当前位置:文档之家› 通信原理实验报告(北邮)

通信原理实验报告(北邮)

通信原理实验报告(北邮)
通信原理实验报告(北邮)

通信原理实验

实验报告

实验二抑制载波双边带的产生(DS B SC g e n er at i on)一、实验目的:

1.了解抑制载波双边带(SC-DSB)调制器的基本原理。

2.测试S C-DSB 调制器的特性。

二、实验步骤:

1.将T IMS 系统中的音频振荡器(Audio O scillator)、主振荡器(Master S ignals)、缓冲放大器(Buffer Amplifiers)和乘法器(Multiplier)按图(1)连接。

图(1)抑制载波的双边带产生方法一

2.用频率计来调整音频振荡器,使其输出为1kHz,作为调制信号,并调整缓冲放大器的K1,使其输出到乘法器的电压振幅为1V。

3.调整缓冲放大器的K2,使主振荡器输至乘法器的电压为1V,作为载波信号。

4.测量乘法器的输出电压,并绘制其波形。

5.调整音频振荡器的输出,重复步骤4。

6.将电压控制振荡器(VCO)模快和可调低通滤波器(Tuneable LPF)模块按图(2)连接。

图(2)抑制载波的双边带产生方法二

7.VCO 得频率选择开关器至于“LO”状态下,调整VCO 的Vin(控制电压DC-3V~3V )使VCO 的输出频率为10kHZ。

8.将可调低通滤波器的频率范围选择范围至“wide”状态,并将频率调整至最大,此时截至频率大约在12kHz 左右。

9.将可调低通滤波器的输出端连接至频率计,其读数除360 就为LPF 的3dB 截止频率。10.降低可调LPF 的截止频率,使SC-DSB 信号刚好完全通过低通滤波器,记录此频率

(fh=fc+F)。

11.再降低3dB 截止频率,至刚好只有单一频率的正弦波通过低通滤波器,记录频率(fl=fc-F)

12.变化音频振荡器输出为频率为800Hz、500Hz,重复步骤10、11。

三、实验结果:

1. 音频振荡器输出1KHz 正弦信号作为调制信号。

已调信号波形图:

2. 音频振荡器输出1.5KHz 正弦信号作为调制信号。

已调信号波形图:

3.调整音频振荡器输出2KHz 正弦信号作为调制信号。

已调信号波形图:

4.步骤9:LPF的3DB截止频率为23.18.(8.326KHz)

5.步骤10、11:

800Hz fl=9.196kHz,fc=10kHz,fh=10.804kHz

500Hz fl=9.487kHz,fc=10kHz,fh=10.513kHz

四、实验结果分析:

1.此题中的乘法器的kxy中的k值为0.5,所以SC-DSB 信号为载波信号与调制信号相乘得到且幅度为两信号幅度的乘积时,乘法器输出为乘积的一半,故波形图中调制信号幅度

仅为500mV,而不是1v,包络的波形为载波信号波形,由调制信号为10KHz 时的

SC-DSB 波形可看出S C-DSB 信号有可能存在相位翻转的问题。此外,SC-DSB 信号不

能用包络检波来解调!

2. 总结一下:由实验可知,调制后的输出波形是以调制信号为包络,载波在包络里振荡,

100kHz的载波信号将调制信号的低通频谱搬移到载波频率上。

且当调制信号频率不一样时,调制后信号的波形差别很大。由图可看出,在调制信号

的一周期内载波的振荡规律!

3. 对于该信号的解调,在通信原理上学了很多,可以在接收端将信号与一个同频同相的

载波信号相乘,再通过低通滤波器,得到调制信号的波形。

五、思考题:

1.如何能使示波器上能清楚地观察到载波信号的变化?

