当前位置:文档之家› 新型传感器原理报告-红外成像

新型传感器原理报告-红外成像

新型传感器原理报告

题目红外成像

摘要

本文介绍了红外成像技术的由来,并结合几种不同的红外探测器件,仔细分析了红外成像的基本原理;探讨了红外成像技术的国内外发展情况、当今现状和未来发展趋势;论述了红外成像技术在各领域的重要应用。

关键词:红外成像;红外探测;发展现状;技术应用

目录

摘要 ........................................................................................................................ I 第1章引言 (1)

第2章红外成像原理 ..................................................................................... - 2 -

2.1 红外变像管成像 ................................................................................ - 2 -

2.2 红外摄像管 ........................................................................................ - 3 -

2.3 集成红外电荷耦合器件 .................................................................... - 3 -

2.4 红外成像仪 ........................................................................................ - 4 -第3章国内外红外成像技术的发展及现状 ................................................. - 6 -

3.1 国外红外成像技术发展的进展及现状 ............................................ - 6 -

3.1.1 初级阶段(20世纪40年代至80年代初,约30年).............. - 6 -

3.1.2 中级阶段前半期(20世纪80年代至21世纪初,约20年).. - 7 -

3.1.3国际上红外成像技术的发展现状............................................. - 7 -

3.2 国内红外成像技术的进展 ................................................................ - 8 -

3.3 红外探测技术的发展趋势 ................................................................ - 9 -第4章红外成像技术应用 ........................................................................... - 11 -

4.1 红外成像技术在军事上的应用 ...................................................... - 11 -

4.2 红外成像技术在工业上的应用 ...................................................... - 11 -

4.2.1 钢铁工业中的应用................................................................... - 11 -

4.2.2 在电力工业中的应用............................................................... - 12 -

4.2.3 在石化工业中的应用............................................................... - 12 -

4.3 红外成像技术在医学上的应用 ...................................................... - 12 -

4.4 红外成像技术在监控、公安、消防中的应用 .............................. - 13 -

4.4.1 夜间以及恶劣气候条件下目标的监控................................... - 13 -

4.4.2 对伪装及隐蔽的目标进行智能视频监控与识别................... - 13 -

4.4.3 消防安全的智能监测............................................................... - 13 -结论 ................................................................................................................. - 15 -参考文献 ......................................................................................................... - 16 -

第1章引言

第1章引言

1800年,英国物理学家赫歇尔研究单色光的温度时发现:位于红光外,用来对比的温度计的温度要比色光中温度计的温度高,于是称发现一种看不见的“热线”,称为红外线。

红外线位于电磁波谱中的可见光谱段的红端以外,介于可见光与微波之间,波长为0.76~1000μm,不能引起人眼的视觉。在实际应用中,常将其分为三个波段:近红外线,波长范围为0.76~1.5μm;中红外线,波长范围为1.5~5.6μm;远红外线,波长范围为5.6~1000μm。它们产生的机理不太一致。我们知道温度高于绝对零度的物体的分子都在不停地做无规则热运动,并产生热辐射,故自然界中的物体都能辐射出不同频率的红外线,如相机、红外线胶片自身等。在常温下,物体辐射出的红外线位于中、远红外线的光谱区,易引起物体分子的共振,有显著的热效应。因此,又称中、远红外线为热红外。当物体温度升高到使原子的外层电子发生跃迁时,将会辐射出近红外线,如太阳、红外灯等高温物体的辐射中就含有大量的近红外线。

在许多场合,人们不仅需要知道物体表面的平均温度,更需要了解物体的温度分布情况,以便分析、研究物体的结构,探测物体内部情况。借助不同波段的红外线的不同物理性质,可制成不同功能的红外探测器,将物体的温度分布以图像形式直观的显示出来。

新型传感器原理报告

第2章红外成像原理

红外成像技术是一项前途广阔的高新技术。自然界中,一切物体都可以辐射红外线,因此利用探测仪测量目标本身与背景间的红外线差可以得到不同的热红外线形成的红外图像。

红外成像技术是指借助对红外线敏感的探测器,来记录物体对红外线的辐射、反射、散射等信息,通过分析,揭示出物体的特征及其变化的科学技术。红外成像技术中能获得图像信息的仪器有:使用红外线胶片的照相机,具有红外摄影功能的数码相机,热像仪等。虽然它们都利用红外线工作,但成像原理和所成的图像的物理意义有很大的区别。下面根据不同成像器件对成像原理作简要介绍。

2.1 红外变像管成像

红外变像管是直接将物体红外图像变成可见图像的电真空器件,主要由光电阴极、电子光学系统和荧光屏三部分组成,并安装在高空密封玻璃壳内,红外变像管示意图如图2-1所示。

图2-1 红外变像管结构图

当物体的红外辐射通过镜像照射到光电阴极上时,光电阴极表面的红外敏感材料——蒸镀的半透明银氧铯,接受辐射后,便发射光电子。光电阴极表面发射的光电子密度的分布,与表面的辐照度的大小成正比,也就是与物体发射的红外辐射成正比。光电阴极发射的光电子在电场的作用下飞向荧光屏,荧光屏上的荧光物质受到高速电子的轰击便发出可见光。可见光辉度与轰击的电子密度的大小成比例,即与物体红外辐射的分布成比例。这样,物体的红外图像便被转换成为可见光图像。人们通过观察荧光屏上的辉度明暗,便可知道物体各部位的温度分布情况。

第2章红外成像原理

2.2 红外摄像管

红外摄像管是将物体的红外辐射转换成电信号,经过电子系统放大处理,在还原为光学像的成像装置。种类有光导摄像管、硅靶摄像管和热释电摄像管等,前两者工作在可见光或近红外区,而后者工作波段较长。热释电摄像管如图2-2所示。

图2-2 热释电摄像管结构图

靶面为一块热释电材料薄片,在接收辐射的一面覆以一层对红外辐射透明的导电膜。当经过调制的红外辐射经过光学系统成像在靶面上时,靶面吸收红外辐射,温度升高到释放出电荷。靶面各点的热释电与靶面各点的温度变化,又与靶面的辐照度成正比。当电子束在外加偏转磁场和纵向聚焦磁场的作用下扫过靶面时,就得到与靶面电荷分布相一致的视频信号。通过导电膜取出视频信号,并送到视频放大器放大,然后再将放大的视频信号送到控制显像系统,在显像系统的屏幕上便可看到与物体红外辐射相对应的热像图。

2.3 集成红外电荷耦合器件

集成红外电荷耦合器件(红外CCD)是最理想、最有发展前途的固态成像器。CCD成像原理图如下图2-3所示。

图2-3 CCD成像原理图

新型传感器原理报告

CCD首先是线性光/电器件,可将照射到表面的光的强弱转换成电信号。CCD片由众多的光电器件组成阵列,其成像是一种矩阵扫描过程,当景物光照射到CCD表面时,矩阵高速开关电路逐行逐点地将每点的电信号按顺序输出(将信号读出),便可完整地将整幅景物电信号扫描出来。同理,液晶显示器也是采用矩阵扫描的方式显示图像。只是CCD通过矩阵输出逐行逐点的电信号,而显示器是通过高速矩阵逐行逐点将电信号还原景物图像。

