当前位置:文档之家› 02197--概率论与数理统计(二)

02197--概率论与数理统计(二)

02197--概率论与数理统计(二)
02197--概率论与数理统计(二)

[单项选择题]

1.设分别为随机变量的分布函数,为使

是某一随机变量的分布函数,在下列给定的各组值中应取(A、)。

2.设是随机变量,其分布函数分别为,为使

是某一随机变量的分布函数,在下列给定的各组数值中应取(C、)

3.设随机变量的概率分布为且满足,则的相关系数为(A、0)

4.设A、B、C为三个事件,P(AB)>0且P(C|AB)=1,则有(C、P(C)≥P (A)+P(B)-1)

5.设x?,x?,··· ···,x?为正态总体N(μ,4)的一个样本,表示样本均值,则μ的置信度为1-α的置信区间为(D、

6.设总体X服从正态分布N(μ,σ2),X?,X?,··· ···,X n是来自X 的样本,则σ2的最大似然估计为( A、 )

7.设是未知参数的一个估计量,若,则是的( D.有偏估计 )

8.在对单个正态总体均值的假设检验中,当总体方差已知时,选用( B、u检验法)

9.若X~t(n)那么χ2~(A、F(1,n))

10.对于事件A,B,下列命题正确的是(D、)

11.设X~N(μ,σ2),那么当σ增大时,P{|X-μ|<σ}=(C、不变)

12.已知随机变量X的密度函数f(x)=(λ>0,A为常数),则概率P{λ<X<λ+a}(a>0)的值(C、与λ无关,随a的增大而增大)

13.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则 (D、)。

14.设 X1, X2为来自总体N(μ, 1) 的一个简单随机样本, 则下列估计量中μ的无偏估计量中最有效的是 ( A、

设随机变量X的概率密度为f(x),则f(x)一定满足【C、】16.设随机变量X与Y的方差分别是25和16,协方差为8,则相关系数ρXY=【C、】

17.已知随机变量与相互独立,且它们在区间[-1,3]和[2,4]上服从均匀分布,则【A、3】

18.若X,Y相互独立,则下列正确的是【C、】设X~N(0,1), Y~N(μ,σ2), 则Y与X之间的关系是【A、】

设A, B为随机事件, A错误!未找到引用源.B,(B、)

A,B,C是任意事件,在下列各式中,不成立的是(B、(A∪B)-A=B)

设随机变量且相互独立,根据切比雪夫不等式有(D、≥5/12)

设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(D、)设离散型随机变量X和Y的联合概率分布为

,若X,Y独立,则α,β的值为(A、)

设总体X的数学期望为μ,X?,X?,··· ···,X n为来自X的样本,则下列结论中正确的是(A、X?是μ的无偏估计量)

已知是来自总体的样本,则下列是统计量的是(B、

设X,Y是相互独立的两个随机变量,它们的分布函数分别为F x(x),F y(y),则Z = max {X,Y} 的分布函数是(C、)

对于任意两个随机变量X和Y,若E(XY)=E(X)-E(Y),则(B、D(X+Y)=D(X)+D(Y) ) 设A,B为任二事件,则(D、)

设Φ(x)是标准正态分布函数,则Φ(0)= 【B、】

设随机变量X与Y相互独立,且P{X≤1}=1/4,P{Y≤1}=1/3,则P{X≤1,Y≤1}=

【C、】

设随机事件A与B互不相容,且, ,则【D、】设A和B相互独立,,,则【B、】袋中有5个白球和3个黑球,从中任取两个,则取到的两个球是白球的概率是【A、】

下列关于“统计量”的描述中,不正确的是【C、统计量表达式中不含有参数】设A,B为随机事件,则下列说法正确的是【B、】

设随机变量X的取值范围是[-1,1],以下函数可以作为X的概率密度的

是【C、】

已知随机变量X的分布函数为

C、7/12

设随机变量X服从参数为的指数分布,则下列各项中正确的是(D、

)

设二维随机变量(X, Y)的概率密度为

,则常数c=(A、

)

将一枚硬币重复郑n次,以X和Y分别表示正面向上和反面向上的次数,则X 与Y的相关系数等于(A、-1)

是来自总体X~N(0,1)的一部分样本,设:

,则Z/Y~(D、F(8,8))X?,X?独立,且分布率为(i=1,2),那么下列结论正确的是(C、P{X?=X?}=1/2)

下列二无函数中,( B、) 可以作为连续型随机变量的联合概率密度。

掷一颗均匀的骰子600次,那么出现“一点”次数的均值为( B、100 )

设随机变量X和Y的方差存在且不等于0,则D(X+Y)=D(X)+D(Y)是X和Y的(C、不相关的充分必要条件)

设A,B,C表示三个事件,则表示(D、A,B,C都不发生)

设离散型随机变量X的密度函数为,则常数c=(D、5)

下列结论中,(D、X与Y相互独立)不是随机变量X与Y不相关的充要条件。设X~b(n,p)且EX=6DX=,则有(C、n=15,p=)

设p(x,y),pξ(y)分别是二维随机变量(ξ,η)的联合密度函数及边缘密度函数,则(D、)是ξ与η独立的充要条件。

设随机变量 X 的概率密度为

,且

,则下列各组数中应取 ( B、

).

对任意两个相互独立的随机变量X 和 Y, 下列选项中不成立的是 (C、D(XY) = D(X)D(Y)).

已知事件A和B相互独立,P(A)=,P(B)=,则P(AB)=【A、】

已知随机变量X的分布函数为,则

【A、】

设随机变量X~N(1,4),则下列各项中正确的是【A、

两射手彼此独立地向同一目标射击.设甲射中目标的概率为, 乙射中目标的概

率为,则目标被击中的概率是【B、】

设随机变量,已知,则【A、】

设随机变量X的概率密度为则X服从(A、标准正态分布)。设(X,Y)为二维连续随机变量,则X与Y不相关的充要条件是(C、

)

[填空题]

设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB)

= P(B)P(A|B)

设X1 ,X2··· ···,X17 是总体N(μ,4)的样本,S2是样本方差,若P(s2>α)=,则α=8 。

设X~N(μ,σ2),而,,,,是从总体X中抽取的样本,则μ的矩估计值

设X~N(μx,σ2x),Y~N(μy,σ2y),且X与Y相互独立,设

X1,··· ···,X m为来自总体X的一个样本;设Y1,··· ···,Y n为来自总体Y的一个样本;S2x和S2y分别是其无偏样本方差,则

服从的分布是。

测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4 则零件尺寸偏差的数学期望的无偏估计量是__0__。

若随机变量X~U(0,3),则p{-1<X<2}=;E(X)=,D(2X+1)=3。

设二维随机向量(X,Y)的分布律如右,则α= ,E(X)=,X与Y 的协方差为: ,

Z=X+Y2的分布律为:

设A,B为两个随机事件,若A发生必然导致B发生,且,则

已知事件A与B互相独立,

设随机变量X与Y相互独立, X在区间[0, 3]上服从均匀分布,Y服从参数为4

的指数分布,则D(X+Y)=(13/16)

已知(8,20)=2,则(20,8)= 。

设A , B为两个随机事件,且P(B)>0,则由乘法公式知 P(AB)=_

设离散型随机变量X分布律为P{X=h}=5A(1/2)k(k=1,2····)则

A= 1/5

一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为2/3

两个可靠性为p>0的电子元件独立工作,

(1)若把它们串联成一个系统,则系统的可靠性为: p2;

(2)若把它们并联成一个系统,则系统的可靠性为: 1-(1-p)2;

袋子中有大小相同的5只白球, 4只红球, 3只黑球,在其中任取4只

(3)4只中没有白球的概率为: 7/165 。

袋子中有大小相同的红球7只,黑球3只,

(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为:。

(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为:。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二

只球,则第一、二次取到球颜色不同的概率为:。

设某商店一天的客流量X是随机变量,服从泊松分布π(λ) ,

X1,··· ···,X7为总体X 的样本,E(X)的矩估计量为,160,168,152,153,159,167,161为样本观测值,则E(X)的矩估计值为 160 。

某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概率为1/4,则4人中至多1人需用台秤的概率为:__。

100件产品中,有10件次品,不放回地从中连续取两次,每次取一个产品,则第二次取到次品的概率为。

设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值(x1,x2, …,xn)落入W的概率为,则犯第一类错误的概率为。

