当前位置:文档之家› 数字正负脉冲充电器优点

数字正负脉冲充电器优点

数字正负脉冲充电器优点
数字正负脉冲充电器优点

智能负脉冲充电器性能优点

正负脉冲充电器采用单片机控制充电,电流是正负脉冲输出,专业用于铅酸电池除硫、除极化,产品应用范围宽广,修复效果明显。特别适合个人用户、蓄电池发烧友或电池维修店作为铅酸电池进行去硫处理,去极化处理的充电器。1、负脉冲充电器是专门针对消除铅酸电池的硫化和极化而设计的。很多铅酸电池用久了,电量减小,大部分都是因为电池硫化和电池极板极化而导致的电量下降,除了部分是因为物理损伤没办法修复外,均可以使用该产品使电池得以修复,为用户节省支出。

2、本产品采用国外先进的负脉冲技术,有效地防止、抑制、消除电池的硫化、极化、使新电池容量稳定,通过使用此充电器可以使已极化、容量下降的旧电池容量恢复,可有效延长电池使用寿命2倍以上。

3、该产器采用嵌入式电脑技术,采样精确,实现对电瓶电压、电流与充电时间的变化率实时监测,根据电瓶内在物理、化学特性,实时调整充电、修复正负脉冲的周期和脉宽,达到消除硫化、极化,降低温度,减少失水,恢复电瓶储能能力,延长电瓶使用寿命。

4、安全设计,空载无输出,在电源安全规范的基础上,设有短路、过流、极性误接等全方位保护、实现自动监控、转换、关闭、启动等功能,使用更安全。本充电模式,能极大地消除电池的极化电压,充电电流达到最大,效率高,功耗低,同等容量的电池充电时间最短,耗电量小。

5、本负脉冲充电器充电方式中的短暂放电有利于消除电池极板极化,抑制电解液温度,提高电池电荷能力.使电池在充电过程中不升温,无失水(其失水量极微,是普通三段式充电器失水率的1/6)从而使电池老化程度大为延慢,容量相对稳定,自然而然使电池寿命大大延长。

效益计算:电瓶的平均使用寿命约为15个月,更换一组20AH的电瓶要560元,电瓶每个月的损耗费就是560/15=37元!使用该充电器使电瓶可至少多用30

个月计算,用户在至少3年时间内少买2次电池,节省费用30×37元=1110元!

手机充电器电路设计[1]

手机充电器电路设计 摘要:通过对课程的学习设计。了解手机充电器的工作原理及设计流程,确定相关参数和电路图。 关键字:隔离变压器频率绝缘电阻绝缘强度可燃性自由跌落湿热试验工作原理工作流程 1 前言(李洋) 1 电路设计思想 从手机锂离子二次电池的恒流/恒压充电控制出发,用220V 交流电通过配置的内置储能锂电池对手机锂离子电池充电。电路的具体工作流程如图1所示。 图1 工作流程图 2 电路设计方案 充电芯片选用美信半导体公司的锂电池充电芯片,这款充电芯片具

有很强的充电控制特性,可外接限流型充电电源和P沟道场效应管,能对单节锂电池进行安全有效的快充。其最大特点是在不使用电感的情况下仍能做到很低的功率耗散,且充电控制精度达0.75%;可以实现预充电;具有过压保护和温度保护功能,其浮充方式能够充至最大电池容量。当充电电源和电池在正常的工作温度范围内时,接通电源将启动一次充电过程。充电结束的条件是平均的脉冲充电电流达到快充电流的1%,或时间超出片上预置的充电时间。所选用的充电芯片能够自动检测充电电源,在没有电源时自动关断以减少电池的漏电。启动快充后打开外接的P型场效应管,当检测到电池电压达到设定的门限时进入脉冲充电方式,充电结束时,外接LED指示灯将会进行闪烁提示。 电路工作原理 内置储能电池的充电及其保护电路其中包括:LED显示、热敏电阻,电流反向保护。ADJ引脚通过10kΩ的电阻与内部1.4V的精密基准源相连接,当ADJ对地没有连接电阻时,电池充电电压阈值为缺省值:VBR =4.2V;当需要自行设置充电阈值时,可在ADJ引脚与GND间接一精度为1%的电阻RADJ,阻值由式(1)确定:RADJ=10kΩ/(VBR/VBRC-1) (1) 由图3可知,充电阈值为4.1V,可得RADJ=410k 做手机充电器电路设计,需先对其工作环境进行分析,了解其工作原理。

正负脉冲充电器的设计

正负脉冲充电器的设计 陈志前 Design of a positive and negative pulse charger Zhiqian chen 摘要:本介绍了脉冲充电器的原理,以及通过单片机的控制实现对蓄电池进行智能脉冲充电的设计方法。 关键词:铅酸蓄电池,正负脉冲,充电。 Summary:This introduces the principle of pulse charger, and through the single chip microcomputer control to realize intelligent battery charging the design method of the pulse。 Key words: lead-acid storage battery,positive and negative pulse,charge 1、概述, 随着人们对环境污染的日益重视,铅酸蓄电池由于制造成本低、容量大、成本低等优点,在人们的日常生活中已经是一个非常常见的储能方式了,常见的如我们风光互补发电系统的储能部分大部分就是采用铅酸蓄电池;我们日常的代步工具——电动自行车,它的能源也是来源于铅酸蓄电池。 但是在蓄电池的使用中,由于使用方法的不同,对蓄电池的使用寿命也产生很大的影响。充电方式的选择就是其中主要因素。目前我们主要的蓄电池充电方式有恒压限流、恒流充电以及快速充电法等几种。这几种常见充电方法在现实的应用中各有优缺点。正负脉冲充电器的就是我们常用一种充电器。在这里我们着重介绍正负脉冲充电器的工作原理。 2、脉冲充电的原理 美国科学家马斯对蓄电池的充电过程的出气问题作了大量的直言和研究工作,提出了以最低出气率为前提的蓄电池可接受的充电电流曲线,在充电过程中,只要充电电流不超过蓄电池的可接受的电流,蓄电池内部就不会产生大量的气泡。常规的三段式充电在充电初期,充电电流远小于蓄电池的可接受充电电流,因而充电时间较长,充电过程后期,充电电流有大于蓄电池的可接受电流,因而蓄电池内部会产生大量的