2.4 红外成像仪

根据成像原理和成像对象的不同,红外成像仪种类很多,其中热像仪工作原理如图2-4所示。

热像仪的光学系统为全折射式。物镜材料为单晶硅,通过更换物镜可对不同距离和大小的物体扫描成像。光学系统中垂直扫描和水平扫描均采用具有高折射率的多面平行棱镜,扫描棱镜由电动机带动旋转,扫描速度和相位由扫描触发器、脉冲发生器和有关控制电路控制。前置放大器的工作原理如2-5图所示。

图2-4 热像仪工作原理

第2章红外成像原理

图2-5 前置放大器的工作原理

红外探测器输出的微弱信号送入前置放大器进行放大。温度补偿电路输出信号也同时输入前置放大器,以抵消目标温度随环境温度变化而引起的测量值的误差。前置放大器的增益可以通过调整反馈电阻进行控制。前置放大器的输出信号,经视频放大器放大,再去控制显像管荧屏上射线的强弱。由于红外探测器输出信号大小与其所接收的辐照度成比例,因而显像管荧屏上射线的强弱亦随探测器所接收的辐照度成比例变化。

新型传感器原理报告

第3章国内外红外成像技术的发展及现状3.1 国外红外成像技术发展的进展及现状

红外成像探测技术已经有近60年的历史,至今红外成像探测技术也已经走过了50多年的发展历程,先后经历了越南战争、冷战军备竞赛、新军事革命等不同历史因素的促进,并经受了实战的考验,红外成像探测系统的体制、理论、方法、技术和应用都已得到很大的发展。由于在红外成像探测领域的技术进步,在各种不同应用领域的性能也显著提高。

进入21世纪后的10多年间,红外成像探测系统所面临的目标、环境、任务使命,以及支持红外成像探测系统研制、试验、生产的相关技术,都发生了深刻的变化。目前,红外成像探测技术仍在高速地发展和演变,并衍生出一些新的概念、体制和技术,以适应以信息化网络化战争和非对称作战为代表的新的战争形态和作战方式,对红外成像探测系统提出了严峻挑战。

按照事物发展的普遍规律,将红外探测技术的整个发展划分为初级、中级和高级3个阶段,目前正处于中级阶段的后半期。

3.1.1 初级阶段(20世纪40年代至80年代初,约30年)

这阶段的发展从20世纪40年代出现的基于调幅调制盘和硫化铅短波红外探测器的第一代红外探测系统算起,到20世纪60年代到80年代发展的基于调频调制盘、圆锥扫描调制盘、单元制冷锑化铟探测器、十字型多元探测器、玫瑰扫描跟踪器的红外探测系统,以及基于单元或多元长波探测器的初期的红外成像跟踪器,可算作红外探测系统发展的初级阶段。在这个阶段,飞机的发明和大规模应用于世界性战争,对飞机实现远距探测、告警和拦截的急迫需求,极大地刺激和推动了红外探测系统、红外探测理论和基础技术的高速发展,使红外探测系统得以在实战中用于空空导弹和便携式低空导弹等防空导弹,并在多次战争中发挥了重要的作用。这一时期,红外探测体制由最初的调幅调制盘、调频调制盘、圆锥扫描调制盘体制,发展为十字叉多元探测器、玫瑰扫描跟踪器的脉冲调制体制;工作波段由短波红外扩展到中波红外、长波红外波段;单元和多元的硫化铅、锑化铟和碲镉汞红外探测器技术和信号处理理论都得到极大发展。这一时期主流红像探测系统的主要特征是点源探测、单波段探测和一维信号空间处理(时域一维检测)。

第3章国内外红外成像技术的发展及现状

3.1.2 中级阶段前半期(20世纪80年代至21世纪初,约20年)

本阶段的发展从20世纪80年代,基于长波碲镉汞线列探测器(64元、120元、180元)的第一代前视红外探测系统的出现,至基于TDI型二维探测器焦平面阵列与二维中等规格红外探测器焦平面阵列的第二代红外成像探测系统列装并普遍装备,以及基于非制冷二维红外探测器焦平面阵列的低成本非制冷红外探测系统装备,可算作红外探测系统发展中级阶段的前半期。在这个阶段,与红外成像探测相关的基础技术不断取得重大突破,冷战期间前苏联和北约大量装备的坦克、装甲战车、高速喷气飞机、武装直升机、中远程弹道导弹、掠海反舰导弹、军用卫星和大规模应用于冷战军备竞争,使得红外探测技术得以继续保持高速发展,并广泛应用于天基弹道导弹预警、机载舰载红外搜索跟踪、机载导弹发射预警、机载星载对地监视侦察、反导反卫动能拦截弹、空空导弹、空地导弹、反舰导弹、反装甲导弹精确制导等领域。这一时期,红外成像探测技术的主流发展方向是单色、双色红外凝视成像探测体制,同时发展了基于滤光片轮、共孔径分裂片/反射镜、分离孔径多传感器的多光谱成像系统。这一时期主流红外成像探测系统装备的主要特征是:中等规格红外焦平面凝视探测(单波段或双波段)、采用滤光片轮、共孔径分裂片/反射镜、分离孔径多传感器的多光谱成像系统和二维信号空域处理或三维空-时处理。

3.1.3 国际上红外成像技术的发展现状

从21世纪初开始,单波段大规格、小像素红外焦平面阵列、大规格双色/多色红外焦平面阵列、灵巧红外焦平面阵列开始得到迅速发展,基于大规格红外焦平面阵列、双色/多色中规格红外焦平面阵列的第三代红外成像探测系统开始列装,到目前开始探索的新概念、新体制红外成像系统未来形成装备的时期,可算作红外成像探测系统发展的中级阶段的后半期,也是目前正经历的发展阶段。这一时期,红外凝视成像探测体制正在进一步演化成双色、多色红外凝视成像探测体制;偏振红外探测、新体制大视场高分辨率红外成像探测体制、主动式激光雷达三维成像体制、激光主动成像/红外被动成像多维复合成像体制和协同探测/分布式/网络化红外成像探测体制,也将开始成为发展热点,将部署具有更高能力的、具有更高分辨率、多光谱能力和数据融合信息处理的战略卫星传感器;承载平台将由天基扩展到临近空间等平台;与红外成像探测相关的红外焦平面阵列和数字处理等基础技术已取得很大成就,现有的成熟的碲镉汞、锑化铟等焦平面技术的探测率等性能参数已非常

新型传感器原理报告

接近于物理极限,第三代红外双色焦平面阵列将逐渐成熟,并孕育着II型超晶格红外焦平面阵列、量子阱量子点红外焦平面阵列、高性能大规格非制冷或小制冷量红外焦平面阵列、单光子和光子计数探测器及阵列、数字化焦平面阵列、自适应多波段红外焦平面阵列、灵巧红外焦平面阵列等新的重大突破,从而为红外成像技术的进一步发展提供新的空间。该阶段主流红外成像探测系统装备的主要特征将是双波段/多波段红外凝视探测和多维信号空间处理(TBD,方位-俯仰-时间三维跟踪检测;距离-方位-俯仰三维处理;多波段、多偏振方向等构成的多维信号空间)。

