当前位置:文档之家› 燃气轮机计算分析

燃气轮机计算分析

ME 423

Chapter 8 PREDICTION OF PERFORMANCE OF SIMPLE GAS TURBINES

Prof. Dr. O. Cahit ERALP

?From cycle calculations it is possible to determine the PRESSURE RATIO ( R c ) which will give the best overall efficiency for a given T max .

?MASS FLOW RATE to give the most suitable desired power output.

?After such preliminary calculations, the most suitable design data for a particular application can be chosen.

?Then, it is possible to design individual components to give the required operation at the design point.

?That is running at the design speed N*, mass flow rate m* and pressure ratio R*.

Prediction of Performance of Simple Gas Turbine

()m

Prediction of Terformance of Simple Gas Turbine ?Then the off-design performance has to be determined which is the divergence from the design point over the

complete operating range of speed and power output. ?The performance ¢ of the individual components may be estimated on the basis of the previous experience or actual experiments. When they are combined in an engine their operating range is considerably reduced. ?The problem is to find the Operating point (OP) on each component ¢when the engine is running at a steady speed (EQUILIBRIUM).

?The plot of these OP's form the EQUILIBRIUM RUNNING LINE (ERL).

Prediction of Performance of Simple Gas Turbine ?For the whole range of operating speeds, it will generate the EQUILIBRIUM RUNNING DIAGRAM. ?Determining the OP; the power output, thrust and the

SFC can be obtained.

?The Equilibrium Running Diagram indicates the margin of operation from the surge line (SL) .

? This margin indicates a Margin of stability; indicates if there is enough margin to operate with adequate compressor efficiency.

?If the surge line is crossed some action has to be taken to recover, not to give rise to a failure.

?Ideally the engine should be operated within the region of maximum possible efficiencies.

Prediction of Performance of Simple Gas Turbine ?Variation of SFC with reduction in power → PART LOAD PERFORMANCE. This is important while running the GT at low power settings.

?Poor sfc at part load is the biggest disadvantage of a GT, especially a vehicular one.

?The effect of ambient conditions on maximum output is also important, i.e. high & low T a and P a.

?Peak load energy generation:

→ Europe: cold days in winter,

→ America: hot days in Summer

→ for airplanes: Runway length (safety) and

pay load (economics) are affected.

Off-Design Performance of Simple GT ?Here we will try to analyse a :

a) Single shaft unit delivering shaft power.

b) Free turbine engine - power turbine drives the load.

c) Simple jet engine, where the useful output is from the

propelling nozzle.

?More complex arrangements - two spool engines, Turbofan & transient performance Chapter 9

?Flow characteristics of a free turbine and propelling nozzle are similar and impose the same restrictions on the Gas Generator.

?As a result of this several jet engines have been converted to Free Turbine Power engine for peak load electric generation, and marine applications.

Component Characteristics ¢

FIG.1 Compressor Characteristics

?Axial compressor ¢ constant speed lines become

vertical so ηc , R c vs is plotted.

m

Component Characteristics ¢

FIG.2 Turbine Characteristics

? Turbine ¢ do not show a significant variation in ND speed. Their operating range is usually severely restricted by another component downstream.

?Since inlet and exhaust pressure losses are ignored; pressure ratio across the turbine is determined by the compressor pressure ratio and the pressure loss in the combustion chamber;

ΔP 034 = P 012 - P 032

?The mass flow through the turbine = mass flow through the compressor - Bleeds + fuel flow;

Off-Design Operation of The Single - Shaft GT

31bleed f

m m -m +m

a) Select a constant speed line on the C¢ and choose an OP on this line thus

N/ T 01 are selected.

b) The corresponding point on the T¢ is obtained by the Compatibility of Speed and Flow.

?COMPATIBILITY OF ROTATIONAL SPEED

Procedure of Obtaining an Equilibrium Running Point

010303

01

N

=

T T N

T T *.

0101c 01

02 P ; ; P m T P η

?COMPATIBILITY OF FLOW

?Here combustion chamber pressure loss P 03/P 02 = 1 - P b /P 02

? assume

Procedure of Obtaining an Equilibrium Running Point

..

.

303

101

0102033.

03

01

020301

1

m m P P m =

* * * * P P m T T T P P T .

.

0301010203

03

01

020301

m m P P T =

x x P P T T T P P ?.

..

13 m m m

==

Procedure of Obtaining an Equilibrium Running Point

.

0101

m

T P are fixed by the chosen OP on the

is assumed to be constant.

Neglecting inlet and exhaust pressure losses P a = P 01 = P 04 is a function of P P 02

01

and

03

02P P .

030303

04

m P

P T P P P 0304 = P P P P 03020201

.C?

Procedure of Obtaining an Equilibrium Running Point

Now in the flow compatibility the only unknown is

The rest can be obtained from C¢ and T¢.

Thus,

Thus, knowing T 01, T 03 can be calculated.

T T 0301

/.

03

03030203.01010201

01m T P P P = () . . P P m T P T T

Procedure of Obtaining an Equilibrium Running Point

?Having determined T 03 , the SPEED COMPATIBILITY :

?The compressor & turbine temperature changes can be determined.

N T N T N T 030103 = x T T and

by and P P with T ¢ 010303

04t

→η?T c

01211 010201

T ((

P P =--ηγγ))

()/?T P P 034

0304

111=-- T t 03 ηγγ((/))

/

Procedure of Obtaining an Equilibrium Running Point

And the NET POWER corresponding to selected OP is :

m could be calculated knowing P 01 , T 01

c) Having matched the C¢ & T¢ it is necessary to ascertain whether the work output corresponding to the OP is compatible with that required by the driven load. For this; variation of power with speed "P (N)" should be known. This will indicate whether the OP selected represents a valid solution (Equilibrium).

..G 034a 0121 m Cp m Cp m

T T ηP =?-?