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

阻尼器用在哪里

阻尼器用在哪里 阻尼器,是以提供运动的阻力,耗减运动能量的装置。利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器,在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。 1、在航天、航空、军工、机械等行业中广泛应用,有着几十年成功应用的历史。 ·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研究,发表了几十篇有关论文 ·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考 ·在肯定以上成果的基础上被几乎各有关机构,规范审查,肯定并规定了应用办法

·管理部门通过,带来了上百个结构工程实际应用。这些结构工程,成功地经历了地震、大风等灾害考验,十分成功。 2、仓储货架编辑 在重力式货架仓储中,由于货物受到重力影响,在倾斜的仓储滑道中做加速运动,如果任其自由运动, 货物撞击货架,可能会引起货物损坏,操作人员安全隐患以及货架整体结构的损毁。而阻尼器在其中起了非常重要的作用。重力式货架中的阻尼器,又称减速器,主要用于消除重力式货架中货物产生的重力加速度,从而使得货物能够平稳,缓慢的沿轨道下滑,消除安全隐患。保证货物及操作人员的安全性。其中阻尼可分为外置式和内置式。 3、液压阻尼器是一种对速度反应灵敏的振动控制装置; 液压阻尼器主要适用于核电厂、火电厂、化工厂、钢铁厂等的管道及设备的抗振动。常用于控制冲击性的流体振动(如主汽门快速关闭、安全阀排放、水锤、破管等冲击激扰)和地震激扰的管系振动; 液阻尼器对低幅高频或高幅低频的振动不能有效地控

脉动阻尼器和吸入稳定器计算公式

这个公式适用于计量泵、活塞泵和柱塞泵的SENTRY?脉动阻尼器和吸入稳定器的选型。对于气动隔膜泵和蠕动泵请见背面的选型表。这个公式允许用户输入需要的防脉冲程度,表示成以平均工作压力为基准的最大和最小压力波动。如果用户希望得到的压力是系统压力的±5%,公式中的百分比就是一个变量,按减少脉动90%来计算所需的缓冲容积。例如,排出压力是80psi,残留脉冲是平均压力的±5%,即总共减少90%的脉动,压力波动范围则是76~84psi。 计量泵、活塞或柱塞泵 选型所需的参数 变量:V =泵单个冲程的容量 K =泵的类型(参数K) P =平均工作压力 D =允许的压力波动百分比(相对平均数的正负) N =气体膨胀系数 氮气=0.714 空气=1.0 V) 单个冲程容量的计算: 1、升/小时÷冲程次数/小时=升/冲程 2、0.7854 ×镗孔直径(mm)2 ×冲程长度(mm) =毫升/冲程 K) 泵的类型(参数K) 单台泵:单泵头=0.60 双泵头=0.25 双台泵:单泵头=0.25 双泵头=0.15 三台泵:单泵头=0.13 双泵头=0.06 四台泵:单泵头=0.10 双泵头=0.06 五台泵:单泵头=0.06 双泵头=0.02 P) 工作压力(平均) 期望的压力波动:最小压力Pmin = P – (P × D)

最大压力Pmax = P + (P × D) 计算公式 1-(P/P max)n 脉动阻尼器所需容量=———————— 1-(P/P max)n 简单估算容量=25.2×单个冲程容量 容量估算的条件是: 1、泵类型为单头泵 2、填充介质为空气 3、脉冲消除效果为95% 气动双隔膜泵和蠕动泵 下表所列的是用于气动双隔膜泵(AODD)的SENTRY脉动缓冲器和吸入稳定器的选型。气动双隔膜泵(AODD)的吸入稳定器和排出的脉动缓冲器选择相同的型号。所列的型号能产生90%的脉动消除效果,如果需要更高的阻尼效果,应该选择下一个更大的容量的系列。 接口尺寸SENTRY阻尼器型号 1/4"0.16L(SENTRY Ⅲ系列) 3/8"0.16L(SENTRY Ⅲ系列) 1/2"0.59L(SENTRY Ⅱ系列) 3/4" 1.39L(SENTRY Ⅱ系列) 1" 1.39L(SENTRY Ⅱ系列) 1-1/4" 2.87L(SENTRY Ⅰ系列) 1-1/2" 2.87L(SENTRY Ⅰ系列) 2" 6.06L(SENTRY Ⅰ系列) 3"22.7L(SENTRY Ⅳ系列) 4"22.7L(SENTRY Ⅳ系列) 蠕动(软管)泵 下表所列的是用于两头或三头的蠕动(软管)泵的SENTRY脉动缓冲器和吸入稳定器的选型。泵的吸入稳定器和排出的脉动缓冲器选择相同的型号。所列的SENTRY缓冲器型号