3.2 国内红外成像技术的进展

中国的红外线技术起步于1985年,现与西方相比有10年左右差距,红外影像技术更有15年左右的差距,70年代上海第11和211技术物理研究所首先对这方面进行研究。近几年来,中国的红外成像技术得到突飞猛进的发展,与西方的差距正在逐步缩小,有些设备的先进性也可同西方同步。如目前己能生产面积小于30μm2的1000×1000像素的探测器阵列,由于采用了基于锑化銦的新器件,目前己达到了分辨率小干0.01℃的温差,使对目标的识别达到更高的水平。中国在近红外和中红外技术的研究应用已有较高水准,其中单元及多元近红外和中红外光敏元件的生产技术比较成熟,用于武器系统的目标点源探测、追踪和导引,已广泛在中国三军中推广应用。如用于部队的便携式野战热像仪,反坦克飞弹、防空雷达以及坦克、军舰火炮等。

1980年代初以来中国在长波红外元件的研制和生产技术有很大进展,目前自制长波单元碲镉汞(HgCdTe)元件的生产工艺较成熟,元件黑体探测度D可达(2至5)/1010公分H1/2/W响应度达104V/W,能稳定量产,成品率相当高,可用于医疗。用于导引的红外影像设备需有足够空间和温度分辨率,对高速运动目标能实时成像,故需要研制高性能的多元线列元件或凝视焦平面阵列器件,以简化成像扫瞄机构,适应武器系统恶劣工作条件及实时成像的要求。

中国科研部门在80年代后期终于突破了长波蹄镉汞材料关键技术及元件生产工艺难关。1989年研制出高性能60元线列元件,平均黑体D达2×1010公分H1/2W以上,响应度达10V4/W。1990年春运用该元件研制了与电视兼容的实时红外影像样机,灵敏度、空间和温度分辨率都达到很高的水准,它为中国红外影像导引技术奠定了基础。另外,大陆自80年代中期开始研究双色红外亚成像导引挂术,单项技术获得

第3章国内外红外成像技术的发展及现状

重大突破,己完成原理样机研制进入实际试验阶段。在红外影像对目标的智慧型识别及追踪方面,中国己将自制全数字化红外线影像智慧型识别追踪电子组合与红外热像仪整合,构成自动目标捕获与追踪系统。87年11月在各种气象条件下进行试验,在复杂背景下完成了对不同型号战机捕获和稳定追踪的功能;1989年4月又进行了夜间对飞机的自动截获和追踪,以及目标在低空飞行中被遮挡情况下记忆追踪的试验。这项技术成果将陆续应用于自制的红外影像空对空近距缠斗飞弹和陆军野战防空探测系统。

进入90年代以来,中国在红外影像设备上使用的低噪音宽频带前置放大器、微型致冷器等关键技术方面已有了很大的进步。1990年代以来,进展有加速的迹象,并走出实验室运用于试验性的武器装备上,部份并已进入部队服役。陆军在这方面应用较多,目前已有多种便携式野战热像仪投产,红箭8反坦克飞弹载具的瞄准镜也使用红外影像技术,作为国防科工委重点之一的7551工程,其中的空中盾牌火控热像仪是防空射控系统中红外雷射雷达系统的配套产品,属于北方公司的重点外贸军品,系由红外影像通用组件构成,对歼6之类战机的迎头探测距离12至15公里,部份亦在中国陆军试用。205所、211所、214所为战车、反坦克飞弹、攻击直升机和红旗七号(FM-80的光电追踪器)研制的通用组件红外热像仪,亦完成试验即将投产。正研制中的新世代驱逐舰亦会使用这类装备。去年研制成功的火网近防舰炮系统中,(采用两座俄罗斯AK-630M1型30毫米机炮),所配备的OFD-630光电跟踪仪也可以做这种改进,另外红外成像型潜望镜也在研制中,预计到下世纪初,中国的新型舰艇大都装有红外影像的光电火射系统。

3.3 红外探测技术的发展趋势

未来的红外成像探测技术将突破现有思路的束缚,由目前集中式的信息获取、基于设备的探测模式、单频段单偏振方向的系统构成、基于统计的检测方法,向分布式信息获取、基于体系的探测模式、多频段多偏振方向的系统构成、自适应及智能化的工作模式、环境知识辅助的检测方法等方向拓展。同时,利用天基和临近空间等平台的红外成像探测技术,将得到更加广泛的重视。这些努力将最终演化出实现更高性能红外信息获取的全新一代的红外成像探测体制、装备、系统和体系。未来新型红外成像探测装备的主要特征将可能是:三维多视角布局(如立体网格探测;多站分布式/网络化红外成像探测)、多探测器复杂构型和高维信号空间处理(例如,

新型传感器原理报告

TBD,距离-方位-多普勒-时间,方位-俯仰-光谱-偏振向等多维跟踪检测;全谱段、全偏振向、多信息源等构成的多维信号空间)

从目前美国陆军、空军、海军、DARPA、导弹防御局所制定的,与军用成像探测相关的发展计划来看,美国在红外成像探测技术领域的重点发展方向是:新概念大视场高分辨率红外成像技术、具有远距离识别能力的红外多光谱成像及红外偏振成像技术、分布式网络化红外成像探测技术和低成本高性能红外成像技术等。红外成像探测系统由光学、红外探测器、视轴瞄准与跟踪子系统、信息处理和提取子系统等组成,对于分布式网络化红外成像探测系统还要包括通信子系统。在红外成像探测系统发展的初级和中级阶段前半阶段,技术发展和创新的重点在红外探测器及信息处理和提取技术方面,但一个红外成像探测系统的最终的性能取决于各种组件技术的综合集成,因此,从中级阶段后半阶段开始,更加注重结合已有的探测器技术、新的探测器技术,通过新颖的光学技术和计算成像等新概念的成像机理来满足新的需求。

1)新概念大视场高分辨率红外成像与探测技术

2)新型多光谱红外成像/偏振红外成像技术

3)基于压缩感知的红外成像-信息处理、提取一体化技术

4)分布式协同组网敏感技术

5)低成本、高性能红外成像技术

6)基于高拟真度建模和实时分布式场景生成的多波段红外成像仿真技术

第4章红外成像技术应用

第4章红外成像技术应用

红外成像技术是一种通过摄取景物热辐射分布图像,并将其转换为人眼可见图像技术,近年来红外成像技术发展迅速,在军事、工业、医学等各领域显示出越来越重要的应用。

4.1 红外成像技术在军事上的应用

红外成像技术起源于军事技术,随着红外成像技术的发展与成熟,其在军事领域的应用也越来越广泛,为增强国家自身防御能力和提高夜战水准做出了巨大贡献。

红外成像设备已成为现代高技术常规兵器装备中不可缺少的重要部分。陆军主要将其用于夜间监视、瞄准、侦察、射击指挥、制导和防空等;海军主要将其用于监视、巡逻、观察和导弹跟踪等;空军主要将其用于轰炸机、侦察机和攻击机等的导航、着陆、营救、空中侦察、高空摄影和射击投弹等。从空间到地面,从水下到空中,红外成像设备都发挥着极其重要的作用。

其中红外夜视仪和红外枪瞄系统可以使士兵在黑暗环境中发现潜在的“敌人”,并精确瞄准,大大提高了单兵的作战能力,目前红外夜视仪已经成为各国军队普遍采用的装备。在制导领域,红外成像制导技术目前已经成为研究的新热点,这是一种可以使导弹威力倍增的高效费比技术。其具备隐蔽性好、能昼夜工作、穿透烟雾能力强等优点,是一种准全天候的制导方式,具有在各种复杂战术环境下自主搜索、识别和跟踪目标的能力。

