当前位置:文档之家› 反馈放大电路分析方法总结

反馈放大电路分析方法总结

反馈放大电路分析方法总结
反馈放大电路分析方法总结

反馈电路分析方法总结反馈放大电路分析总结:

1:确定放大电路类型,即判断属于哪种放大电路:

电压并联,电压串联,电流并联,电流串联

其中判断是并联还是串联反馈很重要,比如有电路如下:

首先判断是电压还是电流反馈:将输出短路,显然在输入端将不会形成反馈信号,所一是电压反馈。此时若不判断是并联还是串联反馈将极有可能得出反馈回路的放大倍数为:

F=R1/(R1+R2)又因为该电路为深度负反馈,所以其总放大倍数为Af=1+R2/R1×

错误在于将该反馈看做串联反馈,实际上是并联反馈,因为A1的正向输入端接地了,使得负输入端也被钳位在零电位。所以是并联反馈,如果是电流反馈,则反馈函数就是:F=1/R2因此该电路的闭环电压放大倍数为:R2/R1。

同样可以这样理解反馈信号,输出电压在输入信号处引起的与输入信号同量纲的信号的大小注意:这里是求电压放大倍数,所以不等于1/F(互导放大倍数)

根据以上分析可以总结出:最好先判断是电流还是电压反馈,求出反馈函数,然后再判断是电压还是电流反馈可能更加合理

三极管放大电路及其分析方法

三极管电路放大电路及其分析方法 一、教学要求 1. 重点掌握的内容 (1)放大、静态与动态、直流通路与交流通路、静态工作点、负载线、放大倍数、输入电阻与输出电阻的概念; (2)用近似计算法估算共射放大电路的静态工作点; (3)用微变等效电路法分析计算共射电路、分压式工作点稳定电路的电压放大倍数A u和A us,输入电阻R i和输出电阻R0。 2. 一般掌握的内容 (1)放大电路的频率响应的一般概念; (2)图解法确定共射放大电路的静态工作点,定性分析波形失真,观察电路参数对静态工作点的影响,估算最大不失真输出的动态范围; (3)三种不同组态(共射、共集、共基)放大电路的特点; (4)多级放大电路三种耦合方式的特点,放大倍数的计算规律。 3. 一般了解的内容 (1)共射放大电路f L、f H与电路参数间的定性关系,波特图的一般知识<多级放大电路与共射放大电路频宽的定性分析; (2)用估算法估算场效应管放大电路静态工作点的方法。 二?内容提要 1. 共射接法的两个基本电路 共射放大电路和分压式工作点稳定电路是模拟电路中最基本的单元电路。学习这两种基本电路的分析方法是学习比较复杂的模拟电路的基础。 2. 两种基本分析方法——图解法和微变等效电路法 在“模拟电路”中,三极管是非线性元件,因此不能简单地采用“电路与磁路”课中线性电路地分析方法。图解法和微变等效电路法就是针对三极管非线性的特点而采用的分析方法。 3. 放大电路的三种组态——共射组态、共集组态和共基组态 由于放大电路输入、输出端取自三极管三个不同的电极,放大电路有三种组态——共射组态、共集组态和共基组态。由于组态的不同,其放大电路反映出的特性是不同的。在实际中,可根据要求选择相应组态的电路。 4. 两种放大元件组成的放大电路——双极型三极管放大电路和场效应管放大电路 一般来说,双极性三极管是一种电流控制元件,它通过基极电流i B的变化控制集电极电流I c的变化。而场效应管是一种电压控制元件,它通过改变栅源间的电压U GS来控制漏极电流i D的变化;其次,双极性三极管的输入电阻较小,而场效应管的输入电阻很高,静态时栅极几乎不取电流。由于它们性能和特点的不同,可根据要求选用不同元件组成的放大电路。 5. 多级放大电路的三种耪合方式一一阻容耦合、直接耦合和变压器耦合 将多级放大电辟连接起来的时候,就出现了级与级之间的耦合方式问题。通过电阻和电容将两级放大电路连接起来的方式称为阻容耦合。由于电容的作用,

经典运放电路分析(经典)

从虚断,虚短分析基本运放电路 运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了! 今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入

端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 1)反向放大器: 图1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,