燃气轮机性能指标主要影响因素及提高性能途径研究

燃气轮机性能指标主要影响因素及提高性能途径研究 摘要: 本文以9e燃机为例,概括介绍了国内已经投产的燃气轮机的主要性能指标,并通过对不同设计和运行条件下技术性能指标的对比,分析对燃气轮机性能指标产生影响的主要影响因素,从而总结和简述了提高性能指标的主要途径。 关键词: 燃气轮机;性能指标;功率;热耗率;影响因素;abstract:illustrated by 9e gas turbine, the main technical performance parameters of gas turbine in china are described, and with the comparison of the technical parameters under different design and operation condition, an analysis on the main influencing factors is presented, so as to summarizethe major way to improve the performance parameters. keywords: gas turbine; performance parameter; power; heat rate; influencing factor 中图分类号:th138.23 文献标识码:a文章编号:2095-2104(2012) 1.引言 燃气轮机是从本世纪50年代开始逐渐登上发电工业舞台的。但是由于当时机组的单机容量较小,而热效率又比较低,因而在电力系统中只能作为紧急备用电源和调峰机组使用。 60年代时欧美的大电网曾发生过电网瞬时解列的大事故,这些事

燃气轮机系统建模与性能分析

燃气轮机系统建模与性能分析 摘要:燃气轮机机组具有超强的北线性,人们掌握它的具体实施工作过程运行 规律是很难得。在我过电力工业中对它的应用又不断加强。为了更加透彻的解决 这个问题,本文将通过建立燃气轮机机组系统建模及模拟比较研究机组设计和运 行中存在的问题,从而分析它的性能。 关键词:燃气轮机;系统建模;性能 1模拟对象燃气轮机的物理模型 在标准IS0工况条件(15℃101.3kpa及相对湿度60%)下,压气机不断从大气中 吸入空气,进行压缩。高压空气离开压气机之后,直接被送入燃烧室,供入燃料 在基本定压条件下完成燃烧。燃烧不会完全均匀,造成在一次燃烧后局部会达到 极高的温度,但因燃烧室内留有足够的后续空间发生混合、燃烧、稀释及冷却等 复杂的物理化学过程,使得燃烧混合物在离开燃烧室进入透平时,高温燃气的温 度己经基本趋于平均。在透平内,燃气的高品位焙值(高温、高压势能)被转化为功。 1.1燃气轮机数值计算模型与方法 本文借助于 GateCycle软件平台,搭建好的燃气轮机部件模块实现燃气轮机以上物理模型的功能转化,进行燃气轮机的热力学性能分析计算的。在开始模拟燃 气轮机之前,首先对燃气轮杋部件模块数学模型及计算原理方法进行简单介绍。1.2压气机数值计算模型 式中,q1 、q2 、ql 分别为压气机进、出口处空气、压气机抽气冷却透平的 空气的质量流量; T1*、 p1* 分别为压气机进出口处空气的温度、压力; T2*、 p2* 分别为压气机出口处空气的温度、压力 ηc、πc分别为压气机绝热压缩效率,压气机压比 γa为空气的绝热指数;ρa为大气温度;?1为压气机进气压力损失系数 ιcs、ιc分别为等只压缩比功和实际压缩比功 i*2s、i*2、i*1分别为等只压缩过程中压气机出口处空气的比焓,实际压缩过程中压气机出日处空气的比烩和压气机进日处空气的比焓; 当压气机在非设计工况下工作时,一般计算方法是将压气机性能简单处理编制成 数表,通过插值公式求得计算压气机的参数,即在压气机性能曲线上引入多条与 喘振边界平行的趋势线,这样可以把压比,流量,效率均视为平行于喘振边界的 等趋势线和转速的函数。本文采用了同样的计算方法,在计算燃气轮机变工况性 能过程中引入无实际物理涵义的无量纲参变量CMV(compressor map variable),仅相当于引入的平行于压气机喘振边界的趋势线,压气机的质量流量、压力和效 率计算是通过上下游回馈的热力计算结果,插值寻找能够使得上下游热力参数 (压力,温度,输出功率,转速,流量)计算收敛的工作点,即压气机的变工况 工作点。 1.3燃烧室数值计算模型 其中 式中: α为过量空气系数: L0为燃料的理论空气量:

第一讲燃气轮机基本原理及9E燃机性能型号参数

第一讲:燃气轮机基本原理及9E燃机性能型号参数授课内容: 第一章:绪论 1):燃气轮机发电装置的组成 2):燃气轮机发展史 3):我国燃气轮机工业慨况 4):GE公司燃气轮机产品系列及其编号 第二章:燃气轮机热力学基础知识 1):工质的状态参数 2):理想气体状态方程 3):功和热量 第三章:燃气轮机热力循环 1):燃气轮机热力循环的主要技术指标 2):燃气轮机理想简单循环 3):燃气—蒸汽联合循环 第四章:9E燃机性能型号参数 1):PG9171E型燃机型号简介 2):PG9171E型燃机性能参数简介

第一章绪论 第一节燃气轮机发电装置的组成 燃气轮机是近几十年迅速发展起来的热能动力机械。现广泛应用的是按开式循环工作的燃气轮机。它不断地由外界吸入空气,经过压气机压缩,在燃烧室中通过与燃料混合燃烧加热,产生具有较高压力的高温燃气,再进入透平膨胀作功,并把废气排入大气。输出的机械功可作为驱动动力之用。因此,由压气机、燃烧室、透平再加上控制系统及基本的辅助设备,就组成了燃气轮机装置。如果用以驱动发电机供应电力,就成了燃气轮机发电装置。 (幻灯)