4.2 红外成像技术在工业上的应用

红外成像技术实际上是作为一种高级测温技术应用于工业中的,这种设备我们成为红外热成像仪。在工业上的应用主要是检测工业设备、监查运行故障及控制产品质量。在工业生产中,许多设备常用于高温、高压和高速运转状态,应用红外热成像仪对这些设备进行检测和监控,既能保证设备的安全运转,又能发现异常情况以便及时排除隐患;同时,利用热像仪还可以进行工业产品质量控制和管理。

4.2.1 钢铁工业中的应用

热像仪可用于从冶炼到轧钢的各个环节。具体应用列举如下:大型高炉料面的测定;热风炉的破损诊断和检修;高炉残铁口位置的确定;钢锭温度的测定;连铸

新型传感器原理报告

板坯温度的测定;钢铁模温度的测量;出炉板坯温度的测定与控制;热轧辊表面温度的测定。

4.2.2 在电力工业中的应用

在电力系统中,电气事故大都不是一下子发生的,其间有一个变化过程。由于电气元部件逐渐出现松动、破裂、锈蚀等造成接触电阻增加,致使电气元部件温度升高,出现热异常现象。采用热像仪直接观察和测量就可发现这些异常现象,掌握潜存故障的位置和严重程度,根据需要,安排维修,消除隐患,所以热像仪是发电厂、输变电网以及用电工厂的一种有效检测仪器。热像仪在电力系统中的主要检测目标是发电机组装置、输电线路接头、绝缘部件、变电所设备、变压器绕组及油冷系统、高压线路的保险丝电路、闸刀开关、断路开关、转换开关和终端装置、电路分配调度中心、控制台及照明配电盘等。特别是,定期用机载或车载热像仪检测输变电网,能早期发现隐患或迅速诊断出事地点,可大大减少经济损失。

4.2.3 在石化工业中的应用

石油化工生产中的许多重要设备是在高温高压状况下工作的,潜伏着许多安全隐患,要求对生产过程进行严格的在线监测,及时消除隐患。使用热像仪能检测产品的传送,各种反应炉的腐蚀、破裂、减薄、堵塞以及泄漏等有关信息,可快速而准确地得到设备和材料表面二维温度分布。炼油厂用热像仪检测催化裂化装置、反应堆尾气设备和熔炉、安全阀与凝气阀的泄漏、地下管道的漏失等,能早期迅速准确地找出热漏点。监视液化气体泄漏时,随着液化天然气的大量应用和贮藏基地的建设,需要建立在早期发现和处理由于液化气(液化天然气、液化石油气、液化乙烯)泄漏而发生火灾、爆炸等灾害的监视装置。

4.3 红外成像技术在医学上的应用

人体是一个天然红外辐射源,因此可以利用红外成像技术对人体进行医疗诊断。当人体患病时,人体的热平衡受到破坏,因此测定人体温度的变化是临床医学诊断疾病的一项重要指标。如利用红外热像仪在海关出入境检疫口岸对大量出入境人群的体温进行非接触式快速测量,根据体温的变化及时发现病患,在SARS 和禽流感期间发挥了巨大的作用。

另一方面,由于红外波段包含大量分子特诊谱,可以将红外成像技术用于癌症

第4章红外成像技术应用

的识别。红外显微成像技术能够在分子水平上反映组织中生物大分子结构组成及官能团振动方式的改变,当自身的细胞发生病变时,通过此技术就可以分别出来,而且此技术用的是被动成像原理,因此对人体的伤害十分小。肿瘤是严重威胁人类健康和生命的疾病,尽管目前肿瘤诊断技术(内窥镜技术、影象技术和肿瘤标志物检查技术等) 迅速发展,最终还是依赖于形态学的诊断来确定肿瘤的性质,分化程度及预后等,导致对肿瘤诊断存在一定的主观性,而红外显微成像技术是一种准确、高效、客观的肿瘤诊断技术。

除此之外,红外成像技术在其它医学诊断方面也被广泛应用,比如血管疾病的诊断;皮肤损伤病症的诊断;各种炎症的诊断等。

4.4 红外成像技术在监控、公安、消防中的应用

4.4.1 夜间以及恶劣气候条件下目标的监控

红外热像仪能真正做到24h及恶劣气候条件下的全天候的智能视频监控。在夜晚,可见光器材已经不能正常工作,观测距离大幅缩短。而红外热像仪是被动接受目标自身的红外热辐射,与气候条件无关,因此无论白天黑夜均可以正常工作,同时可以避免暴露自身。同时在雨、雪、雾等恶劣的气候条件下,由于可见光的波长短,克服障碍的能力差,因而观测效果较差,甚至不能工作,但红外线的波长较长,特别是工作在8~14um的热像仪,克服雨、雪、雾的能力较高,因此仍可以在较远的距离上正常观测目标。所以在夜间以及恶劣气候条件下,采用红外热成像监控设备可以对各种目标进行有效监控。

4.4.2 对伪装及隐蔽的目标进行智能视频监控与识别

普通的伪装仍然是以防可见光观测为主。红外热成像装置是被动接受目标自身的热辐射,人体和车辆的温度及红外辐射一般都远大于草木的温度及红外辐射,因此不易伪装,也不容易产生错误判断。另外,一般人员也不了解避开红外监视的方法。因此红外热成像装置在识别伪装及隐蔽目标这方面的效果明显。

4.4.3 消防安全的智能监测

防火监控由于红外热成像仪是反映物体表面温度而成像的设备,因此除了夜间可以作为现场监控使用外,还可以作为有效的防火报警设备,在所有的消防火险发生初期,灾害往往是由不明显的隐火引发的。用现有的普通方法,很难发现这种隐

新型传感器原理报告

性火灾苗头。而应用红外热成像仪可以快速有效地发现这些隐火,并且可以准确判定火灾的地点和范围,透过烟雾发现着火点,做到早知道早预防,早扑灭。

结论

结论

虽然红外材料及光学集成技术在不断进步,但仍然存在一些问题和困难有待进一步探讨。由于其研究技术水平尚未成熟,所用材料特殊性使其价格远超非红外成像设备,这阻碍了其在军用、民用领域的普遍应用。在我国,红外成像的仿真手段、测试方法与评价标准和国外有着很大差距,没有一套完整统一的规范化标准,这在一定程度上制约了红外技术的发展。

虽然红外成像技术存在一定的问题,但是它潜在的能力不可以低估。随着硅集成电路技术和工艺的日益成熟,红外成像技术的缺点将会逐步得到改善; 在纳米技术的帮助下,测量的精度也将得到大量的提高; 同时第二类超晶格材料和量子点探测器的发展,也将大幅度的改善光探测器工作条件。随着红外新材料和新技术的进步,红外成像设备的成本将逐渐降低,其在民用的道路上将会有更大的突破。

参考文献

参考文献

[1]蒋耀庭, 潘丽娜. 红外成像技术的军事应用及展望[N]. 现代军事装备, 2003(9).

[2]李相迪, 黄英, 张培晴等. 红外成像系统及其应用[J]. 激光与红外, 2014, 44(3): 229-234

[3]范晋祥,杨建宇.红外成像探测技术发展趋势分析[J].红外与激光工程, 2012,41: 3145 - 3153.