基本放大电路及其分析方法

二、基本放大电路及其分析方法 一个放大器一般是由多个单级放大电路所组成,着重讨论双极型半导体三极管放大电路的三种组态,即共发射极,共集电极和共基极三种基本放大电路。从共发射极电路入手,推及其他二种电路,其中将图解分析法和微变等效电路分析法,作为分析基础来介绍。分析的步骤,首先是电路的静态工作点,然后分析其动态技术指标。对于放大器来说,主要的动态技术指标有电压放大倍数、输入阻抗和输出阻抗。 2.1.共射极基本放大电路的组成及放大作用 在实践中,放大器的用途是非常广泛的,它能够利用三极管的电流控制作用把微弱的电信号增强到所要求的数值,为了了解放大器的工作原理,先从最基本的放大电路学习: 图2.1称为共射极放大电路,要保证发射结正偏,集电极反偏Ib=(V BB-V BE)/Rb,对于硅管V BE约为0.7V左右,锗管约为0.2V左右,I B=(V BB-0.7)/Rb这个电路的偏流I B决定于V BB 和Rb的大小,V BB和Rb一经确定后,偏流I B就固定了,所以这种电路称为固定偏流电路,Rb又称为基极偏置电阻,电容Cb1和Cb2为隔直电容或耦合电容,在电路中的作用是“传送交流,隔离直流”,放大作用的实质是利用三极管的基极对集电极的控制作用来实现的. 上图是共射极放大电路的简化图,它在实际中用得比较多的一种电路组态,放大电路的主要性能指标,常用的有放大倍数、输入阻抗、输出阻抗、非线性失真、频率失真以及输出功率和效率等。对于不同的用途的电路,其指标各有侧重。 初步了解放大电路的组成及简单工作原理后,就可以对放大电路进行分析。主要方法有图解法和微变等效法。 2.2.图解分析法 2.2.1.静态工作情况分析 当放大电路没有输入信号时,电路中各处的电压,电流都是不变的直流,称为直流工作状态简称静态,在静态工作情况下,三极管各电极的直流电压和直流电流的数值,将在管子的特性曲线上确定一点,这点称为静态工作点,下面通过例题来说明怎样估算静态工作点。 解:Cb1与Cb2的隔直作用,对于静态下的直流通路,相当于开路,计算静态工作点时,只需考虑图中的Vcc、Rb、Rc及三极管所组成的直流通路就可以了,I B=(Vcc-0.7)/Rb (I C=βI B+I CEO ) I C=βI B,V CE=V CC-I C R C 如已知β,利用上式可近似估算放大电路的静态工作点。 2.2.2.用图解法确定静态工作点 在分析静态工作情况时,只需研究由V CC、R C、V BB、Rb及半导体三极管所组成的直

基本放大电路的分析方法

3.2 基本放大电路的分析方法 3.2.1 放大电路的静态分析 放大电路的静态分析有计算法和图解分析法两种。 (1)静态工作状态的计算分析法 根据直流通路可对放大电路的静态进行计算 (03.08) I C= I B (03.09) V CE=V CC-I C R c (03.10) I B、I C和V CE这些量代表的工作状态称为静态工作点,用Q表示。 在测试基本放大电路时,往往测量三个电极对地的电位V B、V E和V C即可确定三极管的工作状态。 (2)静态工作状态的图解分析法 放大电路静态工作状态的图解分析如图03.08所示。 图03.08 放大电路静态工作状态的图解分析 直流负载线的确定方法:

1. 由直流负载列出方程式V CE=V CC-I C R c 2. 在输出特性曲线X轴及Y轴上确定两个特殊点 V CC和V CC/R c,即可画出直流负载线。 3. 在输入回路列方程式V BE =V CC-I B R b 4. 在输入特性曲线上,作出输入负载线,两线的交点即是Q。 5. 得到Q点的参数I BQ、I CQ和V CEQ。 例3.1:测量三极管三个电极对地电位如图03.09所示,试判断三极管的工作状态。 图03.09 三极管工作状态判断 例3.2:用数字电压表测得V B=4.5V 、V E=3.8V 、V C=8V,试判断三极管的工作状态。 电路如图03.10所示 图03.10 例3.2电路图 3.2.2 放大电路的动态图解分析 (1) 交流负载线 交流负载线确定方法:

1.通过输出特性曲线上的Q点做一条直线,其斜率为1/R L'。 2.R L'= R L∥R c,是交流负载电阻。 3.交流负载线是有交流输入信号时,工作点Q的运动轨迹。 4.交流负载线与直流负载线相交,通过Q点。 图03.11 放大电路的动态工作状态的图解分析 (2) 交流工作状态的图解分析 动画 图03.12 放大电路的动态图解分析(动画3-1)通过图03.12所示动态图解分析,可得出如下结论: 1. v i→↑ v BE→↑ i B→↑ i C→↑ v CE→↓ |-v o|↑; 2. v o与v i相位相反; 3.可以测量出放大电路的电压放大倍数; 4.可以确定最大不失真输出幅度。 (3) 最大不失真输出幅度 ①波形的失真

十一种经典运放电路分析

十一种经典运放电路分析 从虚断,虚短分析基本运放电路 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

1)反向放大器: 传输文件进行[薄膜开关] 打样 图1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。 流过R1的电流:I1 = (Vi - V-)/R1 ………a 流过R2的电流:I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ………………c I1 = I2 ……………………d

第六章 集成运放组成的运算电路典型例题

第六章集成运放组成的运算电路 运算电路 例6-1例6-2例6-3例6-4例6-5例6-6例6-7例6-8例6-9 例6-10例6-11 乘法器电路 例6-12例6-13例6-14 非理想运放电路分析 例6-15 ; 【例6-1】试用你所学过的基本电路将一个正弦波电压转换成二倍频的三角波电压。要求用方框图说明转换思路,并在各方框内分别写出电路的名称。 【相关知识】 波形变换,各种运算电路。 【解题思路】 利用集成运放所组成的各种基本电路可以实现多种波形变换;例如,利用积分运算电路可将方波变为三角波,利用微分运算电路可将三角波变为方波,利用乘方运算电路可将正弦波实现二倍频,利用电压比较器可将正弦波变为方波。 【解题过程】 先通过乘方运算电路实现正弦波的二倍频,再经过零比较器变为方波,最后经积分运算电路变为三角波,方框图如图(a)所示。

