目前中国乃至亚洲总装机容量第一的并网光伏发电系统,同时,也是世界上为数不多的兆瓦级大型太阳能光伏发电系统之一。D.小水电建设取得巨大成绩。截止到2000年底,全国已建成小水电站4万多座,装机达2485万千瓦,占全国水电装机的32,4%,占世界小水电开发量的40%以上,年发电量800亿千瓦时,占全国水电发电量的36.27%。 ⑤结构性矛盾突出,技术升级任重道远:A. 电源结构有待优化;B. 电力生产主要技术指 标与国际水平还有一定差距。 3.电力系统有哪些控制?各种控制的特点是什么?

电力电子复习资料

湖北理工学院电气学院电力电子复习课 第一章绪论 BY 12自动化张一鸣 1、电力电子技术的概念 定义:电力电子技术——应用于电力领域的电子技术,使用电力电子器件对电能进行变换和控制的技术.电力电子技术主要用于电力变换。 分为信息电子技术(信息处理)和电力电子技术(电力变换)。 2、电力变换通常可分为哪四大类? 电力变换通常可分为四大类:交流变直流(整流)、直流变交流(逆变)、交流变交流(变频、变压)、直流变直流(斩波)。 第2章电力电子器件 1、电力电子器件的概念 电力电子器件:是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。 2、电力电子器件的分类 按照电力电子器件能够被控制电路信号所控制的程度分类: 1.半控型器件,例如晶闸管; 2.全控型器件,例如GTO(门极可关断晶闸管)、GTR(电力晶体管),MOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管); 3.不可控器件,例如电力二极管; 按照驱动电路加在电力电子器件控制端和公共端之间信号的性质分类: 1.电压驱动型器件,例如IGBT、MOSFET、SIT(静电感应晶闸管); 2.电流驱动型器件,例如晶闸管、GTO、GTR; 根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类: 1.脉冲触发型,例如晶闸管、GTO; 2.电子控制型,例如GTR、MOSFET、IGBT; 按照电力电子器件内部电子和空穴两种载流子参与导电的情况分类:

1.单极型器件,例如电力二极管、晶闸管、GTO、GTR; 2.双极型器件,例如MOSFET、IGBT; 3.复合型器件,例如MCT(MOS控制晶闸管); 3、晶闸管的导通条件、关断条件、维持导通条件 使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 使导通了的晶闸管关断的条件是使流过晶闸管的电流减小至一个小的数值,即维持电流IH一下。 维持晶闸管导通的条件是,晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。 4、关断晶闸管的方法 要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 5、晶闸管的符号、英文缩写与引脚 符号SCR A: 阳极G:门极K: 阴极 uAK>0且uGK>0 6、常用的全控型器件有哪些?P-MOSFET、SIT、GTO、GTR 、IGBT是哪些全控型器件的英文缩写,这些器件中哪些是电流控制型器件?哪些是电压控制型器件? 电流型:门极可关断晶闸管(GTO)、电力晶体管(GTR) 电压型:电力场效应晶体管(P-MOSFET)、静电感应晶闸管(SIT)、绝缘栅双极型晶体管(IGBT) 7、IGBT的结构

《电力电子技术》复习提纲

《电力电子技术》期末复习提纲 绪论 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现 (4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 第1章电力电子器件 3 电力电子系统基本组成一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 4 电力电子器件的分类 (1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如S晶闸管。 (2)全控型器件:如GTO、GTR、MOSFET和IGBT。 (3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。 5 半控型器件—晶闸管(大功率半导体变流器件)阳极A、阴极K、门极G组成 晶闸管的导通条件:1.主电路加正向电压2.控制电路加合适的正向电压 6.维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 7.当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。 8.晶闸管的测量:万用表R*1档 GTO(门极可关断晶闸管) (1)GTO与普通晶闸管的相同点:是PNPN四层半导体结构,外部引出阳极、阴极和门极。 (2)当GTO承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。 (3)GTO导通后,若门极施加反向驱动电流,则GTO关断,也即可以通过门极电流控制GTO导通和关断。 GTR(大功率晶体管)与普通晶体管相似B(基极)c、e 电力场效应晶体管MOSFET 绝缘栅双极晶体管IGBT (1)GTR和GTO是双极型电流驱动器件,其优点是通流能力强,耐压及耐电流等级高,但不足是开关速度低,所需驱动功率大,驱动电路复杂。 (1)IGBT是三端器件,具有栅极G、集电极C和发射极E。 (2)IGBT由MOSFET和GTR组合而成。 第2章整流电路 (1)整流电路定义:将交流电能变成直流电能供给直流用电设备的变流装置。 单相半波可控整流电路 (4)触发角 : 从晶闸管开始承受正向阳极电压起,到施加触发脉冲为止的电角度,称为触发角或控制角。 (7)几个定义 ①“半波”整流:改变触发时刻,d u和d i波形随之改变,直流输出电压d u为极性不变但瞬时值变化的脉动直流,其波形只在2u正半周内出现,因此称“半波”整流。 ②单相半波可控整流电路:如上半波整流,同时电路中采用了可控器件晶闸管,且交流输入为单相,因此为单相半波可控

电力系统复习资料

电力系统保护与控制复习题 单项选择题 1.正方向出口相间短路,存在动作“死区”的阻抗继电器是( ) A.全阻抗继电器 B.方向阻抗继电器 C.偏移特性阻抗继电器 D.上抛圆阻抗继电器 2.在中性点直接接地系统中,反应接地短路的阻抗继电器接线方式是( ) A .0°接线 B .90°接线 C .3 、30 D . A 、A +30零序补偿电流的接线方 式 3.由于过渡电阻的存在,一般情况下使阻抗继电器的( ) A.测量阻抗增大,保护范围减小 B.测量阻抗增大,保护范围增大 C.测量阻抗减小,保护范围减小 D.测量阻抗减小,保护范围增大 4.相高频保护用I1+KI2为操作电流,K=6 8,主要是考虑( )相位不受两侧电源相位的影响,有利于正确比相。 A 正序电流 B 零序电流 C 负序电流 D 相电流 5.高频保护基本原理是:将线路两端的电气量(电流方向或功率方向)转化为高频信号;以( )为载波传送通道实现高频信号的传送,完成对两端电气量的比较。 A.波通道 B.光纤通道 C.输电线路 D.导引线 6.距离Ⅲ段保护,采用方向阻抗继电器比采用全阻抗继电器( ) A.灵敏度高 B.灵敏度低 C.灵敏度一样 D.保护范围小 7.发电机横差保护的作用是( ) A.保护定子绕组匝间短路 B.保护定子绕组相间短路 C.保护定子绕组接地短路 D.保护转子绕组一点接地故障 8.电流速断保护定值不能保证( )时,则电流速断保护要误动作,需要加装方向元件。 A.速动性 B.选择性 C.灵敏性 D.可靠性 9.方向阻抗继电器的最大灵敏角是可以调节的。调节方法是改变电抗变换器DKB ( ) A.原边匝数 B.副边匝数 C.原边线圈中的电阻大小 D.副边线圈中的电阻大小 10.输电线路始端相电流故障分量的特征是B,C 两相幅值相同,相量之和为零,A 相幅值为零,则线路发生的故障是( ) A.AB 两相短路 B.A 相接地 C.BC 两相短路 D.BC 两相短路接地 答案: 1-5 BDACC 6-10 AABDC 填空题 1.对动作于跳闸的继电保护,在技术上一般应满足 、 、 、 四个基本要求。

相关主题
文本预览
相关文档 最新文档