第二节 燃气轮机发展史 燃气轮机是继汽轮机和内燃机问世以后,吸取了二者之长而设计出来的,它

是内燃的,避免了汽轮机需要庞大锅炉的缺点;又是回转式的,免去了内燃机中将往复式运动转换成旋转运动而带来的结构复杂,磨损件多,运转不平稳等缺点。但由于燃气轮机对空气动力学和高温材料的要求超过其他动力机械,因此,发展燃气轮机并使之实用化,人们为之奋斗了很长时间。如果从1791年英国人约翰·巴贝尔(John Baber)申请登记第一个燃气轮机设计专利算起,经过了半个世纪的奋斗,到1939年,一台用于电站发电的燃气轮机(400OkW)才由瑞士BBC公司制成,正式投运。同时Heinkel工厂的第一台涡轮喷气式发动机试飞成功,这标志着燃气轮机发展成熟而进入了实用阶段·在此以后,燃气轮机的发展是很迅速的。由于燃气轮机本身固有的优点和其技术经济性能的不断提高,它的应用很快地扩展到了国民经济的很多部门· 首先在石油工业中,由于油田的开发和建设,用电量急剧增加·建造大功率烧煤电站不具备条件(没有煤炭,交通不便,水源紧张,施工困难等),周期也不能满足要求·而燃气轮机电厂功率不受限制,建造速度抉,对现场条件要求不高,油田有充足的可供燃用的气体和液体燃料·不少油田还利用开发过程中一时难以利用的伴生气作燃气轮机燃料,价格便宜,发电成本低,增加了燃气轮机的竞争力,所以在油田地区,燃气轮机装置被广泛应用,除用于发电外,还在多种生产作业申用燃气轮机带动压缩机(例如天然气管道输送,天然气回注,气田采油等)和泵(例如原油管道输送和注水等)。 其他工业部门,如炼油厂、石油化工厂、化工厂、造纸厂等等;它们不仅需要机械动力,而且需要大量热(例如蒸汽)。这时用燃气轮机来功热联供,在满足这两方面需要的同时,还能有效地节能,故应用发展较快。 实践证明,燃气轮机作为舰船推进动力,其优点显著,特别是排水量为数千

燃气轮机和内燃机发电机组性能及经济性分析

燃气轮机和内燃机发电机组性能及经济性分析 摘要:介绍燃气分布式能源系统配置。对燃气轮机、燃气内燃机发电机组性能(性能参数、变工况特性、余热特性、燃气进气压力)、经济性等进行比较。 关键词:分布式能源系统;燃气轮机发电机组;燃气内燃机发电机组;经济性 Analysis on Performance and Economy of Gas Turbine and Gas Engine Generator Units Abstract:The configuration of gas distributed energy system is introduced.The performance of gas turbine generator unit including performance parameters,variable conditions characteristics,waste heat characteristics and gas inlet pressure as well as the economy are compared with gas engine generator unit. Keywords:distributed energy system:gas turbine generator unit;gas engine generator unit;eeonomy 1概述 燃气分布式能源系统(以下简称分布系统)是指布置在用户附近,以天然气为主要一次能源,采用发电机组发电,并利用发电余热进行供冷、供热的能源系统[1-11]。主要设备包括发电机组、余热利用装置等,作为动力设备的发电机组是分布系统的关键。 分布系统通常采用的发电机组为燃气轮机发电机组(以下简称燃气轮机组)、燃气内燃机发电机组(以下简称内燃机组)。燃气轮机组是以连续流动气体为工质,将热能转化为机械能的旋转式动力设备,包括压气机、燃烧室、透平、辅助设备等,具有结构紧凑、操作简便、稳定性好等优点。在分布系统中应用的主要是发电功率范围为25~20000kW的微型、小型燃气轮机组。 内燃机组是将液体或气体燃料与空气混合后,直接输入气缸内部燃烧并产生动力的设备,是一种将热能转化为机械能的热机,具有体积小、热效率高、启动性能好等优点,发电功率范围为5~18000kW。美国不同规模分布系统的发电机组发电功率见表1[12]。

燃气轮机复习题(新)

电站燃气轮机课程复习思考题 1. 词语解释: (1)循环效率:当工质完成一个循环时,把外界加给工质的热能q转化成为机械功l c的百分数。 (2)装置效率(发电效率): 当工质完成一个循环时,把外界加给工质的热能q转化成为电功l s的百分数。 (3)净效率(供电效率): 当工质完成一个循环时,把外界加给工质的热能q转化成为净功l e的百分数。 (4)比功:进入燃气轮机压气机的1kg的空气,在燃气轮机中完成一个循环后所能对外输出的机械功(或电功)l s(kJ/kg),或净功l e(kJ/kg). (5)压气机的压缩比: 压气机的出口总压与进口总压之比。 (6)透平的膨胀比: 透平的进口总压与出口总压之比。 (7)压气机入口总压保持系数:压气机的入口总压与当地大气压之比。 (8)燃烧室总压保持系数:燃烧室的出口总压与入口总压之比。 (9)透平出口总压保持系数:当地大气压与透平的排气总压之比。 (10)压气机的等熵压缩效率:对于1kg同样初温度的空气来说,为了压缩达到同样大小的压缩比,等熵压缩功与所需施加的实际压缩功之比。 (11)透平的等熵膨胀效率:对于1kg同样初温度的燃气来说,为了实现同样的膨胀比,燃气对外输出的实际膨胀功与等熵膨胀功之比。 (12)温度比:循环的最高温度与最低温度之比。 (13)回热循环:在简单循环回路中加入回热器,当燃气透平排出的高温燃气流经回热器时,可以把一部分热能传递给由压气机送来的低温空气。这样,就能降低排气温度,而使进到燃烧室燃料量减少,从而提高机组的热效率。 (14)热耗率:当工质完成一个循环时,把外界加给工质的热能q,转化成机械功(或电工)