【其它解题方法】 先通过零比较器将正弦波变为方波,再经积分运算电路变为三角波,最后经绝对值运算电路(精密整流电路)实现二倍频,方框图如图(b)所示。 实际上,还可以有其它方案,如比较器采用滞回比较器等。 【例6-2】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 & 图(a) 图(b) 【相关知识】 反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。

(2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压 当时,稳压管导通,电路的输出电压被限制在,即。根据以上分析,可画出的波形如图(c)所示。 图(c) 。 (2)由以上的分析可知,当输入信号较小时,电路能线性放大;当输入信号较大时稳压管起限幅的作用。 【例6-3】在图(a)示电路中,已知, ,,设A为理想运算放大器,其输出电压最大值为,试分别求出当电位器的滑动端移到最上端、中间位置和最下端时的输出电压的值。

放大电路中的负反馈解读

第四章放大电路中的负反馈习题 4.1 判断图4-24所示各电路中有无反馈?是直流反馈还是交流反馈?哪些构成了级间反馈?哪些构成了本级反馈? 4.1解答: (a)R e1:本级直流反馈 R e2:本级交直流反馈 R f,C f:级间交流反馈(因为直流 信号被C f隔直) (b)Re:本级直流反馈 R b:本级直流反馈(因为交流信号被C2 短路到地) (c)R R e2 :本级交直流反馈 R e3:本级直流反馈(因为交流被C3短路) R f:级间交直流反馈 (d)R1,R2,R3为级间交直流反馈 R3:本级交直流反馈

4-1解答续: (e)R2,R4:本级交直流反馈 R L,R6:为级间交直流反馈 (f)R e :本级直流反馈(∵交流信号被C e短路)R1, R2 :本级直流反馈(∵交流信号被C短路到地) (g)R1, R2 :级间交直流反馈 (h)(i) R e2 :本级直流反馈 R e1, R e3 :级间交流反馈 (ii)R f1, R b :级间交直流反馈 R f2, R e1 :级间交直流反馈

4.2指出图4-24所示各电路中反馈的类型和极性,并在图中标出瞬时极性以及反馈电压或反馈电流。 (a)解答:R f,C f引入电压并联交流负反馈 瞬间极性如图示:∵I b↓=I i-I f↑故为负反馈 (b)解答,R b引入电压并联直流负反馈,瞬时极性如图示 ∵I b↓=I i-I f↑故为负反馈 (C)解答:R f, R e1 :引入电压串联交流正反馈(∵直流被C2隔直),瞬时极性如图示:U be=U i+U f, U f与U i极性相同,故为正反馈 (d)解答:R1,R2引入电压串联交直流正反馈,瞬时极性如图示: U ' i=U i+U f, U f与U i极性相同,故为正反馈 (e)解答:R L,R6 引入电流串联交直流负反馈,(即ΔU i=(U+-U i)↓)(即同相端与反相端电位差下降,∴为负反馈) (f)解答:R1,R e 引电容并联直流负反馈(交流被C短路到地)瞬时极性为图示(因I b↓=I i-I f ↑)I f上升,I b下降 (g)解答:R1,R2引入电压并联交直流负反馈 瞬时极性如图示:∵I b↓=I i-I f↑ (h)(i)解答:R b , R f1引入电压并联交直流负反馈 瞬时极性为图示∵I b↓=I i-I f↑故为负反馈 (ii)解答:R f2, R e1引入电流串联交直流负反馈 瞬时极性为图示∵U be↓=U i-U f2↑= U i-U e1↑(U e1上升,U be下降) ∴为负反馈

运放电路分析方法总结

运放电路分析方法总结 学生: [38]陈再 指导教师:陈永强 摘要:运放电路的分析是一个非常重要的知识点,这里主要是论述用“虚短”、“虚断”来对运放电路进行详细的分析,也会通过几种典型电路分析,来讲述运放电路的分析方法。 关键词:运放电路;虚短;虚断;分析;方法 1 引言 随着我们学知识的深入,会发现运放中所学的知识应用越来越多,在这门学科中所占比例比较大,而在许多结构复杂的电路中,对它们进行分析,用运放知识 快速、简洁的找出输入输出的关系式非常重要的。(这里主要是分析线性运放电路) 2 理想运放的特点 图 1 输入输出的关系:()o v id v v A v A v v +-=?=?- 3 虚短 、虚断的概念 虚短:因为理想运放开环增益:Av →∞→虚短,根据输入输出关系,得到: v ≈v (同相端和反相端电位近似相等)。 虚断:由于同相和反相两输入端之间出现虚短现象,而输入电阻:Ri →∞→虚断,i =i ≈0 (同相端和反相端电流近似为零)。 输出电阻:Ro →0 4 线性应用分析 4.1 反相比例电路

图 2 * v v + -≈=0(虚短) * 12i i =(虚断) 根据这个基本特点,电阻上流过的 111 i i v v v i R R --= = ; 222o o v v v i R R --= =- 电流等于电压除以电阻值。 得到 2 1 o i R v v R =- ? ( 3 R 不起作用) 同理得到: 2 1x i R v v R =- ? 图 3 4.2 同相比例电路 图 4 同相与反相比例电路要注意放大器输 v v -+≈ 12i i = → 111 2220o o v v i R R v v v v i R R -+ -+ -= =--= = 入端的接地极性(+ 和 -) 得到:2 1 (1)o R v v R +=+ ? 要灵活运用式子的转换