安全阀、背压阀、阻尼器

安全阀用在受压设备、容器或管路上,作为超压保护装置。当设备、容器或管路内的压 力升高超过允许值时,阀门自动开启,继而全量排放,以防止设备、容器或管路内的压力继续升高;当压力降低到规定值时,阀门应自动及时关闭,从而保护设备、容器或管路的安全运行。 安全阀可以由阀门进口的系统压力直接驱动,在这种情况下是由弹簧或重锤提供的机械载荷来克服作用在阀瓣下方的介质压力。它们还可以由一个机构来先导驱动,该机构通过释放或施加一个关闭力来使安全阀开启或关闭。因此,按照上述驱动模式将安全阀分为直接作用式和先导式。 安全阀可以在整个开启高度范围或在相当大的开启高度范围内比例开启一也可能仅在一个微小的开启高度范围内比例开馆,然后突然开启到全开位置。因此,可以将安全阀分为比例式和全启式。 安全阀的结构、应用和公称通径的确定应受到规范的约束,或者应得到法定机关的同意。在不同的规范之间,其约束条款以及有关定义可能不同。在应用安全阀时,必须遵循其适用规范的要求。 背压阀 背压阀的名词来源于,Back Pressure Valve。 它代表的意思是说由于阀的功能而形成一定的压力,压力一般可以调节。 最常用的系统有,流体计量投加系统、液压控制系统、化学反应条件、物态临界状态控制等。 基本可以分为调节和过流两部分。 背压阀 一、概述 计量泵等容积泵在低系统压力下工作时,都会出现过量输送。为防止类似问题,必须在计量泵的进出口至少0.7Bar的背压。通过在计量泵出口管道中安装背压阀就能达到目的。 二、主要功能

1. 为背压阀两端管路提供压力差 2. 在要求不是很严格的系统中可作为安全阀使用。 3. 和脉动阻尼器配合使用减小水锤对系统的危害,减小流速波动的峰值,保护管路、弯头、接头不受压力波动的冲击。 4. 为计量泵创造良好的工作环境并改善泵的工作性能。 三、工作原理 背压阀是通过弹簧的弹力来工作的。当系统压力比设定压力小时,膜片在弹簧弹力的作用下堵塞管路;当系统压力比设定压力大时,膜片压缩弹簧,管路接通,液体通过背压阀。 四、背压阀的使用 在出口管路中,背压阀应和脉动阻尼器同时使用,用脉动阻尼器吸收泵和背压阀之间的流量峰值。没有脉动阻尼器时,背压阀将随着每次泵冲程的进行而快速打开和关闭。有脉动阻尼器时,背压阀将在半开和半关的位置上振荡,因而脉动阻尼器可以减少背压阀的磨损速度。 对于大流量的泵,且出口管路长而细,背压阀的安装位置应靠近加注点,以减小虹吸的趋势。 当输送含有悬浮状固体的介质,在背压阀入口端应安装带管堵的三通(或四通),使管路在不拆卸的情况下能够进行清洗。 背压阀只是一种管路元件,只有与其它管路元件(如脉动阻尼器、安全阀、止回阀、截止阀)配合使用才能发挥最大效用 五、选型指南 管路通径有DN6、8、10、15、20、25、32、40、50、65、80、100十二个型号。 入口端压力有0.3MPa与1.0MPa两个系列,进出口端压力差可以通过调节弹簧长度调节。 材质有PVC(P)、SS304/316不锈钢(S)、碳钢(A) 进出口联接方式提供内螺纹、法兰、软管接头三种方式供选择。 六、注意事项 1、避免与系统发生共振。 2、与脉动阻尼器同时使用时,脉动阻尼器应安在泵与背压阀间,以吸收泵与背压阀间的流量峰值。减缓背压阀的磨损速度。 3、室外使用应加防护棚或防护罩。

脉冲阻尼器原理及选型

脉动阻尼器 脉动阻尼器是一种用于消除管道内液体压力脉动或者流量脉动的压力容器。可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 脉动阻尼器分类: 1.按照缓冲介质分类: 分为压缩惰性气体缓冲式和无移动部件式,其中压缩惰性气体缓冲式又分为膜片式和气囊式等,无移动部件式分为金属结构式和陶瓷结构式等: 分为三元乙丙橡胶、丁纳橡胶、氟橡胶、聚四氟、金属、陶瓷等内部材质类型; 分为单孔式和双孔式; 分为直通式和非直通式; 消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 选择适合的脉动阻尼器,应首先根据现场实际情况和工艺要求确定所需达到的脉动消除率指标,然后根据此技术指标进行定量选型。 准确的脉动阻尼器选型应根据流量、压力、泵类型、泵转速、泵缸数、泵相位差(多级泵)、脉动消除率、应用目的、管道流体成分、管道流体密度、管道流体粘度、管道流体温度等参数综合计算和分析后确定。 通过以上参数,关键需要计算出流体的脉冲量(即1次脉冲所输送的液体体积)和脉动频率。再结合脉动消除率指标,即可初步计算出所需要的脉动阻尼器类型和容积。

例如,要求残余脉动控制在10%以内、脉冲量为1升/次、脉动频率为2次/秒,则脉动阻尼器可选用膜片式或气囊式,容积至少为10升。 根据客户不同的实际应用,最高可以达到99.9%以上的脉动消除率,即残余脉动控制在0.1%以内。 例如:用于消除管道振动推荐残余压力脉动控制在3%以内; 用于保证涡街流量计精度则推荐残余流量脉动控制在0.75%以内。 脉动阻尼器是一种压力容器,由于材料、制造技术及实际应用的限制,脉动阻尼器一般承压在500公斤/平方厘米左右(特殊应用也可以更高),耐温大约数百摄氏度。

模电课程设计—手机充电器

郑州科技学院 《模拟电子技术》课程设计 题目手机充电器 学生姓名 x x x 专业班级电气工程及其自动化班 学号2012470xx 院(系)电气工程学院 指导教师 xx 完成时间 2014年月日