[4]李国华,吴立新,吴淼等.红外热像技术及其应用的研究进展[J].红外与激光工程,2004,33 ( 3 ) :227 - 230.

[5]杨争,周伟,徐惠忠.红外成像系统在军事领域的应用前景[J].红外与激光工程, 2008,37: 691 - 694.

[6]王瑞凤,杨宪江,吴伟东.发展中的红外热成像技术[J].红外与激光工程, 2008, 37( 6) : 699 - 702.

[7]范晋祥,杨建宇. 红外成像探测技术发展趋势分析[J]. 红外与激光工程,2012,12:3145-3153.

[8]姚中博,张玉波,王海斗,李国禄,徐滨士. 红外热成像技术在零件无损检测中的发展和应用现状[J]. 材料导报,2014,07:125-129.

[9]刘元林,梅晨,唐庆菊,芦玉梅. 红外热成像检测技术研究现状及发展趋势[J]. 机械设计与制造,2015,06:260-262+266.

红外线传感器工作原理和技术参数

红外线传感器工作原理和技术参数 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为~μm;紫光的波长范围为~μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线 最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。 人体热释电红外传感器和应用介绍 被动式热释电红外探头的工作原理及特性: 一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。 1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。 2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。 3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。 5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。 在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。 红外线遥控鼠标器中的传感器 在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚轴转动,X轴方向和Y轴方向滚轴又各带动一个转轴(称为译码轮)转动。译码轮(见图1)的两侧分别装有红外发光二极管和光敏传感器,组成光电耦合器。光敏传感器内部沿垂直方向排列有两个光敏晶体管A和B,如图2所示。由于译码轮有间隙,故当译码轮转动时,红外发光二极管发出的红外线时而照在光敏传感器上,时而被阻断,从而使光敏传感器输出脉冲信号。光敏晶体管A和B被安放的位置使得其光照和阻断的时间有差异,从而产生的脉冲A和脉冲B有一定的相位差,利用这种方法,就能测出鼠标器的拖动方向 照相机中的红外线传感器――夜视功能 红外夜视,就是在夜视状态下,数码摄像机会发出人们肉眼看不到的红外光线去照亮被拍摄的物体,关掉红外滤光镜,不再阻挡红外线进入CCD,红外线经物体反射后进入镜头进行成像,这时我们所看到的是由红外线反射所成的影像,而不是可见光反射所成的影像,即此时可拍摄到黑暗环境下肉眼看不到的影像。索尼数码摄像机首创了红外线夜视摄影功能,能够在全黑环境下进行拍摄,甚至连肉眼也不能分辨清楚的物体,现在也可以清晰地拍摄下来。这种夜视的特点是可以在完全没有光线的条件下进行拍摄,但由于采用的是红外摄影,无法进行彩色的还原,所以拍摄出来的画面是单色的,影像会变绿。不久之后,索尼又推出了拥有超级红外线夜视摄功能的数码摄像机,红外线功能的慢速快门为2段选择,超级红外线夜摄功能的慢速快门为自动调节,可以获得更好的影像效果。举一个大家都见过的例子,在美国空袭伊拉克时,

红外感应原理知识

红外感应原理知识 所谓的红外感应开关,只是利用了人眼看不到的红外线来感应物体的,感应开关的核心元器件就是红外反射传感器了。红外反射传感器包括一个红外线发光二极管和一个红外线光敏二极管,它们两个都朝着一个方向,被封装在一个塑料外壳里。使用的时候,红外线发光二极管点亮,发出一道人眼看不见的红外光。如果传感器的前方没有物体,那么这道红外光就以每秒299792458 米的速度(光速)消散在宇宙空间。但如果传感器前方有不透明的物体时,红外光就会被反射回来,照在自己也照在旁边的红外线光敏二极管身上。红外线光敏二极管收到红外光时,其输出引脚的电阻值就会产生变化。判断红外线光敏二极管的阻值变化,就可以感应前方物体,控制电器开关了。红外线供应网 下图主要原理把红外线发光二极管以某一频率进行调制,即让它以一定的频率闪烁。在红外线光敏二极管一端则设计一个电路,让接收端可以筛选出这一频率的红外光源。因为环境里的红外光要么是没有频率的,要么就是有着自己固定的频率。像收音机一样,传感器只要以自己的频率发射,再以自己的频率接收就可以过滤其他频率光源的干扰了,而且由于接收管胶体也对可见光的波段光源进行过滤,所以在室内使用的情况下是没有问题的。 不过,当强光照进室内,感应开关受强光的影响而处在不稳定的状态,自行的开关,或是对反射物体没有反应。家里常用的电视机红外线遥控器也会让感应开关失灵。即使把它放在阴暗的角落也会出现一个讨厌的问题,当反射物体处在某一个临界距离时,感应开关就会不断的开关,继电器的吸合很快,好像一台电报机。这是因为反射物体正好处在了感应区的临界点上,也就是“感应到”和“感应不到”的分界线上,物体微微靠近或离开就会产生开关状态的改变。所以一般现都会通过单片机对光干扰进行软件上的处理,而且电路比用硬件来做简单得多。具体电路如下所示:

可燃气体探测器原理

可燃气体探测器原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

目前,可燃气体探测器常用的传感器有:催化燃烧传感器、半导体传感器;有毒气体检测仪常用的传感器有:电化学传感器、红外传感器和PID光离子传感器。下面就为大家一一介绍着几种传感器各自的工作原理和优缺点 催化燃烧传感器 催化燃烧式传感器是可燃气体探测器常用的传感器类型,它的工作原理是基于一个惠斯通电桥的结构。在它的测量桥上涂有催化物质,它在整个的测量过程中是不被消耗的。即使在空气中气体和蒸气浓度远远低于LEL(爆炸浓度下限)时,它们也会在这个桥上发生催化燃烧反应。测量时,要在参比和测量电桥上施加电压使之加热从而发生催化反应,这个温度大约是500℃或者更高。正常情况下,电桥是平衡的,V1 = V2,输出为零。如果有可燃气体存在,它的氧化过程(无焰燃烧)会使测量桥被加热,温度增加,而此时参比桥温度不变。电路会测出它们之间的电阻变化,V2 > V1,输出的电压同待测气体的浓度成正比。 催化燃烧式传感器的优点: 寿命较长(一般3年)、线性度好、温度范围宽、适用于LEL(可燃气体爆炸浓度下限)之下的检测。 催化燃烧式传感器的缺点: 需有氧检测、受环境的影响较大(中毒或抑制),需定期校正。 半导体传感器 半导体传感器也是可燃气体探测器和有毒气体检测仪常用的传感器。它的全称是“金属氧化物半导体传感器(MOS)”,它既可以用于检测PPM级的有毒气体也可以用于检测百分比浓度的易燃易爆气体。MOS传感器由一个金属半导体(比如SnO2)构成,在清洁空气中,它的电导很低,而遇到还原性气体,比如一氧化碳或可燃性气体,传感元件的电导会增加,从而引起电流变化触发报警电路。通过控制传感元件的温度,可以对不同的物质有一定的选择性。 半导体传感器的优点: 价格便宜、灵敏度高、能检测到ppm。 半导体传感器的缺点: 线性度差,只能作为定性的检测;受温湿度影响较大。