放大电路中的负反馈

放大电路中的负反馈 放大电路是主要的电子电路类型,为了确保放大电路能够正常工作,提供稳定的增益、良好的线性,以及其他的一些特殊目的,一般实用的放大电路都加上了负反馈的网络。 在各种系统的控制分析中,电路中的负反馈研究应该是最为深入和细致的了,详细的内容请参阅“电子技术”或“电路分析”专业教科书,本文仅仅是想通过对放大电路中反馈的简单介绍,阐述系统中反馈控制的基本原理。 1、为什么要在电路中设置反馈 半导体技术发展到今天,为电子电路的设计提供了极大的施展空间。现在要设计或制作一个高性能的放大器,在如何提高放大倍数方面已经不是问题,最普通的集成电路运算放大器(LM324,其内部包含了4个相同的独立放大器,价格在1元左右,如下图),其开环电压放大倍数也可以做到几十万倍(80dB~140dB)之高,对于一般的要求来说,这几乎就是无限大的放大倍数了。 然而,在多数的应用中,都要求电路的放大倍数是一个固定不变的有限值。所谓固定不变是指:当工作环境的温度变化;电路输入、输出连接状态发生改变;器件因常时间工作性能老化;因故障更换了主要半导体器件之后,等等的内在的和外部的干扰因素下,放大器的放大倍数都维持在设定值不会变化。这个稳定增益(放大倍数)的要求,其实才是现代电子电路设计的难点,而在电路中使用负反馈技术,是解决这个难题的主要方法。 此外,电路中的负反馈还能解决以下问题: 提高输入阻抗,降低输出阻抗(提高负载能力),优化频率响应,稳定静态工作点,减少线性失真等等,本文不做叙述。 2、电路中最主要的两种负反馈应用示例 ①反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 ②同相交流放大器 电路见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。以上两种基本的反馈放大器,共同点是都具有反馈,而且从输出端取出的反馈信号经过反馈网络后,都加到了运算放大器的负输入端,反馈信号的作用是抵消了输入信号,因此称为负反馈;另一个共同点是,经过分析计算发现,两种放大电路由于反馈网络的加入,使得放大器的放大倍数(增益)的大小,只由反馈网络的电阻参数值决定(Av=-Rf/Ri;Av=1+Rf/R4),只要这几个电阻的阻值是稳定的放大倍数就不会变化,而要确保电阻的阻值始终稳定在规定的范围内,是比较容易做到的。 3、电路中反馈的基本模型概括 4、电路中反馈的类型及其作用: 直流反馈:反馈只对直流分量起作用,反馈元件只能传递直流信号;目的:稳定静态工作点。

三极管负反馈电路分析

难点电路详解之——负反馈放大器电路(一) 2008-04-14 17:56:17 来源:古木电子社区 (摘自电子工程师识图速成手册) (1)正反馈和负反馈概念 (2)全面了解负反馈电路的种类 (3)负反馈电路的分析方法 (4)电压并联负反馈放大器 (5)电流串联负反馈放大器 (6)电压串联负反馈放大器 (7)电流并联负反馈放大器 (8)变形负反馈电路的特点和分析方法 (9)LC并联谐振电路参与的负反馈电路 (10)LC串联谐振电路参与的负反馈电路 (11)RC负反馈式电路 (12)可控制负反馈量的负反馈电路 (13)负反馈放大器分析小结 4.1 负反馈放大器 在放大器中采用负反馈电路,其目的是为了改善放大器的工作性能,提高放大器的输出信号质量。在引入负反馈电路之后,放大器的增益要比没有负反馈时的增益小,但是可以改善放大器的许多性能,主要有四项:减小放大器的非线性失真、扩宽放大器的频带、降低放大器的噪声和稳定放大器的工作状态。 4.1.1 正反馈和负反馈概念 放大器的信号传输都是从放大器的输入端传输到放大器输出端,但是反馈过程则不同,它是从放大器输出端取出一部分输出信号作为反馈信号,再加到放大器的输入端,与原放大器输入信号进行混合,这一过程称为反馈。 1.反馈方框图 如图4-1所示是反馈方框图。从图中可以看出,输入信号Ui从输入端加到放大器中进行放大,放大后的输出信号Uo其中的一部分加到下一级放大器中,另有一部分信号经过反馈电路作为反馈信号UF,与输入信号Ui合并,作为净输入信号VI加到放大器中。 图4-1 反馈方框图

2.反馈种类 反馈电路有两种:正反馈电路和负反馈电路。这两种反馈的结果(指对输出信号的影响)完全相反。 3.正反馈概念 正反馈可以举一个例子来说明,吃某种食品,由于它很可可,所以在吃了之后更想吃,这是正反过程。 如图4-2所示正反馈方框图,当反馈信号UF与输入信号Ui是同相位时,?这两个信号混合后是相加的关系,所以净输入放大器的信号UI?比输入信号Ui更大,而放大器的放大倍数没有变化,这样放大器的输出信号Uo比不加入反馈电路时的大,这种反馈称为正反馈。 图4-2 正反馈方框图 在加入正反馈之后的放大器,输出信号愈反馈愈大(当然不会无限制地增大,这一点在后面的振荡器电路中介绍),这是正反馈的特点。正反馈电路在放大器电路中通常不用,它只是用于振荡器中。 4.负反馈概念 负反馈也可以举一例说明,一盆开水,当手指不小心接触到热水时,手指很快缩回,而不是继续向里面伸,手指的回缩过程就是负反馈过程。 如图4-3所示是负反馈方框图,当反馈信号UF相位和输入信号Ui的相位相反时,它们混合的结果是相减,结果净输入放大器的信号UI比输入信号Ui要小,?使放大器的输出信号Uo减小,引起放大器电路这种反馈过程的电路称为负反馈电路。 图4-3 负反馈方框图 5.反馈量 负反馈的结果使净输入放大器的信号变小,放大器的输出信号减小,这等效成放大器的