设X~N(μ,),容量n=9,均值=5,则未知参数μ的置信度为的置信区间是, (查表=)。

设总体X~N(μ,),X1,X2,··· ···,X9是容量为9的简单随机样本,均值-x=5,则未知参数μ的置信水平为的置信区间是 [,] 。

将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为4/7! = 1/1260

在假设检验中,往往发生两类错误,第一类错误是指 H0 成立的条件下拒绝 H0 的错误 ,第二类错误是指 H1成立的条件下拒绝H1的错误,显著水平α是指控制第一类错误的概率小于α。

设某学校外语统考学生成绩X服从正态分布N(75,25),则该学校学生的及格率为,成绩超过85分的学生占比P{X≥85}为。

其中标准正态分布函数值Φ(1)=,Φ(2)=,Φ(1)= 。

设随机变量 X 服从二项分布 b(100, , 则 E(X) = 20 , D(X) = 16 。

已知随机变量X与Y相互独立,且,则

__2__。设A,B为两个随机事件,,,则。

设离散型随机变量X分布律为

[判断题]

设A、B是Ω中的随机事件,必有P(A-B)=P(A)-P(B) ( 错 )

设A、B是Ω中的随机事件,则A∪B=A∪AB∪B ( 对)

X~N(,) , Y~N(,) ,则 X-Y~N(0, -)(错)

对任意事件A与B,则有P(A∪B)=P(A)+P(B)(错)

设A,B为随机事件,则 ( 对)

随机变量X与Y不相关,但X与Y不一定相互独立。(对)

是取自于总体X的一个样本,样本均值是总体均值的无偏估计量。(对)

若,则事件A与B相互独立。(对)

随机变量X的分布函数是

(对)(错)

对任意事件A和B,必有P(AB)=P(A)P(B) ( 错)

若X服从参数为λ的普哇松分布,则EX=DX ( 对 )

若X服从二项分布b(k;n,p), 则EX=p ( 错 )

样本均值=是母体均值EX的一致估计(对)

X为随机变量,则DX=Cov(X,X)(对)

若事件A是不可能事件,即,则。(对)

随机变量X是连续型随机变量,则。(错)若事件A与B互不相容,则事件A与B互为对立事件。(错)

随机变量X与Y相互独立,则X与Y一定不相关。(对)

若事件A是必然事件,则(对)

假设检验基本思想的依据是小概率事件原理(对)

样本方差=是母体方差DX的无偏估计(错)设A、B是Ω中的随机事件,则A-BA(对)

若X服从二项分布b(k;n,p),则EX=npq ( 错)

两个随机变量各自的联合分布不同,边缘分布一定不同。( 错)

若事件A与B互不相容,则A与B互为对立事件。( 错)

常数的期望等于零。( 错)

由(X,Y)的两个边缘分布可确定(X,Y)的联合分布。( 错)

无论总体服从什么分布,样本均值X是总体均值的无偏估计。(对)

常数的方差等于这个常数。( 错)

[计算题]

因为P(A-B)=P(A)-p(ab)=(ab)=

所以P(AB)=

P(AB)=1-P(AB)==06

设随机变量X服从[0,]上的均匀分布,随机变量Y的概率密度为

且X与Y相互独立,求(X,Y)的概率密度。已知在0只晶体管中有2只次品,在其中取两次每次任取只,作不放回抽样,求下列事件的概率。

(1)两只都是正品

(2)两只都是次品

(3)一只是正品:一只是次

(4)第二次取出的是次品

设随机变量X的分布律为

的分布律

6件产品中有4件正品和件次品,从中任选--3件,求3件中恰为件次品的概率。

设连续型随机变量的分布函数为:

(1)确定常数A及P(-1

(2)求Y=2x的分布函数及密度函数.

解: (1)因F(x)是连续型随机变量x的分布函数,所以F(x)在1处连续故F(1)= F(1+0)= F (1-0)可得A-1

[综合题]

设袋中有依次标着-1,0,1,2,3,4数字的6个球,现从中任取一球,记随机变量X为取得的球标有的数字,求:

(1)X的分布律;(2)的概率分布。设随机变量X与Y相互独立,且X,Y的分布律分别为

求二维随机变量(X,Y)的分布律。

设随机变量服从区间[0,]上的均匀分布,随机变量Y的概率密度为

且X与Y相互独立。

求: (1)的概率密度

(2) (XY)的概率密度;

(3) P(X>Y).