燃气轮机EOH解读

燃气轮机等效运行小时计算分析 【摘要】:燃气轮机制造商都有一个预先制定好的维修计划,以便获得最佳的设备可用率和最经济的维修成本,计算燃气轮机的等效运行小时(EOH )就是为了判燃气轮机机在何时应该进行维修。本文对三菱重工、西门子、GE 三大燃气轮机制造商的燃气轮机等效运行小时的计算公式进行了分析,以便充分了解他们的维修计划。 【关键词】:燃气轮机 等效运行小时 EOH 1 前言 从2003年开始,我国新开工建设了一大批F 级的重型燃气-蒸汽联合循环电站,主要作为调峰机组。热力机械疲劳是影响调峰机组寿命的主要因素,蠕变、氧化和腐蚀是影响连续运行机组寿命的主要因素。F 级重型燃气轮机的初温已达1300~1400℃之间,燃气轮机高温部件(热通道部件)的工作条件越来越恶劣。为了保证燃气轮机运行可靠性,就必须定期地检查、检修或更换这些热通道部件。燃气轮机的高温部件是指暴露在从燃烧系统排出的高温气体中的部件,包括燃烧室、火焰筒、过渡段、喷嘴、联焰管和透平动、静叶等。 燃气轮机的高温部件必须要有一个预先制定好的合理的检查维修计划,可以减少电站非计划故障停机,提高机组起动可靠性。高温部件的检查维修计划根据计算机组的等效运行小时EOH (Equivalent Operating Hours )来制定。在国家标准GB/T 14099.9 《燃气轮机 采购》第9部分 (等效国际标准 ISO 3977-9:1999)中,对EOH 的计算公式做出了规定。但三大燃气轮机制造商(GE 、西门子、三菱重工)在各自的运行经验基础上,都规定了各自的EOH 计算公式,制定了相应的高温部件检修计划。 2 国家(国际)标准EOH 计算 在国家标准GB/T 14099 《燃气轮机 采购》第9部分中,对EOH 的计算公式做出了规定,见公式(1),公式中考虑了各种运行过程影响机组寿命的加权系数。 )(22111 2211t b t b f t n a n a T n i i eq ++++=∑=ω (1) 其中:

影响燃气轮机及其联合循环特性的因素分析

影响燃气轮机及其联合循环特性的因素分析 姓名:张瑞琦学号:2012031426 联合循环发电技术对改变电力能源结构、改善环境、提高电网调峰灵活性有重要作用。随着天然气开采技术的提高以及西气东输和引进液化天然气两大工程的启动, 燃气轮机及其联合循环在我国得到迅速发展和应用。对任一个联合循环方案, 其热力系统及组成均有所区别, 而且环境条件和运行参数如环境温度、大气压力、空气相对湿度、海拔高度、空气进口压损及余热锅炉烟气阻力、燃料类型、蒸汽循环方式、循环水温度、入口空气冷却等对整个热力循环的出力和热耗的影响也不同。为使建成后的联合循环电厂单位投资最省、热效率最高、投产后具有较好经济效益, 对影响燃气轮机及其联合循环系统的出力和热耗的相关因素进行分析, 从而选择合适机型和运行方式。 1 环境因素的影响 1. 1 大气温度 大气温度对简单循环燃气轮机及其联合循环的性能有相当大的影响。随着大气温度的升高,空气比容增大, 吸入压气机的空气质量流量减少,导致燃气轮机及其联合循环的出力减小。即使机组的转速和燃气透平前的燃气初温保持恒定, 压气机的压缩比也会有所下降, 燃气透平做功量减少, 但排气温度却有所增高, 使得燃气轮机及其联合循环的出力和热耗产生变化。 随着大气温度升高, 燃气轮机及其联合循环的出力均成线性下降, 但是联合循环的出力的减小较燃气轮机平缓。环境温度每升高10度 , 单循环燃气轮机出力下降5% ~ 7%,联合循环出力下降3. 5% ~ 5. 5% 。这是由于联合循环的燃气透平排气温度略有增高, 可以在余热锅炉中获取更多的能量, 到蒸汽轮机中去做出更大数量机械功的缘故。另外, 随温度升高, 燃气轮机相对效率成曲线下降, 每升高10度相对效率下降0. 05% ~ 1. 8% 。然而, 大气温度对联合循环机组的相对效率影响不大, 这是由于大气温度变化对燃气Brayton 循环及蒸汽Rankine 循 环热效率的影响相反, 在大气温度约为15度时, 联合循环热耗达到最低点, 此时Brayton 循环及蒸汽Rankine 循环热效率的乘积为最大值。 1. 2 空气湿度 有研究表明: 当空气温度< 37度时, 即使相对湿度为100% 时, 大气中所含的水蒸气数量仍然是很少的( 即绝对湿度值很小) , 其影响是可以忽略不计的。然而, 随着燃气轮机单机功率增大, 以及为降低NOx 的排放而进行的注水注汽,绝对湿度的影响变得越来越明显。从图2 中不难看清: 空气绝对湿度与燃气轮机及其联合循环机组的出力和热耗均成线性关系, 且各自的影响几乎一样。绝对湿度每增加0. 01, 出力下降0. 001% ~ 0. 002%, 而热耗上升0. 002%~ 0. 004% 。 1. 3 大气压力和海拔高度的影响 目前燃气轮机及其联合循环大都是按ISO 状态条件( 大气压力p a = 0. 1013MPa、环境温度15度、相对湿度60%) 进行设计的。不同的海拔高度将导致不同的平均大气压力, 随着海拔的升高,p a 和t a 都在下降。而燃气轮机的出力与所吸入的空气质量流量成正比, 而质量

燃气轮机的选型

燃气轮机的选型 在燃气轮机选型时,对其热力性能方面的考虑应注意以下几点: (1)机组热效率和燃料成本相结合的综合经济性。单方面考虑热效率高低常常是不全面的,一般需把机组热效率和燃用的燃料成本结合起来,更全面权衡机组的经济性。因为有时地理因素更优先于热效率,如某些地区的用户可能更注重燃气轮机对燃用廉价原油和重油的能力与相应的长热部件寿命性能。 (2)热力循环系统优化的问题。影响燃气轮机热力性能的因素有很多,如透平初温、压气机压比、回热度(若采用回热循环)等热力参数,压气机、透平、燃烧室等部件效率,进、排气道等各部分流阻损失等。其中许多参数受到设计制造时的技术与设计水平所制约,一般要根据设计和技术条件选取,如透平初温就要根据高温材料和冷却技术来确定。而压气机压比要通过热力循环设计优化分析来确定。 (3)机组的全工况或变工况热力特性。实际上,随着环境大气条件、外界负荷或系统本身等变化,燃气轮机及其联合循环装置总是处于非设计工况下运行,全面考虑全部可能运行区域的特性,就更为重要和实用。主要包括: 1)随大气条件变化的机组变工况特性。由于燃气轮机的工质来自大气环境、又排回大气,其输出功率对大气条件,特别是对大气温度非常敏感。通过燃气轮机及其联合循环性能(设计工况的效率与功率)相对比值随大气温度变化的典型规律。大气温度总在变化,随着温度的升高,燃气轮机及其联合循环相对的输出功率都会下降,但联合循环的功率减小要比燃气轮机平缓,燃气轮机效率下降,而联合循环的效率稍有增加;反之,当温度下降时,两者的输出功率都会增加,燃气轮机效率提高,联合循环效率稍有降低。至于大气压力则与机组安装地区的海拔高度有密切关系,燃气轮机及其联台循环的功率都与大气压力成正比,而两者的效率与此无关。但当分析机组安装地点的海拔高度对燃气轮机性能影响时,要考虑大气温度和压力两个因素的综合影响。 2)随外界负荷变化的机组变工况特性。燃气轮机是通过调节燃料量、也就是调节透平初温来适应外界负荷变化,而不像汽轮机那样是通过改变蒸汽工质质量流量来改变功率,所以机组热经济性随负荷变化而变化趋势就非常明显。 2.燃料与环境问题 (1)燃料问题。燃气轮机燃用的燃料对电站的环境特性,还有经济性、安全性和可靠性等都有很大的影响,主机选型时需全面考虑可供燃用的燃料问题,包括燃料的来源、供应量、质量以及候选机组对其适应性与要求等。燃气轮机适合燃用气体燃料和从高级的航空煤油到低级的锅炉渣油的液体燃料。但所用燃料的各种品质会严重影响燃气轮机装置的运行、维护和成本。因此,燃料的最佳选择应