半导体气体传感器的结构及原理

一、在博物馆文物、档案管理方面的运用 这是温湿度传感器应用的另一个领域。档案的纸张在温湿度适宜的条件可以多存放一些时间,而一旦温湿度条件遭到破坏纸张将要变脆,重要资料也将随之荡然无存,对档案馆进行温湿度记录是必要的,可以预防恶性事故的发生。使用温湿度传感器将使温湿度记录的工作得以简化,也将节约文物保管的成本,使这一工作得以科学化,不受到过多的人为因素的干扰。 二、在疫苗冷链中的运用 气体传感器主要针对于行业中的气体进行检测,在工业、电子、电力、化工、治金等行业中都有一定的应用。气体传感器的种类是比较多的,其中常用的主要有半导体式、接触燃烧方式、化学反应式、光干涉式、热传导式、红外线吸收散式等。而这当中以半导体气体传感器应用更为广泛。 半导体气体传感器由气敏部分、加热丝以及防爆网等构成,它是在气敏部分的sno2、fe2o2、zno2等金属氧化物中添加pt、pd等敏化剂的传感器。传感器的选择性由添加敏化剂的多少进行控制,例如,对于zno2系列传感器,若添加pt,则传感器对丙烷与异丁烷有较高的灵敏度;若添加pd,则对co与h2比较敏感。 气体传感器以陶瓷管为框架,外覆一层敏感膜的材料,利用膜两端的镀金引脚进行测量。敏感膜的材料最常用的有金属氧化物、高分子聚合物材料和胶体敏感膜等。它的两个关键部分是加热电阻和气体敏感膜。金电极连接气敏材料的两端,使其等效为一个阻值随外部待测气体浓度变化的电阻。由于金属氧化物有很高的热稳定性,而且这种传感器仅在半导体表面层产生可逆氧化还原反应,半导体内部化学结构不变,因此,长期使用也可获得较高的稳定性。 原理简介如下:金属氧化物一旦加热,空气中的氧就会从金属氧化物半导体结晶粒子的施主能级中夺走电子,而在结晶表面上吸附负电子,使表面电位增高,从而阻碍导电电子的移动,所以,气体传感器在空气中为恒定的电阻值。这时还原性气体与半导体表面吸附的氧发生氧化反应,由于气体分子的离吸作用使其表面电位高低发生变化,因此,传感器的电阻值要发生变化。对于还原性气体,电阻值减小;对于氧化性气体,则电阻值增大。这样,根据电阻值的变化就能检测气体的浓度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/8e10981607.html,。

几种气体传感器的研究进展

一、前言 1964 年,由Wickens 和Hatman 利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick 大学的Persaud 等提出了利用气敏传感器模拟动物嗅觉系统的结构,自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。 下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。 二、气体传感器的分类和工作原理 气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。 电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间 接的检测。 接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。 电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度:

红外感应灯电路设计及原理

红外感应灯电路设计及原理 1、电路主要光学元件 (1)光敏电阻的应用 光敏电阻又称光导管, 它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性, 是一个电阻器件。制作光敏电阻的材料一般是金属硫化物和金属硒化物,通常采用涂敷、喷涂等方法,在陶瓷基片上涂上半导体薄膜,经烧结而成。 光敏电阻的结构:在底板上均匀地涂上一层薄薄的半导体物质,称为光导层。半导体的两端装有金属电极与引出线端相连接,通过引出线端接入电路。为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最大。为了提高灵敏度,光敏电阻的电极一般采用梳状图案,光敏电阻结构,光敏电阻电极,光敏电阻接线图光敏电阻工作原理--内光电效应。光照射到本征半导体上,材料中的价带电子吸收了光子能量跃迁到导带,激发出电子、空穴对,增强了导电性能,使阻值降低。光照停止,电子空穴对又复合,阻值恢复。亮电阻很小,暗电阻很大。要使价带电电子跃迁到导带,入射光子的能量满足刚好发生内光电效应的临界波长。 常用的光敏电阻器是硫化镉光敏电阻器,它是由半导体材料制成的。光敏电阻器的阻值随入射光线(可见光)的强弱变化而变化,在黑暗条件下,它的阻值(暗阻)可达1-10MΩ;在强光条件(100LX)下,它阻值(亮阻)仅有几百至数千欧姆。光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4-0.76um)的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。 本电路采用MG42型CdS光敏电阻,CdS光敏电阻属半导体光敏器件,产品经受强化老练实验,除具有灵敏度高,反应速度快,光谱特性好等特点外,在高温、多湿的恶劣环境下,仍能保持其高度的稳定性和可靠性,适合于将其用于各种环境,MG42型光敏电阻与其它型号相比具有:工作电压和额定功率比较低的特点,其亮、暗电阻也适合于本照明电路的需要,所以在设计时选择了这个型号。 (2)可控硅元件的工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示

几种重要的气体检测仪详细功能说明与使用

气体检测仪中重要的部分是气体传感器,用于检测气体成份和浓度的传感器都称作气体传感器,不管它是用物理方法,还是用化学方法。比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它们有时使用大体一致的检测原理。 市场上目前流行的气体传感器/气体检测仪有如下种类: 一、催化燃烧式气体传感器 催化燃烧式气体传感器选择性地检测可燃性气体:凡是可以燃烧的,都能够检测到;凡是不能燃烧的,传感器都没有任何响应。 这种传感器是在白金电阻的表面制备耐高温的催化剂层,在一定的温度下,可燃性气体在其表面催化燃烧,燃烧是白金电阻温度升高,电阻变化,变化值是可燃性气体浓度的函数。 催化燃烧式气体传感器计量准确,响应快速,寿命较长。传感器的输出与环境的爆炸危险直接相关,在安全检测领域是一类主导地位的传感器。 缺点:在可燃性气体范围内,无选择性。暗火工作,有引燃爆炸的危险。大部分元素有机蒸汽对传感器都有中毒作用。 目前这种传感器的主要供应商在中国、日本、英国(发明国)。目前中国是这种传感器的最大用户(煤矿行业),也拥有最佳的传感器生产技术。 二、热导池式气体传感器 每一种气体,都有自己特定的热导率,当两个和多个气体的热导率差别较大时,可以利用热导元件,分辨其中一个组分的含量。这种传感器已经传感器地用于氢气的检测、二氧化碳的检测、高浓度甲烷的检测。 三、半导体式气体传感器 半导体式气体传感器可以有效地用于:甲烷、乙烷、丙烷、丁烷、酒精、甲醛、一氧化碳、二氧化碳、乙烯、乙炔、氯乙烯、苯乙烯、丙烯酸等很多气体地检测。尤其是,这种传感器成本低廉,适宜于民用气体检测的需求。 它是利用一些金属氧化物半导体材料,在一定温度下,电导率随着环境气体成份的变化而变化的原理制造的。比如,酒精传感器,就是利用二氧化锡在高温下遇到酒精气体时,电阻会急剧减小的原理制备的。 缺点:稳定性较差,受环境影响较大;尤其,每一种传感器的选择性都不是唯一的,输出参数也不能确定。因此,不宜应用于计量准确要求的场所。 目前这种传感器的主要供应商在日本(发明者),其次是中国,韩国及美国等其他国家也有类似的产品,但是始终没有汇入主流。中国在这个领域投入的人力和时间都不亚于日本,但是由于多年来国家政策导向以及社会信息闭塞等原因,我国流行于市场的半导体式气体传感器性能质量都远逊于日本产品,随着市场进步,中国产的半导体式气体传感器达到和超越日本水平已经指日可待