前言 随着科学技术的发展,手机逐渐成为人们交流的主要工具,在人类社会中扮演着重要的角色。但是也有不利的一方面,消费者每当更换一个手机就必须更换原配充电器,或者是原配充电器遗失或损坏后找不到与之相匹配的充电器,所以必须抛弃手机或者寻找原配充电器,但是花很多的钱。手机配件的不完善逐渐成为国产手机被消费者厌恶最多的问题之一,致使国内手机的销量下降。 在2003年,深圳市海陆通电子有限公司研发推出了历史上第一款通用型手机充电器——万能充,让海陆通公司始料不及的是,这个看似简单但外观独特的充电器却获得市场的热销。“第一次推出的几十万批量试单,三天内全部售完,完全出乎在我们的预料。”没有想不到只有做不到,至此万能充电器逐渐成为人们充手机的主要工具,方便快捷。 以前一个手机要对一个原装充电器,因为手机的更新换代速度很快,有的人半年就换一台手机,一个老百姓平均使用的充电器十个八个,对社会的有限资源是极大的浪费。但是万能充发明出来后,一个充电器基本可以满足全家人使用。所以说对节约社会资源,减少资源浪费做出了一定的贡献,在这个行业来说也是一个创新性的里程碑式的产品,有效地推动了充电器标准化的进程。一个小小充电器不仅改变了海陆通公司的命运,也改变了数以千万中国手机用户换手机一定要换充电器的束缚,给手机用户带来了极大的便利。

目录 1设计的目的 (1) 2设计的任务与要求 (1) 2.1设计的任务 (1) 2.2设计的要求 (1) 3设计方案与论证 (1) 3.1 设计的方案 (1) 3.2万能充的原理方框图 (2) 4设计原理及功能说明 (3) 4.1元器件的选用原理 (3) 4.2总体电路图 (5) 5单元电路 (7) 5.1变压器 (7) 5.2二极管 (8) 6硬件的安装与调试 (9) 6.1硬件的安装 (9) 6.2硬件的调试 (9) 7总结 (10) 参考文献 (10) 附录1:总体电路原理图 (11) 附录2:元器件清单 (11)

快速脉冲充电技术的研究

快速脉冲充电技术的研究 概述 目前个护电动充电式产品得到了越来越广泛的应用。个护占居市场的电动剃须刀用的可充电电池多数采用镍氢镍镉电池 , 其充电方式采用直流恒压或恒流充电 ,这两种充电方式实际中存在很大缺陷。恒压充电不合理是因为可充电电池内阻很小 ,恒压充电初始电流很大,因而要降压, 到了充电后期则因电压过低导致充电不足, 长期欠充会使充电电池内部严重不能完全有效化学反应 ; 恒流充电之所以不合理是因为充电电池充电曲线呈指数变化 , 如图 1 所示 ,恒流电流在充电初期小于充电电池可接受最大电流 ,延长了充电周期 , 后期则超过充电电池可接受电流的能力 ,电能不能有效转化为化学能 , 多变为热能消耗掉了。解决方法之一就是根据理想充电曲线 , 动态跟踪参变量 , 实时调节充电电流。智能电动产品充电电池具有放电电流大、放电时间短以及放电深度深等特点 , 对于电动智能产品还有启动较频繁等特点 , 因此采用智能快速脉冲式充电技术 , 将避免上述缺点 , 使充电过程更合理化。 一般在正常充电时 , 以 8 或 10 小时充电率电流进行充电所需时间多为 10 多个小时 , 快速充电的特点是采用 1 C (A) ( C 为充电电池额定容量数值) 以上的大电流 , 在短时间内把电池充满 , 而在此过程中 , 充电电池既不产生大量气体 , 又不使充电电池温度过高 , 解决的办法就是采用脉冲式充电 , 用反向电流短时间放电的方法消除极化 , 这样就可以保证充电电池不大量产生气体又不

发热 , 从而大大缩短充电时间。 快速充电的基本原理 找出充电电池能够接受的最大充电电流和可以接受的充电电流曲线 ,如图1 所示 ,方程式: i = I0e - at 方程式中i —任意时刻t 时充电电池可接受的充电电流 I0 —最大初始可接受充电电流 a —衰减率常数 , 也称充电接受比 图1 图 1 所示是一条自然充电接受特性曲线 , 超过这一充电接受曲线的任何充电电流 , 不仅不能提高充电效率 ,而且会增加析气 ,小于此接受曲线的充电电流 ,便是充电电池具有的储存充电电流。 在实验的基础上验证出 , 充电电池在采用任何放电电流后 ,

电动车铅酸蓄电池的脉冲快速充电设计

电动车铅酸蓄电池的脉冲快速充电设计 摘要:对快速充电原理进行了阐述,针对蓄电池充电过程中出现的种种问题,采用了分级定电流的脉冲快速充电方案,提出了充电器的硬件电路和控制软件的设计方案。该充电方案对充分发挥蓄电池的功效,提高对蓄电池的充电速度,减少充电损耗,延长蓄电池的使用寿命具有重要意义。 关键词:电动车;铅酸蓄电池;脉冲快速充电 引言 以动力蓄电池为能源的电动车被认为是21世纪的绿色工程,它的出现将汽车工业的发展带入了一个全新的领域。目前,电动车核心部件中的电动机、控制器和车体三大部件在理论和技术上已较为成熟,而另两大部件蓄电池、充电器的发展还不能满足电动车的要求,有一些理论和技术问题还有待攻关,现已成为影响 电动交通工具发展的瓶颈。 目前,我国的电动车用动力蓄电池大多为铅酸蓄电池,这主要是由于铅酸蓄电池具有技术成熟、成本低、电池容量大、跟随负荷输出特性好、无记忆效应等优点。当然,也有一些高性能电池,比如锂电池、燃料电池等。锂离子电池电动车在深圳已投入试运营,由上海研制的第二代燃料电池轿车"超越二号"也于2004年5月在北京的国际氢能大会上露面,但都还未能得到广泛的推广应用。虽然近年来蓄电池自身的技术有了不小的进步,但作为其能量再次补充的充电器的发展非常缓慢,传统的常规充电时间过长,快速充电技术至今仍未能完全解决,严重地制约着电动车的发展。 自铅酸蓄电池问世以来,由于各种技术条件的限制,所采用的充电方法均未能遵从电池内部的物理化学规律,使整个充电过程存在着严重的过充电和析气等现象,充电效率低。电动车用动力蓄电池与一般蓄电池还有所不同,它以较长时间中等电流持续放电为主,间或以大电流放电,用于起动、加速或爬坡。一般来说,电动车用蓄电池多工作在深度充放电工作状态。因此,对电动车用动力蓄电池的快速充电提出了不同于常规电池的要求,它必须具有充电时间短、对蓄电池使用寿命影响小以及充满电判断准确的特点。 1脉冲快速充电法的理论基础 理论和实践证明,蓄电池的充放电是一个复杂的电化学过程。一般地说,充电电流在充电过程中随时间呈指数规律下降,不可能自动按恒流或恒压充电。充电过程中影响充电的因素很多,诸如电解液的浓度、极板活性物的浓度、环境温度等的不同,都会使充电产生很大的差异。随着放电状态、使用和保存期的不同,即使是相同型号、相同容量的同类蓄电池的充电也大不一样。 1972年,美国科学家马斯在第二届世界电动汽车年会上提出了著名的马斯三定律,即1)对于任何给定的放电电流,蓄电池充电时的电流接受比a与电池放出的容量的平方根成反比,即 式中:K1为放电电流常数,视放电电流的大小而定; C为蓄电池放出的容量。 由于蓄电池的初始接受电流Io=aC,所以 I0=aC=K1(根号C)(2) 2)对于任何给定的放电量,蓄电池充电电流接受比a与放电电流Id的对数成正比,即 a=K2logkId(3) 式中:K2为放电量常数,视放电量的多少而定; k为计算常数。 3)蓄电池在以不同的放电率放电后,其最终的允许充电电流It(接受能力)是各个放电率下的允许充电 电流的总和,即:

雅迪电动车充电器电路图

雅迪的此款充电器是高标针对电动自行车铅酸电池包开发的智能型充电器,具有电池温度补偿和正负脉冲充电功能,能有效的延长电池的使用寿命、提高充电效率和避免电池硫酸盐化。高效率开关电源加单片机智能控制技术,使本机具有输入电压宽、充电效率高、充电电压控制精准等特点;本充电器具有完善可靠的短路、过流、过压、反接等保护,使用更安全、更放心。 其电路图如下: T0:双向滤波抑制干扰 D1:整流 C11:滤波 IC1:μc3842脉宽调制集成电路。其5脚为电源负极;7脚为电源正极; 6脚为脉冲输出直接驱动场效应管Q1(K1358);3脚为最大电流限制,调整 R25欧姆)的阻值可以调整充电器的最大电流;2脚为电压反馈,可以调节充电器的输出电压;4脚外接振荡电阻R1,和振荡电容C1 T1为高频脉冲变压器,其作用有三个:第一是把高压脉冲降压为低压脉冲;第二是起到隔离高压的作用,以防触电;第三是为μc3842提供工作电源D4:高频整流管(16A60V) C10:低压滤波电容 D5:12V稳压二极管 IC3:(TL431)为精密基准电压源,配合IC2(光电耦合器4N35)起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。 D6:充电指示灯 D10:电池浮充(充满)指示灯 R27:电流取样电阻(欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐

点电流(200-300 mA) 通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到IC1的第7脚。强迫IC1启动。IC1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3、R12给IC1提供可靠电源。 T1输出线圈的电压经D4、C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。第二路经R14、D5、C9, 为LM358(双运算放大器,4脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。 D9为LM358提供基准电压,经R26、R4分压达到LM358的第2脚和第5脚。 正常充电时,R27上端有-左右电压,此电压经R17加到LM358第3脚,从1脚送出高电压。此电压一路经R18,强迫Q2导通,D6(红灯)点亮,第二路注入LM358的6脚,7脚输出低电压,迫使Q3关断,D10(绿灯)熄灭,充电器进入恒流充电阶段。当电池电压上升到左右时,充电器进入恒压充电阶段,输出电压维持在左右。充电器进入恒压充电阶段,电流逐渐减小。 当充电电流减小到200mA—300mA时,R27上端的电压下降,LM358的3脚电压低于2脚,1脚输出低电压,Q2关断,D6熄灭。同时7脚输出高电压,此电压一路使Q3导通,D10点亮。另一路经D8、W1到达反馈电路,使电压降低。充电器进入涓流充电阶段。1-2小时后充电结束。

手机充电器设计报告

手机充电器设计报告 题目:手机充电器设计 指导老师:翟永前 专业班级:电子信心工程专业12级 组别:第六组 组长:曹广振 团队成员:王沛、索彬、赵小芳、曹广振

院系名称:通信信号学院 智能充电器的设计 【摘要】 随着手机在世界范围内的普及,手机电池充电器的使用越来越广泛。充电器种类繁多,但从严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。 该设计利用51单片机的处理控制能力实现充电器的智能化,在单片机的控制下,具有预充、充电保护、自动断电和充电完成报警提示功能。该设计包括了六个功能模块: ·单片机模块:实现充电器的智能控制,如自动断电,充电完成报警提示。·充电过程控制模块:采用专用的电池充电芯片实现对充电过程的控制。·光耦模块:控制通电和断电,在电池充满电后及时关断充电电源。 ·充电电压提供模块:将一般家用交流电压经过变压器、电压转换芯片等转换为5V直流电压。 ·电压测试模块:利用AD转换把充电电池两端的电压通过数码管显示出来。·C51程序:单片机控制电池充电芯片实现充电过程的自动化,并根据充电状态给出有关的指示。 【关键字】 单片机、电压转换、MAX1898、智能、充电器

【目录】 一、设计综述 (4) 二、基本方案 (4) 三、软硬件设计 (5) 四、软硬件仿真 (13) 五、测试 (13) 六、设计体会 (14)