GE公司F级燃气轮机总体性能参数

GE公司F级燃气轮机 1 F级燃气轮机产品系列及其性能演变 F级燃气轮机已有多种多样的型号可满足不同用户的需要,在MS6000、MS7000、MS9000系列中都有F级的产品,表1列出F级燃气轮机最新机型简单循环的性能,表2列出50Hz的F级燃气 表1 F级最新机型燃气轮机简单循环性能 基本参数MS9351FA MS7241FA MS6101FA 净出力/MW 255.6 171.7 70.1 效率/% 36.9 36.4 34 透平进口温度/℃1327 1327 1288 压比15.4 15.5 14.9 质量流量/kg·s-1624 432 198 排气温度/℃609 602 597 频率/Hz 50 60 50/60 表2 50HzF级燃气轮机联合循环性能 基本参数S109FA S209FA S106FA S206FA 净出力/MW 390.8 786.9 107.4 218.7 净热耗率/kJ·(kWh)-16350 6305 6767 6654 净效率/% 56.7 57.1 53.2 54.1 MS9001FA、MS7001FA、MS6001FA型燃气轮机都有18级的压气机和3级的涡轮机,以冷端驱动和轴向排气为特点,有利于联合循环布置。F级燃气轮机采用GE公司传统可靠的分管式燃烧系统,

并可配备双燃料燃烧系统,如在以天然气为主燃料时,可以轻油为辅助燃料。当天然气供应发生故障时,机组可自动切换到轻油燃烧,使燃机不因燃料供应故障而停机,进一步保证了机组的可靠性和可用性。机组也可根据要求,在一定条件下使用双燃料混合燃烧。此外,F级燃气轮机可燃用低热值燃料,从而扩大了发电厂的燃料使用范围和灵活性。F级燃气轮机应用于IGCC电厂,可 GE公司在其制造MS6000型、MS7000型和MS9000型机组的基础上,发展完善了底盘部套、控制和辅机组合一体的快装模块结构,这种标准化布置可减少管道、布线及其他现场相关联接的工 F级燃气轮机还显示出不同寻常的环保特点。由于机组的效率高,单位发电量的NO x和CO排放量较少。采用干式低NO x(DLN)燃烧室,大大降低了NO x的排放。180多台采用干式低NO x燃烧室的F级燃气轮机已累计运行近30 0万h。有些电厂的NO x排放量甚至低于10mg/kg。 1.1 7F和7FA、7FB型燃气轮机 自从1987年生产第一台7F型燃气轮机后,经过不断改进,形成了一系列F级的燃气轮机。图1以7000系列中的F级燃气轮机为例,展示了F级燃气轮机的发展过程。(图中华氏温度t F 换算因数为)其主要性能见表3。 图1 F级燃气轮机的发展过程 表3 7F系列燃气轮机主要性能

燃气轮机和燃气内燃及发电机组对比

燃气轮机和内燃机发电机组性能及经济 性分析 2014-9-9 摘要:介绍燃气分布式能源系统配置。对燃气轮机、燃气内燃机发电机组性能(性能参数、变工况特性、余热特性、燃气进气压力)、经济 性等进行比较。 关键词:分布式能源系统;燃气轮机发电机组;燃气内燃机发电机组;经济性 Analysis on Performance and Economy of Gas Turbine and Gas Engine Generator Units Abstract :The configuration of gas distributed energy system is introduced .The performance of gas turbine generator unit including performance parameters ,variable conditions characteristics ,waste heat characteristics and gas inlet pressure as well as the economy are compared with gas engine generator unit . Keywords:distributed energy system :gas turbine generator unit ; gas engine generator unit ;eeonomy 1 概述 燃气分布式能源系统(以下简称分布系统)是指布置在用户附近,以天然气为主要一次能源,采用发电机组发电,并利用发电余热进行供冷、 供热的能源系统[1-11]。主要设备包括发电机组、余热利用装置等,作为动 力设备的发电机组是分布系统的关键。 分布系统通常采用的发电机组为燃气轮机发电机组(以下简称燃气轮机组)、燃气内燃机发电机组(以下简称内燃机组)。燃气轮机组是以 连续流动气体为工质,将热能转化为机械能的旋转式动力设备,包括压气 机、燃烧室、透平、辅助设备等,具有结构紧凑、操作简便、稳定性好等 优点。在分布系统中应用的主要是发电功率范围为25?20000kW的微 型、小型燃气轮机组。 内燃机组是将液体或气体燃料与空气混合后,直接输入气缸内部燃烧并产生动力的设备,是一种将热能转化为机械能的热机,具有体积小、热效 率高、启动性能好等优点,发电功率范围为5?18000kW美国不同规模分 布系统的发电机组发电功率见表 1 。