放大电路的基本原理和分析方法

https://www.doczj.com/doc/8d7304398.html,/kejian/lg/jsj/13mndzdl/My%20Web%20Sites/dyzfd2.htm 第一章放大电路的基本原理和分析方法(二) 五、单管放大电路的三种基本组态 放大电路有三种基本组态,或称三种接法—共射组态、共集组态和共基组态。三种组态电路的性能比较见教材65 页表 1 一 1 。 【例9 】共集电极电路如图1 6 ( a ) 所示。已知三极管β=100 , r bb′= 300Ω, U BEQ = 0 . 7V , R b= 430kΩ, R s = 20kΩ, Vcc = 12V , R e = 7 . 5kΩ, R L= 1 . 5kΩ。 图十六 ( 1 ) 画出电路的微变等效电路; ( 2 ) 求电路的电压放大倍数A u和A us:; ( 3 ) 求电路的输入电阻Ri 和输出电阻R0 。 解:( 1 ) 电路的微变等效电路见图16 ( b )。 【说明】本题练习共集电极电路动态参数的计葬方法。 【例10 】在图17 ( a ) 所示的放大电路中,已知三极管的β= 50 , U BEQ = 0 . 6V , r bb ' = 300Ω,电路其它参数如图中所示。

图十七 ( 1 ) 画出电路的直流通路和微变等效电路; ( 2 ) 若要求静态时发射极电流I EQ = 2mA ,则发射极电阻R e应选多大?( 3 ) 在所选的R e之下,估算I BQ和Uc EQ值; ( 4 ) 估算电路的电压放大倍数A u、输入电阻R i和输出电阻R0。 解:( 1 ) 画出电路的直流通路和微变等效电路,见图1 7( b )和( c )所示。( 2 ) 根据图( b )的直流通路,可列出

集成运放电路的应用分析

摘要集成运算放大电路简称集成运放电路,其属直接耦合的多级放大电路的一种。它通过对半导体集成工艺的运用来实现电路与电路系统以及元件三结合。因其使用的集成工艺可使相邻元器件间的参数保持较高的一致性,且其采用多晶体管复杂电路,使得性能极为优越。集成运算电路型号较为复杂,但所有型号中,通用型集成运放应用最为广泛。其内部电路可大致分为差分输入级、中间级与互补输出级,且各级之间均带有不同的电流源电路。本文主要对集成运放电路的特点、分析及应用进行了初步分析,为集成运放电路的更为广泛的应用提供参考。 【关键词】集成运放电路线性应用非线性应用 运算放大器又称运放,其英文缩写为op amp,其最初应用于模拟计算机对模拟信号进行加减法、微积分等数学运算,并因此得名。自其1963年问世已经历了整整三代的升级,其第四代产品,即集成运放通过对中、大规模集成技术加以利用,将之前极为复杂的分立元件电路部件集成在一片极小的芯片上。第四代产品设计调试更为简便,且性能更为稳定可靠,通用性极强,性价比较之于前三代也更高,且灵活性更大。继承运放是包含两个输入端、高输入阻抗和一个输出端的高增益的电压放大器。我们在它的输入端与输出端之间加上一个反馈网络,则可成功实现各种电路功能。在当前的模拟电路中,除去大功率及高频等较特殊的场合外,集成运放电路已基本取代分立元件电路。运算放大器可顺利实现放大其、比较器、缓冲器、电平转换器、积分器、有源滤波器以及峰值检波器等多种电路功能,并且其应用范围已由最初的计算机延伸至电子、汽车、通信以及消费娱乐等诸多产品和各个领域。目前,基本上各个大型半导体制造商所制造的产品线中均应用了运算放大器。而且随着集成技术的不断发展,其应用也从最初的信号运算延伸至对信号的处理、产生及变换等。集成运放的应用可大致分为线性与非线性应用两大类型,对于电子技术人员来说,对运放电路进行正确判断极为重要,因而对其进行准确的分析则显得十分重要。 1 集成运放应用及其判断方法 集成运放因其较强的通用性,目前已广泛应用于对信号进行处理、运算以及测量等诸多方面。集成运放电路具有多种不同型号,且不同型号之间其相应的内部线路也不相同,但各型号间电路总体机构极为相似,均是由输入级、输出级、中间放大级与偏置电路这四部分所构成,集成运放应用已发展为目前模拟电子技术中极为重要的一项内容,因而其相关应用也引起人们日渐重视。根据其相关属性可将集成运放电路分为线性与非线性应用两大类型,对某一运放电路及时作出准确判断极为重要。集成运放电路不同功能的实现必须通过对其的分析中得出,而通常情况下我们对电路类型的分析则是根据该电路工作的不同区域特点加以判断。若对电路运放所属应用类型无法准确判断,则难以利用其相应的应用特点来对其电路功能进行确定。 集成运放电路其内部的多级放大电路可将其分为输入级、中间级、输出级与偏置电路四大基本部分(见图1)。 1.1 集成运放线性应用电路 1.1.1 判断方法 集成运放电路线性应用最为重要的特征为其电路中存在负反馈,即是说在其相应的单元运放输出端与其反相输入端间跨接负反馈网络,只要该电路中存在负反馈网络,该集成运放则属于线性应用,该应用工作区域在线性区域。 1.1.2 理想集成运放线性区的特点 一旦集成运放电路与深度电压负反馈进行外接后,该电路集成运算放大器即可处于理想的线性工作范围内,而此时该电路输出的电压vo及输入电压va两者间运算关系则取决于输入端阻抗与外接负反馈网络间的连接方式,而与该运放本身完全无关。如此我们则可充分利