设随机变量x与y相互独立,且都服从标准正态分布,

数三概率论与数理统计教学大纲

数三《概率论与数理统计》教学大纲 教材:四川大学数学学院邹述超、何腊梅:《概率论与数理统计》,高等教育出版社出,2002年8月。 参考书:袁荫棠:《概率论与数理统计》(修订本),中国人民大学出版社。 四川大学数学学院概率统计教研室:《概率论与数理统计学习指导》 总学时:60学时,其中:讲课50学时,习题课10学时。 学分:3学分。 说明: 1.生源结构:数三的学生是由高考文科生和一部分高考理科生构成。有些专业全是文科生或含极少部分理科生(如:旅游管理,行政管理),有些专业约占1/4~1/3的理科生(国贸,财政学,经济学),有些专业全是理科生(如:国民经济管理,金融学)。 2.高中已讲的内容:高中文、理科都讲了随机事件的概率、互斥事件的概率、独立事件的概率,即教材第一章除条件概率以及有关的内容以外,其余内容高中都讲了。高中理科已讲离散型随机变量的概率分布(包括二项分布、几何分布)和离散型随机变量的期望与方差,统计基本概念、频率直方图、正态分布、线性回归。而高中文科则只讲了一点统计基本概念、频率直方图、样本均值和样本方差的简单计算。 3.基本要求:学生的数学基础差异大,不同专业学生对数学课重视程度的差异大,这就给讲授这门课带来一定的难度,但要尽量做到“分层次”培养学生。高中没学过的内容要重点讲解,学过的内容也要适当复习或适当增加深度。讲课时,既要照顾数学基础差的学生,多举基本例子,使他们掌握大纲要求的基本概念和方法;也要照顾数学基础好的学生,使他们会做一些综合题以及简单证明题。因为有些专业还要开设相关的后继课程(如:计量经济学),将用到较多的概率统计知识;还有一部分学生要考研,数三的概率考研题往往比数一的难。 该教材每一章的前几节是讲述基本概念和方法,习题(A)是针对基本方法的训练而编写的,因此,这一部分内容须重点讲解,并要求学生必须掌握;每一章的最后一节是综合例题,习题(B)具有一定的综合性和难度,可以选讲部分例题,数学基础好的学生可选做(B)题。 建议各章学时分配(+号后面的是习题课学时): 第一章随机事件及其概率 一、基本内容 随机事件的概念及运算。概率的统计定义、古典定义及公理化定义。概率的基本性质、加法公式、条件概率与乘法公式、全概率公式、贝叶斯公式。事件的独立性,独立随机试验、

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计练习题4答案

概率论与数理统计练习题4答案

试卷答案 第 1 页 (共 9 页) 概率论与数理统计 练习题4答案 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、若P(A)=0.3,()0.1P AB =,则P(AB)=__________. 答案:0.2 2、每次试验的成功率为(01)p p <<,进行重复独立试验,直到第10次试验才取得4次试验成功的概率为( )。 A 、4 4610 (1)C p p - C 、3469(1)C p p - C 、4469(1)C p p - D 、336 9(1)C p p - 答案:B 3、若标准正态分布的函数0,1 () F x ,当x a =和x a =-时 相等,且0,1 (0.5)0.6915F =,则0,1() F a 的值是( )。 A 、0.6915 B 、0.5 C 、0 D 、0.3930 答案:B 4、设,ξη相互独立,并服从区间[0,1]上的均匀分布则( )。 A 、ζξη=+服从[0,2]上的均匀分布, B 、ζξη=-服从[- 1,1]上的均匀分布,

试卷答案第 1 页(共 9 页)