红外测距传感器的工作原理及使用

光电检测技术与应用 论文 题目:红外测距传感器的工作原理及使用 院系:机电工程学院 班级:测控xxxx 完成日期:2017/5/6 小组:第x组 小组成员:xxxxxxxxxx 红外测距传感器的工作原理及使用 摘要: 利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 关键字:光电检测技术、智能车、测距、红外测距传感器、单片机 一、引言 光电检测作为光学与电子学相结合而产生的一门新兴检测技术,主要包括光信息获取、光电变换、光信息测量以及测量信息的智能化处理等,具有精度高、速度快、距离远、容量大、非接触、寿命长、易于自动化和智能化等优点,在国民经济各行业中得到了迅猛的发展和广泛的应用,如光扫描、光跟踪测量,光纤测量,激光测量,红外测量,图像测量,微光、弱光测量等,是当前最主要和最具有潜力的光电信息技术。

二、光电检测技术的概念 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高测系统输出信号的信噪比。 光电检测技术的系统机构比较简单,分为信号的处理器,受光器,光源。在实际检测过程中,受光器在获得感知信号后,就会被反映为不同形状、颜色的信号,同时根据这些器件所处在的不同位置,就能够将他分为反射型与透过型的两种比较的模式。光电检测的媒介光应当是自然的光,例如白炽灯或者萤光灯。特别是随着这些技术的发展,光电技术也取得的非常好发展。由于投光器在发出光后,会以不一样的方式触摸这些被检测物中,直到照射到检测系统中的受光器中,同时受光器在此刺激下,会产生一定量的电流,这就是我们常说的光敏性的原件,实际生活中应用比较广泛的有三极管、二极管。 三、光电检测技术的应用 智能车方面的应用、家庭扫地机器人方面的应用:利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 四、常用光电检测器件:红外测距传感器 原理:其输出为电压数值,通过公式L?=?(6762/(9-X))-4可计算出小车与障碍物之间的距离。

气体传感器Word版

实验八气体传感器实验 【实验目的】 1. 理解气体传感器的工作原理; 2. 掌握单片机驱动气体传感器的方法。 【实验设备】 1. 装有IAR 开发工具的PC 机一台; 2. 下载器一个; 3. 物联网多网技术综合教学开发设计平台一套。 【实验要求】 1. 编程要求:编写气体传感器的驱动程序; 2. 实现功能:检测室内的有害气体并输出标志位; 3. 实验现象:将检测到的数据通过串口调试助手显示。 【实验原理】 1. 气体传感器简介 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 2. 气体传感器分类及在本实验中的应用 气体传感器通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。 半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。原理如下图所示:

根据其气敏机制可以分为电阻式和非电阻式两种。 本实验采用的是电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02 等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。 3. 气体传感器MQ-6 灵敏度特性 符号参数名称技术参数备注 Rs敏感体电 阻10KΩ-60KΩ探测范围: 100-1000ppm 检测目标:LPG、 丁烷、丙烷、LNG α (1000ppm/4000PPMLNG) 浓度斜率≤0.6 标准工作条件温度:20℃±2℃ Vc:5.0V ±0.1V 相对湿度:65﹪±5﹪ Vh: 5.0V±0.1V 预热时间不少于24 小时 【电路连接】 电路连接如图所示。

各类气体传感器的原理、结构及参数

各类气体传感器的原理、结构及参数 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 气体种类繁多,性质各异,因此,气体传感器种类也很多。按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NOx、CH4、O3,家庭污染如甲醛等。按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类。 半导体气体传感器 半导体气体传感器可分为电阻型和非电阻型(结型、MOSFET型、电容型)。电阻型气敏器件的原理是气体分子引起敏感材料电阻的变化;非电阻型气敏器件主要有M()s二极管和结型二极管以及场效应管(M()SFET),它利用了敏感气体会改变MOSFET开启电压的原理,其原理结构与ISFET离子敏传感器件相同。 电阻型半导体气体传感器 作用原理 人们已经发现SnO2、ZnO、Fe2O3、Cr2O3、MgO、NiO2等材料都存在气敏效应。用这些金属氧化物制成的气敏薄膜是一种阻抗器件,气体分子和敏感膜之间能交换离子,发生还原反应,引起敏感膜电阻的变化。作为传感器还要求这种反应必须是可逆的,即为了消除气体分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。SnO2薄

(完整版)红外测温传感器

红外光电传感器测温仪 1红外测温传感器结构 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内的算法和目标发射率校正后转变为被测目标的温度值。 2红外测温传感器工作原理 在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射量。根

据基尔霍夫定律、普朗克定律、维恩公式这三大辐射定律,物体的红外辐射能量的大小及其按波长的分布与其表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 三大辐射定律均是以“黑体”作为研究对象分析得出的。但是,自然界中存在的实际物体都不是黑体,所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法以及表面状态和环境条件等因素有关。因此,为了使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在0-1之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。物体表面发射率主要决定于材料性质和表面状态( 如表面氧化情况,涂层材料,粗糙程度及污秽状态等)。 当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中的红外线在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质成为黑体,其他的波段的最大值成为灰体。事实上,自然界中并不存在黑体,只是为了获得红外线的分布规律才提出的,从而导出了普朗克黑体辐射定律。 普朗克黑体辐射定律是用于描述在任意温度下从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础用公式可表达为: E=δε(T-To ) E 是辐射出射度.单位是W /m3; δ是斯蒂芬一波尔兹曼常数,5.67x10-8W /(m2·K4); ε是物体的辐射率: T 是物体的温度(K ); To 是物体周围的环境温度(K )。 红外测温仪电路比较复杂, 包括前置放大, 选频放大, 温度补偿, 线性化, 发射率ε (比辐射率 )调节等。目前已有一种带单片机的智能红外测温仪, 利用单片机与软件的功能, 大大简化了硬件电路, 提高了仪表的稳定性、可靠性和准确性。 红外测温仪的光学系统可以是透射式, 也可以是反射式。 反射式光学系统多采用凹面玻璃反射镜, 并在镜的表面镀金、 铝、镍或铬等对红外辐射反射率很高的金属材料。 3红外测温理论基础 3.1红外辐射(红外线、红外光) 红外线是电磁波谱中,波长0.76μm -1000μm 范围的电磁辐射,位于红外光与无线电波之间。与可见光的反射、折射、干涉、衍射和偏振等特性相同。同时具有粒子性。对人的眼睛不敏感,要用对红外敏感的探测器才能接收到。红外辐射的本质是热辐射,热辐射包括紫外光、可见光辐射,但是在0.76μm -40μm 红外辐射热效应最大。 自然界中一切温度高于绝对零度的有生命和无生命的物体,时时刻刻都在不停地辐射红外线。辐射的量主要由物体的温度和材料本身的性质决定;特别热辐射的强度及光谱成份取决于辐射体的温度。 3.2黑体辐射规律 黑体红外辐射的基本规律揭示的是黑体发射的红外热辐射随温度及波长的定量关系。黑体一种理想物体,它们在相同的温度下都发出同样的电磁波谱,而与黑体的具体成分和形状特性无关。斯特藩和玻耳兹曼通过实验和计算得出黑体辐射定律: 4 0)(T T M σ=