一、设计综述 手机电池的使用寿命和单次使用时间预充电过程密切相关,锂电池是手机最为常用的一种电池,它具有较高的能量重量比、能量体积比,具有记忆效应,可重复充电多次,使用寿命较长,价格也越来越低。锂电池对于充电器的要求也比较苛刻,需要保护电路,为了有效利用电池容量,须将锂电池充点值最大电压,但是过压充电会导致电池损坏,这就要求较高的充电精度。 而大部分充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。一些低成本的充电器采用电压比较法,为了防止过充,一般充电到90%就停止大电流快充,而采用小电流涓流补充充电,这样就使充电时间增长了。 一部好的充电器不但能在短时间内将电量充足,而且还可以对锂电池起到一定的维护作用,修复由于记忆造成的记忆效应,即电池容量下降现象。设计比较科学的充电器往往采用专用充电芯片配合单片机控制的方法。专用的充电芯片可以检测出电池充电饱和时发出的电压变化信号,比较精确的结束充电工作,通过单片机对这些芯片的控制,可以实现充电过程的智能化,以缩短充电时间,同时能够维护电池,延长电池使用寿命。 另外,比起一般充电器,智能充电器还增加了充电电压的显示,让我们能直观的看到电池的由预充、快充、满充充电阶段,从而加强对电池的维护。 二、基本方案 (一)方案分析 该设计采用逐个功能模块分析再组合的方法来实现方案。1、单片机模块 智能的实现利用单片机控制,经过分析,单片机芯片可以选择Atmel公司的AT89C52,来控制充满电时蜂鸣器报警声,以及通过中断控制光耦器件通电和断电。 2、充电过程控制模块

HLMZ-Q系列气囊式脉动阻尼器说明书

HLMZ-Q系列 气囊式脉动阻尼器说明书 一、产品概述 脉动阻尼器是消除管路脉动的常用元件,是计量泵必须配备的 附件。HLMZ-Q系列气囊式脉动阻尼器能够平滑由柱塞泵、隔膜泵 等容积泵引起的管路脉动及消除系统的水锤现象,它由耐腐蚀的气 囊将气体与管路中的液体隔离,通过气室容积的变化平滑管路脉动,对受压液体的能量进行储存和释放。该系列产品广泛用于化工、水处理、食品饮料、电力、造纸、纺织及流体机械等行业。 二、主要功能 1.消除水锤对系统的危害。 2.减小流速波动的峰值。 3.减少压力波动对管路、弯头、接头的冲击。 4.吸收泵的脉动,为其创造良好的工作环境并改善泵的工作性能。 5.和背压阀等配合使用可以使管路的压力波动接近为零。 6.紧急或快速储存能源,降低系统能耗。 7.作为辅助能源,允许系统选用略小的泵型和使用更小的管径,降 低成本。 8.在系统中作为容积补偿和压力补偿元件。 三、工作原理 气囊式脉动阻尼器是一种专门为蓄集受压液体而达到平滑脉动效果的装置。液体是不可压缩的,利用气体的可压缩性来达到储存和释放能量的目的。可伸缩的胶囊装在阻尼器壳体中,通过专用充气阀将惰性气体充入胶囊,气体膨胀,充满阻尼器壳体的整个容积。当管路压力大于预充气体压力时,液体进入阻尼器内,胶囊被压缩,气体容积减小。当达到气体压力与液体压力平衡时,气体容积的变化量即为可利用做功的有效容积。注: 1.可根据客户要求把脉动阻尼器壳体做成UPVC、PP、316、1Cr18Ni9Ti、碳钢等材质。 2.气囊也可根据耐蚀情况选用不同材质的橡胶,以在一些特定环境中使用。 3.与客户端的联接螺纹或法兰可按客户的要求制作。 4.可根据客户要求做成带或不带压力表式。 八、注意事项 1.安装在离泵距离近的位置平滑脉动的效果会更好。 2.竖直安装比水平安装效果更好。 3.预充气体压力并非越大越好。 4.避免与系统发生共振。 5.与背压阀同时使用时,应安在泵与背压阀间,以吸收泵与背压 阀间的流量峰值,减缓背压阀的磨损速度。 6.脉动阻尼器应在室内使用,避免阳光直射,远离火源、热源。 室外使用应加防护棚或防护罩。 7.若管路液体为危险品,应为脉动阻尼器加防护罩,防止壳体破 裂后溢出的物料伤害人体或者污染环境。 8.每天检查预充气体压力,塑料材质的每月检查壳体有无破裂,每2500小时或六个月检查一次气囊,根据实际情况决定是否更换。 9.海蓝气囊式脉动阻尼器不是传热元件,使用过程中不得对脉动 阻尼器加热或冷却。 10.对脉动阻尼器进行任何维护以前,应停止运转设备,释放压力,关闭脉动阻尼器与系统相联的阀门,确认脉动阻尼器内没有 压力。维修时注意防止被输送液体伤害人体。 11.运转过程中发现气囊破裂应及时切断电源。 12.若长期不使用,需清洗阻尼器内被输送的残留物,释放气囊内 的气体,密封保存。结束保存期后,需重新测试脉动阻尼器的密封状况及检查气囊是否损坏。 13.若有疑问,请与我公司联系。