试卷答案 第 1 页 (共 9 页) A 、 12 12223 4 ~(2) () X X t X X -+ B 1 22 1 ~(1) n i i n t n X =--∑ C 、 3 21 24 (1)3~(3, 3) i i n i i n X F n X ==--∑∑ D 122 21 2 ~(2) t X X + 答案:D 9、设1 2 ,,,n X X X ???是来自正态总体2 (,)N μσ的简单随机 样本,2 σ未知,X 是样本均值。 ()22 111n i i s X X n ==--∑若用 X k X k n n ?-+ ? 作为μ的1α-置信区间,则k 应取正 态分布的分位数( )。 A 、12 1.96, u α- =或t 分布的分位数 B 、()11t n α -- C 、 1 t α - D 、1 2 (1) t n α-- 答案:D 10、当正态总体X 的方差2 ()D X σ=未知,检验期望 EX μ=用的统计量是( )。 A () ()02 21(1) n k k x n n x x μ=--?? - ??? ∑ B 、 ()()01 2 21n k k x n x x μ=-?? - ??? ∑

02197概率论与数理统计(二)(试题+答案)-201204

页眉内容 2012年4月全国自考概率论与数理统计(二)参考答案 ()()()()() ()()()()()() (){}{}{}{}{} ()()()()() {}{}()()()() ()()()()()[]()()()()()()()()()()()() n x D n x C x B x A x X x x x N X D C B A X Y X D X D X D C B A p n X D X E p n B X y f x f D y f x f C y f x f B y f x f A Y X y f x f Y X D C B A Y X Y X D C B A X P X P N X x x e X F D x x e X F C x x e X F B x x e X F A X X X P D X P C X P B X P A X P x x f X AB P B P A P D AB P B P A P C AB P A P B B P A P A B A P B A A D A C B B B A A AB B A B A n XY Y X Y X Y X Y X Y X x x x x 92 .32.92.32 ....32~.102.1.0.1-.0.98.03.3.08.4.06.6.04. 44.14.2~.8.2 1..21. .75,1.5,0.1,1.10.~ 12.684.0.68.0.32.0.16.0.084.042~.5.0001..0001..0001..000..472.53.54.21.43. 06331.3....2.....12122-----=>==+++-≤=≤???≤>+=???≤>-=???≤>-=???≤>=≤<≤<≤<≤<≤

第一章 概率论与数理统计1

概 率 论 第一章 随机事件与概率 例1 设B A ,为随机事件,已知() 4.0,6.0)(, 5.0)(===A B P B p A P ,求 1) )(B A P + 2) )(B A P 3) ()B A P 4) )(B A P - 5) )(B A P + 例2 6个不同的球,投入编号为1到7的7个空盒中,求下列事件的概率:1) 1号到6号盒中各有一个球 2) 恰有6个盒中各有1个球 3) 1号盒内有2个球 例3 袋中有两个5分的,三个贰分的,五个1分的钱币。任取其中5个,求钱额总数超过壹角的概率。 例4 验收一批共有60件的可靠配件,按验收规则,随机抽验3件,只要3件中有一件不合格就拒收整批产品,假设,检验时,不合格品被误判为合格品的概率为0.03 ,而合格品被判为不合格品的概率为0.01,如果在60件产品中有3件不合格品,问这批产品被接收的概率是多少? 例5 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有2件残品,且含0,1和2件残品的箱各占80%,15%和5%。现随意抽取一箱,从中随意检验4只,若未发现残品则通过验收,否则逐一检验并更换。试求:1)一次通过验收的概率 2)通过验收的箱中确无残品的概率。 例6 一个医生已知某疾病的自然痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定10人中至少有4人治好,则认为这种药有效,反之,则无效,求:1)虽然新药有效,且把痊愈的概率提高到35%,但经过验收被否定的概率;2)新药完全无效,但经过试验被认为有效的概率。 例7 设B A ,是两个事件,0)(,0)(21>=>=P B P P A P ,且121>+P P ,证明:1 211)(P P A B P --≥ 例8 已知161)()(,0)(,41)()()(==== ==BC P AB P AB P C P B P A P ,求C B A ,,全不发生的概率。 例9 在长度为a 的线段内任取两点,将其分成三段,求它们能构成三角形的概率。 例10 设有三门炮同时对某目标射击,命中的概率分别为0.2,0.3,0.5,目标命中一发被击毁的概率是0.2,命中两发被击毁的概率为0.6,命中三发被击毁的概率为0.9,求三门炮在一次射击中击毁目标的概率。 例11 假设一厂家生产的仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,调试后以概率0.80可以出厂,并以概率0.20定为不合格品而不能出厂。现该厂生产了) 2n(n ≥

概率论与数理统计及其应用第二版课后答案

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求 )])([(),(),(),(___ ___ AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5 .0)(625.0)])([()()])([()])([(___ =-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648 = 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为 48344=??个,所以出现奇数的概率为 48.0100 48 = (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为 48.0100 48 = 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 (3)4只中没有白球。 解: (1)所求概率为338 4 12 1 31425=C C C C ;

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计答案精选

习 题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大 号码,写出随机变量X 的分布律. 【解】 故所求分布律为 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 4.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N ,

试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33 (0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时 间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率.