几种气体传感器的检测原理

几种气体传感器的检测原理 新世联科技有限公司为你分享:几种气体传感器的检测原理 包含以下几种气体传感器: 金属氧化物半导体传感器\ 催化燃烧式气体传感器 \ 定电位电解式气体传感器\ 迦伐尼电池式氧气传感器\ 红外传感器\ PID光离子气体传感器 \ 检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器等,以下简单阐述各种传感器的原理及特点。 金属氧化物半导体式传感器 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 催化燃烧式传感器 催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 定电位电解式气体传感器 定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 迦伐尼电池式氧气传感器 隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。 红外式传感器 红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。

红外传感器原理

利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。 红外线传感器包括光学系统、检测元件和转换电路。光学系统按结构不同可分为透射式和反射式两类。检测元件按工作原理可分为热敏检测元件和光电检测元件。热敏元件应用最多的是热敏电阻。热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。 红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗(见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机的过热情况等。 https://www.doczj.com/doc/8e10981607.html,/view/495838.html 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。人体热释电红外传感器和应用介绍被动式热释电红外探头的工作原理及特性:一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。 1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。 2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。 3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。 5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。红外线遥控鼠标器中的传感器在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚

常见传感器原理介绍

Pellistoren Pellistors使用催化燃烧来测量可燃气体或蒸气在空气的含量直到达到该气体的LEL*。 标准传感器包括一对元件,主要指典型地指探测器和平衡器(参照元件)。探测器包括一颗催化材料的小珠子和其中埋置的铂金导线卷。平衡器和探测器很类似,但小珠子不具有催化作用所以是惰性的。 Figure 1 - Pellistors 两个元件通常被管理在Wheatstone桥梁电路中,如果探测器的阻力与平衡器不同,将导致产品只有输出。 500-550°C的恒定直流电压通过搭桥对元件加热,只有在探测器元件上可燃气体才被氧化,增加的热量会加大电阻,产生的信号与可燃气体的浓度成比例。平衡器帮助平衡四周温度、压力和湿度。 大多数pellistors中的元件被分开放置在金属罐中。在一台完整的气体探测器中(被用于可能爆炸的大气),金属罐通常被放在耐火封套中,这种耐火封套通常由金属多孔状淀土和外套组成。这种封套可以保证气体能到达传感器,但热的传感器元件不会点燃该易爆的气体混合物。因为这种设计十分重要,所以这种封套通常经符合国家标准的特许测试机构检验合格。在不同的国家,这种检测很可能费时及相当昂贵的过程。作为另一种选择,我们提供的完整的探测器将两个元件放入了耐火封套,并符合最新的欧洲(ATEX)并且北美(CSA & UL)标准。 对易爆大气的测量依赖于对可燃气体低于LEL浓度的精确测量。所以在该安全应用中,通常不考虑气体浓度。该测量通常被表示为气体LEL浓度的百分比(%LEL)。

多数可燃气体检测技术用于检测多种气体,理想化的传感器应该是不同的气体有不同的测量结果。但实际上不同的化学形态影响了测量的结果,催化氧化传感器也没有例外。因此,pellistor对不同气体的相同浓度做出的判断是不同的,但当暴露在相同%LEL 浓度的不同气体中时,输出信号的变化相对小于其它检测技术。但因为此安全应用重视%LEL测量也使其成为主要优势。 我们将不同气体产生同样%LEL浓度命名为“相对敏感性”。我们进行了许多实验为CiTipeLs确定一定范围内可燃气体“相对敏感性”的实验价值。 催化毒 某些物质对催化传感器负面影响,有两种可能性: 毒 一些化合物会分解在催化剂并在催化剂表面形成坚实的屏障,这种分解是逐渐形成的,而长时期的曝光会导致传感器的敏感性发生无法恢复的减退。典型的毒物是有机铅和硅化合物。 被抑制 某些其他化合物,特别是硫化氢和被卤化的碳氢化合物,会被被吸收、或形成由催化剂吸收的化合物。这种吸收作用很强大,会使得催化剂的反应点被封闭而造成正常反应被迫停止。由于这种原因造成的传感器敏感性损失是暂时的,大多数情况下放在干净的空气中一段时间后,传感器将恢复工作。 大多数化合物属于上述两类中的一个,可能有些表现出更大或更小的程度。在毒化或被抑制可能存在的应用中,CiTipeLs产品应该被避免暴露于它们不能抵抗的所有化合物中。 LEL说明 * 气体的LEL是指用火源使空气中的该气体爆炸的最低气体浓度。

气体传感器实验

气体传感器实验 学院:计信专业:自动化 姜木北 【实验目的】 1. 理解气体传感器的工作原理; 2. 掌握单片机驱动气体传感器的方法。 【实验设备】 1. 装有IAR 开发工具的PC机一台; 2. 下载器一个; 3. 物联网多网技术综合教学开发设计平台一套。 【实验原理】 1. 气体传感器简介 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 2. 气体传感器分类及在本实验中的应用 气体传感器通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。如图 1.112所示: 根据其气敏机制可以分为电阻式和非电阻式两种。 本实验采用的是电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。 3. 气体传感器MQ-6灵敏度特性灵敏度特性如下图:1.16所示。

三角法红外测距原理介绍

三角法红外测距原理介绍 工作原理: Sharp的红外传感器都是基于一个原理,三角测量原理。红外发射器按照一定的角度发射红外光束,当遇到物体以后,光束会反射回来,如图1所示。反射回来的红外光线被CCD检测器检测到以后,会获得一个偏移值L,利用三角关系,在知道了发射角度a,偏移距L,中心矩X,以及滤镜的焦距f以后,传感器到物体的距离D就可以通过几何关系计算出来了。 图1:三角测量原理

可以看到,当D的距离足够近的时候,L值会相当大,超过CCD的探测范围,这时,虽然物体很近,但是传感器反而看不到了。当物体距离D很大时,L值就会很小。这时CCD检测器能否分辨得出这个很小的L 值成为关键,也就是说CCD的分辨率决定能不能获得足够精确的L值。要检测越是远的物体,CCD的分辨率要求就越高。 非线性输出: Sharp GS2XX系列的传感器的输出是非线性的。没个型号的输出曲线都不同。所以,在实际使用前,最好能对所使用的传感器进行一下校正。对每个型号的传感器创建一张曲线图,以便在实际使用中获得真实有效的测量数据。下图是典型的Sharp GP2D12的输出曲线图。 图2:Sharp GP2D12输出曲线 从上图中,可以看到,当被探测物体的距离小于10cm的时候,输出电压急剧下降,也就是说从电压读数来看,物体的距离应该是越来越远了。但是实际上并不是这样的,想象一下,你的机器人本来正在慢慢的靠近障碍物,突然发现障碍物消失了,一般来说,你的控制程序会让你的机器人以全速移动,结果就是,"砰"的一声。当然了,解决这个方法也不是没有,这里有个小技巧。只需要改变一下传感器的安装位置,使它到机器人的外围的距离大于最小探测距离就可以了。如图3所示:

气体传感器的检测原理

气体传感器的检测原理 检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器、等以下简单概述各种传感器的原理及特点。 金属氧化物半导体式传感器 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 催化燃烧式传感器。 催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 定电位电解式气体传感器 定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 迦伐尼电池式氧气传感器 隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。 红外式传感器 红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。

相关主题
文本预览
相关文档 最新文档