脉动阻尼器

1、脉动阻尼器 脉动阻尼器,脉动阻尼器是 一种用于消除管道内液体压力脉动或者流量脉动的压力容器,可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 原理:脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 用途:消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 2、背压阀 背压阀的名词来源于Back Pressure Valve。它代表的意思是说由于阀的功能而形成一定的压力,压力一般可以调节。可用于控制空气、水、蒸汽、各种腐蚀性介质、泥浆、油品、液态金属和放射性介质等各种类型流体的流动。启闭件是一个圆盘形的阀板,在阀体内绕其自身的轴线旋转,从而达到启闭或调节的目的。在管道上主要起切断和节流作用。最常用的系统有,流体计量投加系统、液压控制系统、化学反应条件、物态临界状态控制等。基本可以分为调节和过流两部分。 原理:流体从背压阀进口进入,被膜片阻挡,于是流体对膜片产生向上的压力。当压力足够大时,弹簧被压缩,流体顶起膜片形成通道,从背压阀出口流出;若流体压力不够,就会形成憋压,使进口压力上升直到达到额定压力,顶起膜片形成通路。背压阀的额定压力可调节,一般通过调节弹簧上端的顶杆,从而调节弹簧的长度来实现。 功能: 1. 出口管道上的单向阀用于防止液体回流,背压阀用于保持泵出口有一恒定压力。 2. 在要求不是很严格的系统中可作为安全阀使用。 3. 和脉动阻尼器配合使用减小水锤对系统的危害,减小流速波动的峰值,保护管路、弯头、接头不受压力波动的冲击。 4. 为计量泵创造良好的工作环境并改善泵的工作性能。 5.保证水泵出水流量的稳定性,如某些泵的流量随压力变化较大,可在泵的出口处设置背压阀,使泵的输出流量稳定,这时一般选择背压阀的压力为泵的实际使用压力或略小于泵的使用压力。 6.在管路或是设备容器压力不稳的状态下,能保持管线所需压力,使泵能正常输出流量。 7.在泵的出水口由于重力或其它作用常会出现自流或虹吸现象,背压阀能消减由于虹吸产生的流量及压力的波动,这时候一般选用大于液体自身压力即可,如防止液位为2米药箱中的液体自流,可选用压力大于0.02MPa的背压阀,一般选用0.1MPa即可。

膜片式脉冲阻尼器2

上海阔思电子有限公司 设计封面 膜片式脉冲阻尼器使用说明书 一、概述 脉冲阻尼器又名脉动缓冲器,是消除管路脉动的常用元件,是计量泵必须配备的附件。脉动阻尼器能够平滑由柱塞泵、隔膜泵等容积泵引起的管路脉动和系统的水锤现象。它由耐腐蚀的隔膜将气体与管路中的液体隔离,通过气室容积的变化平滑管路脉动。 二、主要功能 1.减小除去水锤对系统的危害。 2.减小流速波动的峰值。 3.保护管路、弯头、接头不受压力波动的冲击。 4.为计量泵创造良好的工作环境并改善泵的工作性能。

5.允许系统使用更小的管径,降低成本。 6.和背压阀等配合使用可以使管路的压力波动接近为零。 7.降低系统的能耗。 三、工作原理 根据玻意耳定律P1V1=P2V2,通过改过气体的体积来平滑管路脉动。对于流速有正弦曲线特性的系统,波峰时,气室体积变小,脉动阻尼器吸收多余的流量的液体,波谷时,气室体积变大,释放存储的液体,从而达到平滑脉动的效果。 四、产品特点 ●可以预充气体,充气后平滑脉动的效果比空气室式脉动阻尼器的效果好。 ●气体不与管路液体接触;气体不会因溶解到液体里而损失。 ●设有限位装置,防止膜片过度变形。 五、脉动阻尼器的使用 膜片式脉动阻尼器最高使用压力为:塑料材质的为1.0MPa,金属材质的为2.5MPa,禁止超压使用,以免壳体破裂发生危险。最高使用温度75℃。最低使用温度5℃,最佳使用温度10~45℃。 安装过程中,应避免发生碰撞,以防壳体破裂。安装时应在脉动阻尼器周围预留足够的空间,便于脉动阻尼器预充气体及日后的维护、调整。脉动阻尼器与固定支架间应垫有减震材料,以吸收脉动阻尼器壳体的震动能量,同时防止产生共震。 使用前预充氮气或氩气,压力为系统平均压力的50%-80%。若安装在泵出口处,推荐预充50%的压力,若安装在泵入口处,推荐预充70%-80%。若长期不用应放掉预充气体,以延长膜片寿命。脉动阻尼器膜片材质为聚四氟乙烯衬橡胶,最好不要预充氧化性气体(如氧气、空气),否则会加快橡胶的氧化速度,减少膜片的使用寿命。 使用时压力表指针应小幅摆动,摆动过大则说明预充气体压力偏小或者选型偏小,不摆动说明预充气体压力过大或者管路不通。 六、选型指南 脉动阻尼器的选型应根据液压管路的波动量来选定,对于容积泵,可根据冲程流量来选定。脉动阻尼器的容积越大平滑脉动效果越好。 考虑到气体压力会随温度的变化而变化。对液体温度超过50℃的系统,预充气体时应考虑预充压力随温度的变化。同时选型时用下面的的公式修正选型参数。 V pa=V p T i/(0.95T op) V pa修正后的当量冲程流量 V p实际冲程流量 T i预充气体温度(K) T op 最高使用温度(K) 外形尺寸