负反馈放大电路分析

新疆大学 课程设计报告 所属院系:电气工程学院 专业:自动化 课程名称:电子技术基础A 设计题目:负反馈放大电路的设计 班级:自动化10-1 学生姓名:孙奥 学生学号:20102102004 指导老师: 程静、刘兵 完成日期:2012.7.7

负反馈放大电路的设计 一、 课程设计的目的 (1)初步了解和掌握负反馈放大器的设计、调试的过程。 (2)能进一步巩固课堂上学到的理论知识。 (3)了解负反馈放大器的工作原理。 (4)了解并掌握负反馈放大电路各项性能指标的测试方法。 (5)加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、 设计方案论证 2.1框图及基本公式 图1 负反馈放大电路原理框图 图中X 表示电压或电流信号;箭头表示信号传输的方向;符号¤表示输入求和,+、–表示输入信号 与反馈信号是相减关系(负反馈),即放大电路的净输入信号为: id i f X X X =- 基本放大电路的增益(开环增益)为: /o id A X X = 反馈系数为: /f o F X X = 负反馈放大电路的增益(闭环增益)为: /f o i A X X = 2.2负反馈对放大器各项性能指标的影响 负反馈的电路形式很多,但就基本形式来说,可以分为4种:即电流串联负反馈;电压串联负反馈 ;电流并联负反馈;电压并联负反馈。一个放大器,加入了负反馈环节后,虽

图2 第一级放大电路 三极管工作在放大区时满足的条件为:BE U >on U 且CE BE U U ≥ 在电路的直流通路中,节点B 的电流方程为 1R I =2R I +BQ I 为了稳定静态工作点,通常是参数的选取满足 2R BQ I I R BQ I I 因此,12R R I I ≈,B 点电位为212 BQ CC R U V R R ≈+ 12BQ CC R U V R R ≈+ 表明基极电位几乎仅决定于21R R 与对CC V 的分压,而与环境温度无关。 为了提高输入电阻而又不致使放大电路倍数太低,应取IE1=1mA ,并选1β=80,则 be1r =bb'r +(1+1β)T E1 U I =300+(1+80)261 =2.256k ? 利用同样的原则,可得 ()()11119 //1c L o u i be R R U A U r R ββ-==++ 为了获得高输入电阻,且取Au1=50,取R5=1.8k ?,代入Au1=50,求出R3=5.1K ?。 为了计算R4,EQ U =1V ,再利用IE1(R5+R4)=EQ U 得出R4=123?,选R4为100?。

基本运放电路总结

模拟电路网络课件第三十七节:基本运算电路 8.1 基本运算电路 一、反相比例运算放大电路 图 1 反相比例运算电路 反相输入放大电路如图1所示,信号电压通过电阻R1加至运放的反相输入端,输出电压vo通过反馈电阻Rf反馈到运放的反相输入端,构成电压并联负反馈放大电路。R ¢为平衡电阻应满足R ¢= R1//Rf。 利用虚短和虚断的概念进行分析,vI=0,vN=0,iI=0,则 即 ∴ 该电路实现反相比例运算。 反相放大电路有如下特点 1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要 求。 2.vN= vP,而vP=0,反相端N没有真正接地,故称虚地点。 3.电路在深度负反馈条件下,电路的输入电阻为R1,输出电阻近似为零。 二、同相比例运算电路

图 1 同相比例运算电路 同相输入放大电路如图1所示,信号电压通过电阻RS加到运放的同相输入端,输出电压vo通过电阻R1和Rf反馈到运放的反相输入端,构成电压串联负反馈放大电路。 根据虚短、虚断的概念有vN= vP= vS,i1= if 于是求得 所以该电路实现同相比例运算。 同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。 2.由于vN= vP= vS,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑 制比。 三、加法运算电路 图 1 加法运算电路

图1所示为实现两个输入电压vS1、vS2的反相加法电路,该电路属于多输入的电压并联负反馈电路。由于电路存在虚短,运放的净输入电压vI=0,反相端为虚地。利用vI=0,vN=0和反相端输入电流iI=0的 概念,则有 或 由此得出 若R1= R2= Rf,则上式变为–vO= vS1+ vS2 式中负号为反相输入所致,若再接一级反相电路,可消去负号,实现符合常规的算术加法。该加 法电路可以推广到对多个信号求和。 从运放两端直流电阻平衡的要求出发,应取R′=R1//R2//Rf。 四、减法运算电路 1、反相求和式运算电路 图1所示是用加法电路构成的减法电路,第一级为反相比例放大电路,若Rf1=R1,则vO1= –vS1; 第二级为反相加法电路,可以推导出