燃气轮机性能分析报告3——透平特性的计算

动力与能源工程学院 燃气轮机性能分析 (报告三) 学号: 专业:动力机械及工程 学生姓名: 任课教师: 2010年4月

透平特性的计算 一、透平特性计算的意义 目前,燃气轮机已广泛应用于航空、船舶、发电等诸多领域,提高燃气轮机的性能已成为人们关注的焦点。透平变工况通常是指转速、入口压力、温度以及出口压力的变化。上述参数的变化将会导致级间热降的重新分配、速度三角形的变化以及流动损失的改变,最终引起涡轮级综合参数(流量、效率以及功率)的变化。 讨论变工况可以更好的了解已设计好的透平在工况变动时性能的变化(如功率、效率、扭矩等)和各参数的变化规律。使运行时能情况明了。一个好的透平,应该在设计工况和变工况下都是工作良好的。在设计时,就要预先考虑变工况的性能,对于变工况运行时间较长的机组,尤其要注意到这点。工况变动的多少,要视具体任务而定。如机车的燃气轮机,在拖动平原地区长途特快客车时,工况就变得少,如果是站内调度车厢之用,工况就变动得多。此外,讨论透平变工况还可以为整个装置的变动工况计算及调节控制系统设计提供必要的数据。 二、特性线获取的方法概述 变工况特性曲线的决定方法分实验和计算两种。实验法可以得到比较准确的数据,也是校核计算法是否准确的客观标准。但实验法要有一定的设备和消耗,在机器未制造出来以前,也无法进行。整台透平试验,要有足够大的风源,只有专门的科研生产机构才能实现。当然,也可根据相似原理,做缩小比例的模型试验,此时就要做模型。总之,试验费用是昂贵的。实验法是好,但不易办到。计算法虽准确度差点,却容易实观。 计算的方法较多,把用经验公式或类似机组的比拟方法除外,则现存的计算法基本原理都差不多。把透平看成一个流道,以平均直径处基元级代替级,在各轴向间隙(即前述之特征截面)处满足基本方程(即连续方程、能量方程、运动方程和状态方程),就可推算出各不同相似准则数下(如膨胀比和折合转速),其它准则数(如效率、折合流量等)为多少。各种方法的不同大致是由计算时选用的叶栅损失模型、简化假定和计算技巧不同造成的。一般地说,所作假定越符合实际,计

燃气轮机热力循环性能的分析计算

燃气轮机热力循环性能的分析计算 【摘要】本文基于热力学第二定律,从能量利用的角度出发,引入无量纲熵参数,对燃气轮机装置热力性能参数进行热力性能完善程度评价与分析,为燃气轮机装置的热力性能优化设计提供技术途径。 【关键词】燃气轮机;热力循环;性能;分析;计算 【abstract 】this paper based on the second law of thermodynamics, from the Angle of energy use, introducing the dimensionless parameter entropy, the gas turbine thermal performance parameters device thermal performance perfect degree evaluation and analysis, the device for gas turbine thermal performance optimization design provides technical way. 【key words 】gas turbine; Heat engine cycle; Performance; Analysis; calculation 1 引言 二十世纪80年代以来,燃气轮机热力循环方面的研究取得了长足的进步,其中热点之一是注蒸汽燃气轮机循环的研究。它不仅具有高效率、高比功的特点,而且它在变工况性能、污染控制等方面的优越性也倍受国内外研究者的青睐。目前世界上正研制和开发的、比较先进的燃煤发电技术是整体煤气化联合循环和增压流化联合循环。本文将整体煤气化联合循环中的先进燃煤技术与注蒸汽循环结合起来,对循环进行了热力学分析计算,就各参数对循环性能的影响进行了探讨。 2循环过程简介 煤在气化炉中形成粗煤气,经过热交换器,降温放热以加热给水产生回注用蒸汽,再经过脱硫、除尘变为洁净煤气,作为循环所用的燃料进入燃烧室。在燃烧室中煤气与空气燃烧后与注入的蒸汽混合,达到燃气轮机人口温度,再在涡轮中膨胀做功。余热锅炉一般不需要补燃,利用燃气轮机排气来加热处理过的水,使之变为过热蒸汽,注入燃烧室。 3 循环分析 煤炭的气化是在气化炉中进行的。目前,就气化炉的床型而论可分为喷流床气化炉、流化床气化炉和固定床气化炉。虽然,各种气化炉产生的煤气成份有所

燃气轮机简介.

我国工业燃气轮机的现状与前景 一、世界工业燃气轮机的发展趋势 1、世界工业燃气轮机的发展途径与现状 自1939年瑞士BBC公司制成世界上第一台工业燃气轮机以来,经过60多年的发展,燃气轮机已在发电、管线动力、舰船动力、坦克和机车动力等领域获得了广泛应用。 由于结构上的分野,工业燃气轮机分为重型燃气轮机和轻型燃气轮机(包括航机改型燃气轮机)。 80年代以后,燃气轮机及其联合循环技术日臻成熟。由于其热效率高、污染低、工程总投资低、建设周期短、占地和用水量少、启停灵活、自动化程度高等优点,逐步成为继汽轮机后的主要动力装置。为此,美国、欧洲、日本等国政府制定了扶持燃气轮机产业的政策和发展计划,投入大量研究资金,使燃气轮机技术得到了更快的发展。80年代末到90年代中期,重型燃气轮机普遍采用了航空发动机的先进技术,发展了一批大功率高效率的燃气轮机,既具有重型燃气轮机的单轴结构、寿命长等特点,又具有航机的高燃气初温、高压比、高效率的特点,透平进口温度达1300℃以上,简单循环发电效率达36%~38%,单机功率达200MW以上。 90年代后期,大型燃气轮机开始应用蒸汽冷却技术,使燃气初温和循环效率进一步提高,单机功率进一步增大。透平进口温度达1400℃以上,简单循环发电效率达37%~39.5%,单机功率达300MW以上。 这些大功率高效率的燃气轮机,主要用来组成高效率的燃气-蒸汽联合循环发电机组,由一台燃气轮机组成的联合循环最大功率等级接近500MW,供电效率已达55%~58%,最高60%,远高于超临界汽轮发电机组的效率(约40%~45%)。而且,其初始投资、占地面积和耗水量等都比同功率等级的汽轮机电厂少得多,已经成为烧天然气和石油制品的电厂的主要选择方案。由于世界天然气供应充足,价格低廉,所以,最近几年世界上新增加的发电机组中,燃气轮机及其联合循环机组在美国和西欧已占大多数,亚洲平均也已达36%,世界市场上已出现了燃气轮机供不应求的局面。 目前,美、英、俄等国的水面舰艇已基本上实现了燃气轮机化,现代化的坦克应用燃气轮机为动力,输气输油管线增压和海上采油平台动力也普遍应用了轻型燃气轮机。先进的轻型燃气轮机简单循环热效率达41.6%。采用间冷—回热循 36