27173概率论与数理统计第4章练习题

第四章 随机变量的数字特征 且E (X )=1,则常 数 x = 21.已知随机变量X 的分布律为 则

20.设随机变量X 的概率密度为?? ? ??≤≤=,,0;10,2)(其他x x x f 则E (|X |)=______. 7.设随机变量X 服从参数为2 1 的指数分布,则E (X )=( ) A. 4 1 B. 2 1 C. 2 D.4 29.假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。问小店应组织多少货源,才能使平均收益最大? 29.设某型号电视机的使用寿命X 服从参数为1的指数分布(单位:万小时). 求:(1)该型号电视机的使用寿命超过t (t >0)的概率; (2)该型号电视机的平均使用寿命. 求: (1)常数a ,b ; (2)X 的分布函数F (x ); (3)E (X ). 二、方差 127.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A.E (X )=0.5,D (X )=0.5 B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4 D.E (X )=2,D (X )=2 8.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则E (Z 2)=( ) A.1 B.4 C.5 D.6 28.设随机变量X 的概率密度为 ? ? ?≤≤-=.,x ,cx x f 其他; )(0222 试求:(1)常数c ;(2)E (X ),D (X );(3)P {|X -E (X )| < D (X )}. 7.设随机变量X~N (1,22),Y~N (1,2),已知X 与Y 相互独立,则3X-2Y 的方差为( ) A .8 B .16

概率论与数理统计答案(2)

习题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最大号码,写出随机变量X 的分布律. 【解】 故所求分布律为 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 2235 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 4.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知

故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道, 则有 即 200 200200 1 C (0.02)(0.98)0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 13 p = 所以 4 451210 (4)C () 33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分 布,而与时间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率.

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

概率论与数理统计(二)试题及答案

概率论与数理统计B 一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12 () ,()23 P A P B == 则()P AB 可能为()(A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A) 12; (B) 225; (C) 4 25 ; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A) 518; (B) 13; (C) 1 2 ; (D)以上都不对 4.某一随机变量的分布函数为()3x x a be F x e += +,(a=0,b=1)则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对 5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( ) (A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对 二.填空题(每小题3分,共15分) 1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = . 2.设随机变量~(,), ()3, () 1.2B n p E D ξ ξξ==,则n =______. 3.随机变量ξ的期望为() 5E ξ=,标准差为()2σξ=,则2()E ξ=_______. 4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为 2 ()22 a f x x x = ++,a 为常数,则P (ξ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 四.(本题10分) 设随机变量ξ的分布密度为 , 03()10, x<0x>3 A x f x x ?? =+???当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望. 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是 (1) ξ与η是否相互独立? (2) 求ξ η?的分布及()E ξη?; 六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少? 七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望. 八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件?(注:(1.28)0.90Φ=,(1.65)0.95Φ=) 九.(本题6分)设事件A 、B 、C 相互独立,试证明A B 与 C 相互独立. 某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________. 十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲 一、课程基本信息 课程编号:450006 课程名称:概率论与数理统计 课程类别:公共基础课(必修) 学时学分:理论48学时/3学分 适用专业:计算机、自动化、经管各专业 开课学期:第一学期 先修课程:高等数学 后续课程: 执笔人: 审核人: 制(修)订时间:2015.9 二、课程性质与任务 概率论与数理统计是研究随机现象客观规律性的数学学科,是高等学校理、工、管理类本科各专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。 三、课程教学基本要求 本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。 四、课程教学内容及各教学环节要求 (一)概率论的基本概念