放大电路中的反馈习题及解答

放大电路中的反馈 习题 6.1选择合适的答案填入空内。 (1)对于放大电路,所谓开环是指。 A.无信号源B.无反馈通路 C.无电源D.无负载 而所谓闭环是指。 A.考虑信号源内阻B.存在反馈通路 C.接入电源D.接入负载 (2)在输入量不变的情况下,若引入反馈后,则说明引入的反馈是负反馈。 A.输入电阻增大B.输出量增大 C.净输入量增大D.净输入量减小 (3)直流负反馈是指。 A.直接耦合放大电路中所引入的负反馈 B.只有放大直流信号时才有的负反馈 C.在直流通路中的负反馈 (4)交流负反馈是指。 A.阻容耦合放大电路中所引入的负反馈 B.只有放大交流信号时才有的负反馈 C.在交流通路中的负反馈 (5)为了实现下列目的,应引入 A.直流负反馈B.交流负反馈 ①为了稳定静态工作点,应引入; ②为了稳定放大倍数,应引入; ③为了改变输入电阻和输出电阻,应引入; ④为了抑制温漂,应引入; ⑤为了展宽频带,应引入。 解:(1)B B (2)D (3)C (4)C (5)A B B A B

6.2 选择合适答案填入空内。 A.电压B.电流C.串联D.并联 (1)为了稳定放大电路的输出电压,应引入负反馈; (2)为了稳定放大电路的输出电流,应引入负反馈; (3)为了增大放大电路的输入电阻,应引入负反馈; (4)为了减小放大电路的输入电阻,应引入负反馈; (5)为了增大放大电路的输出电阻,应引入负反馈; (6)为了减小放大电路的输出电阻,应引入负反馈。 解:(1)A (2)B (3)C (4)D (5)B (6)A 6.3判断下列说法的正误,在括号内填入“√”或“×”来表明判断结果。 (1)只要在放大电路中引入反馈,就一定能使其性能得到改善。()(2)放大电路的级数越多,引入的负反馈越强,电路的放大倍数也就越稳定。() (3)反馈量仅仅决定于输出量。() (4)既然电流负反馈稳定输出电流,那么必然稳定输出电压。() 解:(1)×(2)×(3)√(4)×

放大电路及其分析方法

放大电路及其分析方法 2.1 放大电路的基本概念 三极管具有电流放大作用,如何使用三极管构成一个电路,实现对输入信号的放大?本节就来讨论这一问题。 基本放大电路是放大电路中最基本的结构,是构成复杂放大电路的基本单元。它利用双极型半导体三极管输入电流控制输出电流的特性,或场效应半导体三极管输入电压控制输出电流的特性,实现信号的放大。本章基本放大电路的知识是进一步学习电子技术的重要基础。本书中双极型半导体三极管简称三极管,场效应半导体三极管简称场效应管。 2.1.1 放大的概念 基本放大电路一般是指由一个三极管或场效应管组成的放大电路。从电路的角度来看,可以将基本放大电路看成一个双端口网络。放大的作用体现在如下方面: 1.放大电路主要利用三极管或场效应管的控制作用放大微弱信号,输出信号在电压或电流的幅度上得到了放大,输出信号的能量得到了加强。 2.输出信号的能量实际上是由直流电源提供的,只是经过三极管的控制,使之转换成信号能量,提供给负载。放大电路的结构示意图见图2-1-1。 图2-1-1 放大电路结构示意图 2.1.2 基本放大电路的组成及工作原理 一、共射组态基本放大电路的组成 共射组态基本放大电路如图2-1-2所示。在该电路中,输入信号加在加在基极和发射极之间,耦合电容器C1和Ce视为对交流信号短路。输出信号从集电极对地取出,经耦合电容器C2隔除直流量,仅将交流信号加到负载电阻RL之上。放大电路的共射组态实际上是指放大电路中的三极管是共射组态。 图2-1-2 共射组态交流基本放大电路 二、放大原理 在输入信号为零时,直流电源通过各偏置电阻为三极管提供直流的基极电流和直流集电极电流,并在三极管的三个极间形成一定的直流电压。由于耦合电容的隔直流作用,直流电压无法到达放大电路的输入端和输出端。