燃气轮机和内燃机发电机组性能及经济性分析通用版

解决方案编号:YTO-FS-PD176 燃气轮机和内燃机发电机组性能及经 济性分析通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

燃气轮机和内燃机发电机组性能及 经济性分析通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 摘要:介绍燃气分布式能源系统配置。对燃气轮机、燃气内燃机发电机组性能(性能参数、变工况特性、余热特性、燃气进气压力)、经济性等进行比较。 关键词:分布式能源系统;燃气轮机发电机组;燃气内燃机发电机组;经济性 Analysis on Performance and Economy of Gas Turbine and Gas Engine Generator Units Abstract:The configuration of gas distributed energy system is introduced.The performance of gas turbine generator unit including performance parameters,variable conditions characteristics,waste heat characteristics and gas inlet pressure as well as the economy are compared with gas engine generator unit. Keywords:distributed energy system:gas turbine generator unit;gas engine generator unit;

燃气轮机燃烧室性能指标的衡量

燃气轮机燃烧室性能指标的衡量 (1)燃烧效率。目前,一般燃气轮机组中燃烧室的燃烧效率都能达到95%~99%,航空发动机的燃烧效率更高。 (2)总压保持系数。定义为=P3/P2,是衡量燃烧室气动性能好坏的指标,目前一般燃烧室在设计工况的在0.95~0.97左右。对于连续流动的工质,总压下降有两个原因。一是热力学上的“热阻”,它随工质加热程度(用燃烧室出口总温与进口总温之比τ=T3/T2来表示)的增加而增加,是不可避免的;另一个就是摩擦、掺混等不可逆流动的因素导致的损失,其中有的是为了有效组织燃烧过程而不得不付出的代价。燃气轮机燃烧室研制中要致力于最大限度地减少不必要的总压损失。 (3)出口温度均匀度。在许多燃气轮机中,燃烧室的出口是与透平的入口很靠近的,如果出口处燃气的温度不均匀,即有些地方温度高,有些地方温度低。这样就有可能使透平叶片受热不均,甚至有被烧坏的危险。一般希望燃气的最高温度不能比出口平均温度t3高60~80℃。此外,在装有许多个燃烧室的机组中,还应力争每个燃烧室出口温度场的平均值相互之间的偏差不超过15~20℃。 此外,出口温度沿燃气轮机半径方向的分布有一种中间高,两端低的自然趋势,这正是发挥透平叶片材料的潜力所要求的,因为透平叶片尖部(外径处)受气流加热最严重,容易局部金属温度高;而叶片根部(内径处)则应力最大,希望金属温度低些以保证更好的强度。这样叶片中径处气流温度相对高一些正好满足叶片等强度的要求。 (4)污染物排放。随着环境保护要求的提高,控制燃烧污染物的排放已成为燃气轮机燃烧室研制中首要解决的问题之一。目前我国对燃气轮机的燃烧污染物排放还没有制定限制规范,但国际上对燃气轮机特别是航空燃气轮机排放已做出严格的限制。 (5)火焰筒壁温度水平和梯度。火焰筒壁面温度的高低及其均匀程度对于燃烧室的工作寿命有决定性的影响。一般规定,火焰筒的壁面温度不应超过金属材料长期工作所能承受的温度水平。对于工作寿命要求较长的燃烧室来说,希望能把火焰筒的最高壁温控制在650~700℃左右,但在工作寿命较短的燃烧室中,其最高壁温则有可能超过800~850℃,甚至局部有可能达到900℃左右。火焰筒壁面上温度分布的均匀程度也是一个很重要的安全性指标,因为局部温度梯度是导致热应力的原因,特别是在受冷、热气流冲击和接缝、边缘等传热条件不均匀的部位,容易发生金属温度的差异;必须在调试时严密注意和控制。 (6)燃烧室的变工况特性。随着燃气轮机运行工况的变化,燃烧室也往往会在偏离设计工况的条件下工作。这时,流经燃烧室的空气流量、温度、压力、速度以及燃料消耗量都会发生变化。由于燃烧室没有运动部件,因此供入空气的任何变化对燃烧室内部流动的影响只表现在量的方面。简单地说,不同工况下的流动基本上是“相似”的,即气流的模式相同,只是速度大小成比例地加大或减小。供入燃料量的变化,则会从另一方面对燃烧过程产生重要的影响。一般而言,决定燃烧室工况的独立变量有两个,即特征流动状态(例如入口流动状态)和相对燃料量(用过量空气系数表示)。对于在具体燃气轮机中应用的燃烧室而言,这二者之间有一定的函数关系,一般而言燃烧室的值随燃气轮机负荷的升高而下降。燃烧室的变工况特性可以用燃烧室性能参数,即燃烧效率、总压保持系数,壁面温度、出口温度场等随过量空气系数 的变化来表示。 现有对于燃烧室变工况特性的认识远不如对压气机和透平那样清楚和完整,而且都是通过

燃气轮机热力循环分类及其性能改善措施

同济大学热能与动力工程专业 燃气轮机及内燃机技术 期末论述报告 姓名:****************** 学号:****************** 院系:机械与能源工程学院 专业:热能与动力工程