1、教学目的 理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典概犁及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。 2、教学重点与难点 (1)教学重点 ① 概率、条件概率与独立性的概念; ② 加法公式;乘法公式;全概率公式;贝叶斯公式。 (2)教学难点 ① 古典概型的有关计算;② 全概率公式的应用; ③ 贝叶斯公式的应用。 3、教学方法 采用传统教学方式,以课堂讲授为主,课堂讨论、多媒体演示、课下辅导等为辅的教学方法。加强互动教学,学生对课程的某一学术问题通过检索资料、实际调查来提高自学能力和实践应用能力。 4、教学要求 (1)理解随机试验、样本空间、随机事件等基本概念;熟练掌握事件的关系及运算 (2)理解频率和概率定义;熟练掌握概率的基本性质 (3)理解等可能概型的定义性质;,会计算等可能概型的概率 (4)理解条件概率的定义;熟练掌握加法公式、乘法公式、全概率公式和贝叶斯公式(5)理解事件独立性概念,掌握应用独立性进行概率计算 (二)随机变量及其分布 1、教学目的 了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布 2、教学重点与难点 (1)教学重点 ① 随机变量及其概率分布的概念; ② 离散型随机变量分布律的求法;

概率论与数理统计1_8课后习题答案

第一章 思 考 题 1.事件的和或者差的运算的等式两端能“移项”吗?为什么? 2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个 能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率ΛΛ1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把 它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表: 67 5844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗? 答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等, 或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗? 5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不 相容事件又有何区别和联系? 6.条件概率是否是概率?为什么? 习 题 1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次 答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次 答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω== (3)调查城市居民(以户为单位)烟、酒的年支出 答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时, 样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥ 2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB (4) “三人中恰好有一人中靶”: ;C B A C B A C B A Y Y (5)“ 三人中至少有一人中靶”: ;C B A Y Y

概率论与数理统计4-1

牡丹江师范学院教案 教研室:教师姓名:授课时间:

教研室主任签字年月日

讲授内 容 备注 1、 随机变量:在试 验的结果中能取得 不 同数值的量, X =X ( 3 ) , 3 自变 量,X 是函数。 2、 随机变量与随机 事件的关系。 3、 随机变量的特

⑴ 对于样本空间'1 - > -00 / .01/ '11; |0,■ = 11; 我们有X = 1, ? = - 01 ; 2, ? = 00- ⑵对于样本空间门二',12「13「14厂’15厂’23「’24厂’25厂’34「35厂’45』 13, '14 0, :;:;45; 我们有X =了1,;1 :;l14,「15J '24, W '34厂’ 2,■ - '12 / '13 / '23- 14,15,24,25,34,35, 例2(38页)观察放射性物质在一段时间内放射的粒子数, 随机 变量Y,则由§ 1.2例3可知: 设为样本空间0 = { 3 0, 3 1, 3 2,…} 则有丫= i,3 = 3 i (i = 0,1,2,…)由于试验的结果的出现具有一定的概率,所以X取每个值或每个确定范围内的值也有一定的概率。 例3(38页)测量车床加工的零件的直径,设为随机变量Z(mm, 则有§ 1.2例4知: 样本空间Q = { 3 x | a w x w b}, 则有Z= x, 3 = 3x (a w x w b) 上面的三个例子中,试验的结果与数量直接有关,当试验的结果 与数量无直接联系时,也可以引进随机变量,并且随机变量取不同的数值来表示试验的结果。即把试验结果数值化。例如,裁判员在运动 场上不叫运动员的名字而叫号码一样,二者建立了一种对应关系。例4 (38页)任意抛掷一枚硬币,由§ 1.2例1知: 样本空间门-「「J, 3仁徽花向上; 3 2:字向上; 0 co = co 引进如下的随机变量:X二' [1,? = 2 ■1 这个随机变量X实际上就是表示在抛掷硬币的一次试验中徽花 向上的次数。 我们指出,在试验的结果中,随机变量取得某一数值x,记作X 二x,是一个随机事件;同样,随机变量X取得不大于实数x的值, 记作X < x,随机变量X取得区间(X1,X2),记作x 1

概率论与数理统计学习地总结

概率论与数理统计 学习报告 学院 学号: 姓名:

概率论与数理统计学习报告 通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。 先简单地介绍一下概率论与数理统计这门学科。 概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。 概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的

随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。 至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。 概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。因此掌握它特有的学习方法是很重要的。 在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些

相关主题
文本预览
相关文档 最新文档