各充电器的USB接线方法

IPHONE充电器,IPAD充电器,三星充电器,HTC充电器的D+,D- USB接线方 法,IPHONE充电器分压电阻的设置 IPHONE充电器,IPAD充电器,三星充电器,HTC充电器的D+,D- USB接线方法,IPHONE 充电器分压电阻的设置 在设计充电器时,1A和2.1A的充电器的D+,D-是刚好相反的. 1A的充电器依次是5V 2.8V 2.0V 0V 2.1A的充电器:5V 2.0 2.8V 0V 当iPad或者iPhone接上充电器时,通过这两个引脚上不同的电压就可以区分当前使用的是哪种充电器,也就能对负载做出相应的调整,从而安全地充电。这种设计还可以防止普通充电器对苹果设备进行充电。 用2.1A的iPad充电器给iPhone充电,实际会怎样? iPad和iPhone充电器的设计不同是有原因的。iPhone的电池容量较小,只需要1A的充电电流就能在一个合理的时间内完成充电。虽然更大的充电电流能大幅缩短充电时间,但会带来更大的发热量,而高温是锂电池寿命缩短的头号杀手,所以iPhone充电器的最大输出电流被设计为1A。但当iphone插入2.1A的充电器时,因为iphone内部有电源管理,所以其实它还是按1A的电流给IPHONE充电 如果2.1A充电器分压电阻按1A的 5V 2.8V 2.0V 0V接。那么IPAD会认为这个充电器只能提供1A电流,所以最大的充电电流也就被限制在了1A,这样2.1A的充电器也就失去了意义. 如果用1A 的iPhone的充电器给iPad进行充电,由于iPhone的充电器最大只能提供1A的电流输出,如果你用iPhone充电器给iPAD充电,那么iPAD通过读ADC判断D+ 和D-电压就可识别这个充电器只能提供1A电流,iPAD就设置成1A恒流进行充电,可以充就是时间长一些而已。 如果1A的充电器按2.1A的充电器:5V 2.0 2.8V 0V来接充电分压电阻,那么,IPAD就会认为它是2.1A的充电器,会按充电器的最大电流充电,如果充电器不是恒流的,那么就会使电流达到充电器的过流保护电流,这样长时间工作,可能损坏充电器. IPHONE充电器,IPAD充电器等苹果产品为充电器定义了3种充电电流,分别是 0.5A/1A/2.1A.具体是由3种不同的电阻组合来实现的。当苹果的设备ipad,iphone,ipod

计量泵选型及使用说明

计量泵选型及使用说明 一、计量泵综述 1.1计量泵的基本工作原理 计量泵主要由动力驱动、流体输送和调节控制三部分组成。 按其动力驱动和流体输送方式的不同,计量泵可以大致划分成柱塞式和隔膜式两大类。 ?隔膜式计量泵 隔膜式计量泵利用特殊设计加工的柔性隔膜取代活塞,在驱动机构作用下实现往复运动,完成吸入---排出过程。由于隔膜的隔离作用,在结构上真正实现了被计量流体与驱动润滑机构之间的隔离。 隔膜式计量泵中,液压驱动式隔膜泵采用液压油均匀地驱动隔膜,克服了机械直接驱动方式下隔膜受力过分集中的缺点,提升了隔膜寿命和工作压力上限。 隔膜式计量泵中,电磁驱动式计量泵以电磁铁产生脉动驱动力,省却了电机和变速机构,使得系统小巧紧凑,是小量程低压计量泵的重要分支。 ?柱塞式计量泵 主要有普通有阀泵和无阀泵两种。柱塞式计量泵因其结构简单和耐高温高压等优点而被广泛使用。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式计量泵在高防污染要求流体计量应用中受到诸多限制。 1.2 计量泵的控制方式 计量泵每一次的流体泵出量决定了其计量容量。在一定的有效隔膜面积下,泵输出流体的体积流量正比于冲程长度L和冲程频率F: V∝A*F*L 在介质和工作压力确定的情况下,通过调节冲程长度L和冲程频率F即可实现对计量泵输出的双维调节。 尽管冲程长度和频率都可以作为调节变量,但在工程应用中一般将冲程长度视为粗调变量,冲程频率为细调变量;调节冲程长度至一定值,然后通过改变其频率实现精细调节。增加调节的灵活性。在相对简单的应用场合,亦可手动设置冲程长度,仅将冲程频率作为调节变量,从而简化系统配置。 ?常规开关量或模拟量信号调节方式 过程控制应用中广泛采用0/4-20mA模拟电流信号作为传感器、控制器和执行器之间的

智能脉冲充电器介绍

48V 10-14Ah智能正负脉冲充电器性能介绍 基本参数:输入交流电压185-240V AC 50Hz 正脉冲充电电流 2.5A+-0.15A 负脉冲放电电流 2.4A+-0.2A (电池电压为56V时) 负脉冲占比 2.8% 快速充电平均充电电流 2.05A +-0.1A 最高充电电压59V+-1% 25摄氏度 浮充电电压55.55V+-1% 25摄氏度 技术特点:以高效快速响应开关电源为基础,配以单片微电脑全程监测和控制,采用各种配比的正负脉冲对电池进行充电,提高电池受电率并大大降低电池失水率。通过独创的过程电压曲线监视分析技术,可以早期发现异常温升等非正常情况,完全防止电池充热充鼓,且能够正常判停缺格电池。内置进风口温度检测,对充电电压进行温度补偿,保证冬季充足,夏季不充过。 充电状态及描述: 1.接入电池初期检测: 充电器首先检测电池电压,确定电池电压在可充电范围内(39V-58V),否则指示电池电压错误。 2.过放电电池预充电: 电池接入后,如果电压在39V-47V之见,充电器先对电池进行短脉冲预充电(平均有效电流0.5A),此时指示灯为红色慢闪,直到电压达到47V以上为止。 3.全电流预充电检测: 充电器对电池进行为时5秒的全电流连续充电,通过这个过程判断电池的可充电性以及是否为充满的电池,此过程指示灯为红灯常亮。如果是充满电的电池,此过程只相当于浮充。 4.正负脉冲快速充电: 当之前检测及预充电通过后,充电器进入正负脉冲快速充电阶段,此时指示灯为红色快速闪烁。快速充电阶段每三分钟为一个小充电区间,之见将会进行为时10秒的电池状态检测,此时指示灯橙色常亮。检测阶段将会判断电池是否充满,同时会记录电池当前电压并和之前多组电压数据进行比对(即电压曲线监视)。当判断电池已经充满或者电压曲线监视发现电池将要发生热失控时,则立刻停止快速充电状态。另外,当快速充电时间超过约10小时,也会强制退出快速充电状态,超时退出后也会进入浮充状态,但是指示灯为绿色橙色交替慢闪。 5.浮充状态: 充电器间歇对电池施加浮充电压进行浮充(比一般的连续施加电压而言,对电池更好),此状态指示灯绿色常亮。 6.均衡补充电状态:

相关主题
文本预览
相关文档 最新文档