燃气轮机热力循环分类及其性能改善措施 摘要:本论文对燃气轮机概念进行了简述,以热力学热力循环角度来涉及燃气轮机的热力循环过程及工作原理问题、燃气轮机热力循环分类、各类热力循环的基本原理及其优越性和缺陷、从简单到复杂进行了比较。最后,简述了外界因素对燃气轮机工作效率的影响和改善燃气轮机性能的各种措施。 关键词: 燃气轮机热力循环 GE 公司 MS6001 型燃气轮机 引言: 燃气轮机是靠内部燃料燃烧释放出的热量直接加热空气,并通过行成的燃气将热能转换成机械功的一种热力机械,同样是内燃机。主要由叶轮式空气压缩机、燃气发生器(燃烧室)和燃气涡轮三个基本部分组成,还有燃料、润滑、冷却、启动、调节和安全等辅助系统。热力循环是指热力系统经过一系列状态变化,重新回复到原来状态的全部过程。热力循环分为正向循环及逆向循环。将热能转换为机械功的循环称为正向循环;将机械功转换为热的循环,称为逆向循环。通过工质的热力状态变化过程,可以将热能转化成机械能而做功,而要做出功一般必须通过工质的膨胀过程,但是任何一个热力膨胀过程都不可能一直进行下去,并连续不断地做出功。这是因为工质的状态将会变化到不适宜继续膨胀做功的情况,而且任何热力设备,其尺寸也都是有限的。 一、燃气轮机循环的四个热力过程与工作原理 通常,在可逆的理想情况下,燃气轮机是由四个热力过程组成的正向循环来实现把热能转化为机械功的动力机械,它们是: (1)理想绝热压缩过程 对于燃气轮机循环,压缩过程是在压气机中完成,过程中工质状态参数将按绝热过程的规律(pvk=常数)进行变化:压力不断上升,比容逐渐减小,温度伴随增高。由于工质流量相对大、对外界的散热很小,通常认为与外界没有热量交换,因而是绝热过程,即工质与外界没有热交换,工质状态变化是靠部分透平膨胀功驱动压气机来实现的。另外,在理想的可逆情况下,压缩过程中工质的熵值为常数不变,因此理想绝热压缩过程又称为等熵压缩过程;而实际的绝热压缩过程,由于存在的摩擦涡流等因素的影响,将使工质内能增加(温度升高更多一些),等价于从外部加入同样数量的热量,过程是不可逆的,熵总是增加的。 (2)等压燃烧过程 燃气轮机循环的加热过程是在燃烧室中完成的,从压气机出来的高压气体吸收喷入燃烧室的燃料燃烧释放的热量,燃烧过程的结果是使工质吸收了外界加入的热量Q1,而没有与外界发生机械功的交换。对于加热过程,工质状态参数将按定压过程的规律(v/T=常数)进行变化:压力恒定不变(p=常数),比容(比体积)不断增加,温度逐渐上升,熵值也相应增加。 (3)理想绝热膨胀过程 燃气轮机循环的膨胀做功过程是在透平中完成,过程中工质状态参数也将按绝热过程的规律(pvk=常数)进行变化,只不过变化的趋势与压缩过程正相反:压力不断下降,比容逐渐增大,温度伴随降低。通常也认为与外界没有热量交换,因而也是绝热过程,即工质与外界没有热交换,借助工质状态变化来实现膨胀做功。同样,在理想的可逆情况下,膨胀过程中工质的熵值为常数不变,因此理想绝热膨胀过程又称为等熵膨胀过程;而实际的绝热膨胀过程,由于存在的摩擦涡流等因素的影响,过程是不可逆的,熵总是增加的。 (4)等压放热过程 燃气轮机循环的是向大气环境排气放热来完成的,由于环境相对与循环系统体系来说,

燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施

燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施 专业:热能与动力 姓名:张露 学号:1151903

燃气轮机热力循环的分类与改善燃气轮机性能的热 力循环措施 摘要:燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。本文主要介绍了燃气轮机的工作原理,基本结构,热力循环的分类及热力循环措施。 关键词:燃气轮机分类性能改善 引言:燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。燃气轮机是一种先进而复杂的成套动力机械装备,是典型的高新技术密集型产品。作为高科技的载体,燃气轮机代表了多理论学科和多工程领域发展的综合水平,是21世纪的先导技术。发展集新技术、新材料、新工艺于一身的燃气轮机产业,是国家高技术水平和科技实力的重要标志之一,具有十分突出的战略地位。 正文: 燃气轮机(Gas Turbine)是一种以连续流动的气体作为工质、把热能转换为机械功的旋转式动力机械。在空气和燃气的主要流程中,只有压气机(Compressor)、燃烧室(Combustor) 和燃气透平(Turbine)这三大部件组成的燃气轮机循环, 通称为简单循环,如图1。大多数燃气轮机均采用简单循 环方案。因为它的结构最简单,而且最能体现出燃气轮 机所特有的体积小、重量轻、起动快、少用或不用冷却 水等一系列优点。 一、工作原理 压气机从外界大气环境吸入空气,并经过轴流式压 气机逐级压缩使之增压,同时空气温度也相应提高;压 缩空气被压送到燃烧室与喷入的燃料混合燃烧生成高温 高压的燃气;然后再进入到透平中膨胀做功,推动透平带动压气机和外负荷转子一起高速旋转,实现了气体或液体燃料的化学能部分转化为机械功,并输出电功。从透平中排出的废气排至大气自然放热。这样,燃气轮机就把燃料的化学能转化为热能,又把部分热能转变成机械能。通常在燃气轮机中,压气机是由燃气透平膨胀做功来带动的,它是透平的负载。在简单循环中,透平发出的机械功有1/2到2/3左右用来带动压气机,其余的1/3左右的机械功用来驱动发电机。在燃气轮机起动的时候,首先需要外界动力,一般是起动机带动压气机,直到燃气透平发出的机械功大于压气机消耗的机械功时,外界起动机脱扣,燃气轮机才能自身独立工作。 二、热力循环分类 按不同热力循环区分燃机类型,是由于任何热机都必须借助一定的媒介物质(工质),经历一系类热力过程,才能实现热转功的循环而对外。按照循环工质流动与组织方式的不同,燃气轮机会在性能、总体布局及结构上有很大差异。为了提高燃机性能(热效率和比功),除了一般简单循环外,探索和采用很多种热力循环方式。详细的热力循环类型如图2。

相关主题
文本预览
相关文档 最新文档