放大电路中的反馈参考答案

2016第六章放大电路中的反馈答案 科目:模拟电子技术 题型:填空题 章节:第六章放大电路中的反馈 难度:全部 ----------------------------------------------------------------------- 1.要想实现稳定静态电流I C,在放大电路中应引入直流负反馈。 2.要稳定输出电流,放大电路中应引入电流负反馈。 3.要提高带负载能力,放大电路中应引入电压负反馈。 4.减小放大电路向信号源索取的电流应引入串联负反馈。 5.负反馈放大器闭环电压放大倍数A uf=100,当它的开环放大倍数变化10%时,闭环放大倍数变化1%,则它的开环放大倍数A u=1000。 6.负反馈可使放大器增加放大倍数的稳定,减少非线性失真,抑制噪声,改变输入输出阻抗等。 7.一个电压串联负反馈放大器的闭环增益A uf=100,要求开环增益A u变化10%时,闭环增益变化为0.5%,那么开环增益 A u=2000。 8.一个电压串联负反馈放大器的闭环增益A uf=100,要求开环增益A u变化10%时,闭环增益变化为0.5%,那么反馈系数 F u=0.095。 9.在反馈电路中,按反馈网络与输出回路的连接方式不同分为电压反馈和电流反馈。 10.在反馈电路中,按反馈网络与输入回路的连接方式不同,分为串联反馈和并联反馈。 11.放大器中引入电压负反馈,可以稳定电压放大倍数并减小输出电阻。 12.某放大电路在输入信号电压为1mV时,输出电压为1V。当加上负反馈后若达到同样的输出电压时,需使输入信号电压为10mV,由此可知所加的反馈深度为20dB。 13.某放大电路在输入信号电压为1mV时,输出电压为1V。当加上负反馈后若达到同样的输出电压时,需使输入信号电压为10mV,由此可知反馈系数为0.009。 14.射极输出器的主要特点是高阻输入、低阻输出和电压跟随。 15.射极输出器的主要特点是高阻输入、低阻输出和电压跟随。 16.射极输出器的主要特点是高阻输入、低阻输出和电压跟随。 17.在放大器中,为了稳定输出电流,降低输入电阻,应引入电流并联负反馈。

运放中恒流源电路分析方法

运放电路中的恒流源电路分析方法 普通镜像恒流源、多集电极恒流源、高精度镜像恒流源、高内阻恒流源和镜像微恒流源电路,以及恒流源电路输出电阻的计算等。 分析恒流源电路的方法是: (1)确定恒流源电路中的基准晶体管或场效应管; (2)计算或确定基准电流; &nbbsp; (4)绘制恒流部分的交流通路,确定恒流源的内阻。 由于恒流源的内阻较大,计算恒流源内阻时不能忽略三极管集电极与发射极之间,或场效应管漏极与源极之间的动态电阻。 1、基本镜像恒流源分析 已知基本镜像恒流源电路如图1所示,试计算输出电流的大小和恒流源内阻。 图1 晶体管是基准管,且,工作在放大状态。 当与特性参数完全一致时,由可推得 由基准输入回路得, 所以, 当时,。 恒流输出管的交流通路如图1(b)所示,将晶体管用微变等效模型替代后的电路模型 如图1(c),显然,恒流源的内阻。 必须注意,应用管的恒流特性时,必须满足,保证始终工作在放大状态。 基本镜像恒流源电路的扩展电路有两种,如图2所示。

图2 图2(b)的管采用多集电极晶体管(图2(a)已将其分散画),以基准管的集电极面积为基准,可得到一组与集电极面积成正比的多个恒流源。 图2(c)中增加管可以进一步减少恒流输出与基准电流之间的近似程度,此时, 所以, 当时,基本镜像恒流值,增加管后,更接近。 2.高内阻(Wilson)恒流源 图3是Wilson恒流源电路,试计算恒流输出值。 图3 管是基准管,,工作在放大状态。 当、、均工作在放大状态时,各电流之间关系为:

整理后可得: 按二极管形式连接的管是管发射极的等效电阻,Wilson恒流源的内阻要大于。 3.微恒流源(Widlar)电路 图4是Widlar微恒流源电路,试计算输出恒流值。 图4 晶体管是基准管,且,工作在放大状态,。 管发射极电流与发射极电压之间的关系为: 所以, (1) 同理,当工作在放大状态时, (2) 由基极回路方程得: (3)

教案__放大电路的基本分析方法

放大电路的基本分析方法(20分钟) 一、参考教材 第二章2.1.4 放大电路的基本分析方法 《模拟电子技术简明教程》张国平、曾高荣主编,电子工业出版社出版 二、教学内容 1.放大电路的直流通路和交流通路 2.估算法确定静态工作点 3.图解法确定静态工作点 三、教学目的 1.掌握放大电路的直流通路与交流通路的画法; 2.掌握估算法确定静态工作点 3.掌握图解法确定静态工作点 四、教学重点、难点 1.放大电路的直流通路与交流通路的画法 2.估算法和图解法确定静态工作点 3.分析静态工作点的意义 五、教学方法 采用课堂讲授加PPT展示的方法,通过例题讲解加深学生对教学内容的理解。 六、教学过程设计 1.旧课复习(3分钟),回顾上一节的知识点,如组成放大电路的基本原则、特 点、主要性能指标等。 2.新课内容(17分钟) 1)首先引入静态和动态两个概念,使学生理解放大电路的分析实际上为直流 通路和交流通路分析的叠加;并且在分析中要采用先静态后动态的分析顺序; 引出静态工作点的概念。 2)放大电路的直流通路和交流通路:详细介绍直流通路和交流通路的画法, 并通过实例分析来加深印象。可以让学生自己进行随堂练习以确保对这一知识 点的领会和掌握。在进行实例分析时,简单介绍放大电路的基本分类(共射、共基、共集)。 3) 通过电路实例分析,介绍如何通过估算法获得静态工作点。 4)图解法是放大电路常用的分析方法之一,简单介绍图解法与微变等效电路 分析法的区别,及适用范围。通过分步解析的方式,详细介绍图解法确定静态 工作点。 七、作业 复习题二(5);三(3);习题2.3, 2.4 八、教学后记

相关主题
文本预览
相关文档 最新文档