答:可以通过观察输出信号的频谱来观察载波的变化,另一方面,调制信号和载波信号的频率要相差大一些,可通过调整音频震荡器来完成。

2.用频率计直接读SC—DSB 信号,将会读出什么值。

答:频率计测得的是围绕一个中心频率来回摆动的值。

实验三振幅调制(Amplitude modulation)

一、实验目的:

1. 了解振幅调制器的基本工作原理。

2. 了解调幅波调制系数的意义和求法。

二、实验步骤:

1.将Tims 系统中的音频振荡器(Audio O scillator)、可变直流电压(Variable D C)、主振荡

器(Master Signals)、加法器(Adder)和乘法器(Multiplier)按图(3)连接。

a 图(3)振幅调制的产生方法一

2.音频振荡器输出为1kHZ,主振荡器输出为100kHZ,将乘法器输入耦合开关置DC 状态。

3.将可变直流器调节旋钮逆时针调至最小,此时输出为-2.5V 加法器输出为+2.5V。

4.分别调整加法器增益G 和g,使加法器交流振幅输出为1V,DC 输出也为1V。

5.用示波器观察乘法器的输出,读出振幅的最大值和最小值,用公式

M = U m max-U m min

U m max+U m min

计算调制系数。

6.分别调整AC 振幅和DC 振幅,重复步骤5,观察超调的波形。

7. 用图(4)的方法,产生一般调幅波。

8.将移相器置“HI”。

9.先不加加法器B 输入端的信号,调整缓冲放大器的增益和加法器的G 增益。使加法器输出为振幅1V 的SC-DSB 信号。

10.移去加法器A 输入端的信号,将B 输入端信号加入,调整加法器的g 增益,使加法器输出为振幅1V 的正弦值。

11.将A 端信号加入,调整移相器的相移,使加法器输出为调幅波,观察其波形,计算调制系数。

图(4)振幅调制的产生方法二

三、实验结果:

1.加法器交流振幅输出为1V,直流输出为1V,即调制系数为 1 时的调制信号波形:

2.加法器交流振幅输出为 1.3V,直流输出为0.5V,即调制系数为2.6 时的超调信号波形:

四、实验结果分析:

幅度调制是通原课上学到的最简单易懂的调制方法,其解调也是相当简单。直接用包络检波就可以!

当带有大载波分量的幅度调制信号超调的时候,如图2和3所示,调制出来的信号被解调后会产生很严重的失真,进行幅度调制时,调制系数应该小于1,否则不能正确解调出信号。

1.正常调制情况下,已调信号的包络是调制信号,接收端的包络检波器可以从中解调出信号。

2.|m(t)|>a 时,已调信号的包络不再是调制信号,信号波形失真,包络检波器无法从中解调出正确信号。

五、思考题:

1、当调制系数大于1 时,调制系数 Ma=(Ummax-Ummin)/(Ummax+Ummin),此公式是否合

适?

答:不合适,因为此时为过渡调制,幅度最小值不是实际最小值,实际最小值应为负值。

2、用图五产生一般调幅波,为何载波分量要和SC-DSB 信号相同。若两个相位差90 度时,

会产生什么图形?

答:因为最后的一般调幅信号为:coswctcoswt+coswt=(1_coswct)*coswt, 其中由两部分组成,为了使这两部分最后能够合并,就要求载波分量和DC-DSB 信号同相。若两个信号相位相差90 度,则:coswctcoswt+sinwt=sqrt(1+coswct*coswct)cos(wt+θ),这是一个

振幅不断变化的调频波。

实验四包络与包络再生(Envelops and envelops recovery) 一、实验目的:

1.了解包络检波器(Envelop Detector)的基本构成和原理。

二、实验步骤:

1. 利用实验三的方法组成一个调制系数为100%的一般调幅波。

2.将共享模块(Utilities Module)中的整流器(Rectifier)和音频放大器(Headphone Amplifier)中的3KHz 低通滤波器按下图2方式连接:

2. 用示波器观察调制系数为0.5 和1.5 的输出波形。

3. 将调幅波到公用模块(Utilities Module)中的“DIODE+LPF”的输入端,用示波器

观察其输出的波形。

图(5)包络检波器原理

三、实验结果:

1.调制系数为0.5 的调幅波(加法器直流振幅输出为1V,交流振幅输出为0.5V)。

调制信号波形:

公用模块(Utilities Module)中的“Rectifier”的输出端信号波形:

TUNEABLE LPF 模块还原出的调制信号波形:

2.调制系数为1.5的调幅波(加法器直流振幅输出为1V,交流振幅输出为 1.5V)。调制信号波形:

公用模块(Utilities Module)中的“Rectifier”的输出端信号波形:

TUNEABLE LPF 模块还原出的调制信号波形:

四、实验结果分析:

对于不同方式检波输出的分析:

普通二极管整流:由于二极管有0.7v(硅)左右或0.3v(锗)的导通压降,并且在截止时的延时,导致通过低通滤波器输出的波形有些许失真。

精密半波整流:使用运放结构的半波整流,克服了导通压降,并且速度更快,所以波形几乎无失真。

注:当调制系数小于 1 时,调幅波能用包络检波器进行解调。当调制系数大于 1 时,调幅波不能用包络检波器进行解调。

五、思考题:

1.是否可用包络检波器来解调“SC-DSB”信号?请解释原因。

答:不可以,因为SC-DSB 信号波形的包络并不代表调制信号,在与t 轴的交点处有相位翻转。

2.比较同步检波和包络检波的优缺点。

答:包络检波的优点是:简单、经济;缺点是:总的发射功率中的大部分功率被分配给了载波分量,其调制效率相当低。同步检波的优点是:精确、效率高;缺点是:复杂、设备较贵。

3. 若调制系数大于1,是否可以用包络检波来还原信号

答:不可以,若调制系数大于1时,1+m(t)不是一直为正,解调出来的包络不是原信号。

实验十八ASK调制与解调

一、实验目的:

了解幅度键控(Amplitude-shift Keying ASK)调制与解调的基本组成和原理。二、实验步骤:

图(6)用开关产生ASK调制信号

1.将Tims系统中主振荡器(Master Signals)、音频振荡器(Audio Oscillator)、序列码产生器(Sequence Generator)和双模拟开关(Dual Analog Switch),按上图的方式连接。

2.将主振荡器模块2 kHz正弦信号加至序列码产生器的CLK输入端并将其输出的TTLX加至又模拟开关control 1,作为数字信号序列。

3.将主振荡器模块8.33 kHz输出加至音频振荡模块的同步信号输入端(SYNC),并将其输出接到双模拟开关模块的IN1。

4.用示波器观察ASK信号。

a)用开关产生ASK调制信号,如图:

5.将ASK调制信号加到由下图组成的ASK非同步解调器的输入端。

图(7)Ask非同步解调

6.将音频振荡器的输出信号调为4kHz,并将ASK信号加至共享模块中整流器(Rectifier)的输入端。

7.整流器的输出加到可调低通滤波模块的输入端,从低通滤波的输出端可以得到ASK解调信号。

8.将可调直流电压加到共享模块的比较器,决定比较电平,比较器输出为原数字信号。

b)ASK非同步解调:选择最佳比较电平VT时,解调出完美波形:如图:

9.用Tims系统中的模块组成,由下图所示的用乘法器组成的ASK调制电路。

用乘法器组成的ASK调制电路

10.主振荡器2kHz正弦信号输入到序列码产生模块“CLK”输入端,产生数字信号,再将其X输出端加以加法器A端。

11.将A端信号拿开,在加法器B端加直流电压,并调整加法器增益调整钮“g”,使加法器输出直流为1V。

12.将加法器“A”端输入信号加上,并把加法器的输出加到乘法器X端。13.用示波器观察加法器输出信号,如图:

14.用Tims系统的模块组成如下图所示的ASK同步解调电路。

图(8)ASK同步解调

15. 将主振荡器的100kHz正弦波作为同步检波的参考电压加入移相器的输入,移相器的输出加至乘法器的Y输入端(切换开关至AC)。

16.将上述实验中产生ASK信号加到乘法器X输入端。

17.乘法器的输出加至可调低通滤波器。

18.再通过共享模块中比较器加以整形,形成数字信号。

19.在比较器输入端加一个可调的直流电压,作为比较电平。

20.调整移相器的相移,可调低通滤波器的带宽和直流电平,使ASK解调信号最

大,并用示波器观察。

三、实验结果分析:

1.从调制信号图可以看出,ASK 信号是以单极性不归零码序列来控制正弦载波的开启和关闭的。

2.由于ASK 的抗噪声性能不如其他调制方式,所以该调制方式在目前的卫星通信、数字微波通信中没被采用,但是由于其调制方式的实现简单,在光纤通信系统中,

振幅键控方式却获得广泛应用。

总结:ASK信号的原理实际就是以单极性不归零码序列来控制正弦载波的开启与关闭.其非同步解调就是包络解调,在相同的信噪比情况下,包络检波的误比特率比同步检波大。

大总结:

通原实验为期比较短,只有两次课,我们是分两周上完的。课上的任务也是比较简单的,只是对照实验书上的仪器连接图,用实验室提供的接口线在实验箱上完成搭建即可。每个实验都是先搭建,再观察记录

示波器波形输出,通过输出图形对比自己知道的理论图形来加深对课本知识的了解。

我们在搭建实验箱的过程中也会详细的琢磨实验书上的连接图,在理解的基础上再去完成实验内容,这样不仅使我们实验进行的很快,效率明显,一次性实验搭建的正确率很高,而且还能举一反三,想出连接图的其他接法,甚至能自己去设计连接图,达到与实验目的殊途同归的效果。

我想这样的实验方法才能真正的学到很多东西,才可能真正达到学校安排本次实验的目的!

北邮通信原理实验 基于SYSTEMVIEW通信原理实验报告

北京邮电大学实验报告 题目:基于SYSTEMVIEW通信原理实验报告 班级:2013211124 专业:信息工程 姓名:曹爽 成绩:

目录 实验一:抽样定理 (3) 一、实验目的 (3) 二、实验要求 (3) 三、实验原理 (3) 四、实验步骤和结果 (3) 五、实验总结和讨论 (9) 实验二:验证奈奎斯特第一准则 (10) 一、实验目的 (10) 二、实验要求 (10) 三、实验原理 (10) 四、实验步骤和结果 (10) 五、实验总结和讨论 (19) 实验三:16QAM的调制与解调 (20) 一、实验目的 (20) 二、实验要求 (20) 三、实验原理 (20) 四、实验步骤和结果 (21) 五、实验总结和讨论 (33) 心得体会和实验建议 (34)

实验一:抽样定理 一、 实验目的 1. 掌握抽样定理。 2. 通过时域频域波形分析系统性能。 二、 实验要求 改变抽样速率观察信号波形的变化。 三、 实验原理 一个频率限制在0f 的时间连续信号()m t ,如果以0 12S T f 的间隔进行等间隔均匀抽样,则()m t 将被所得到的抽样值完全还原确定。 四、 实验步骤和结果 1. 按照图1.4.1所示连接电路,其中三个信号源设置频率值分别为10Hz 、15Hz 、20Hz ,如图1.4.2所示。 图1.4.1 连接框图

图1.4.2 信号源设置,其余两个频率值设置分别为15和20 2.由于三个信号源最高频率为20Hz,根据奈奎斯特抽样定理,最低抽样频率应 为40Hz,才能恢复出原信号,所以设置抽样脉冲为40Hz,如图1.4.3。 图1.4.3 抽样脉冲设置 3.之后设置低通滤波器,设置数字低通滤波器为巴特沃斯滤波器(其他类型的 低通滤波器也可以,影响不大),截止频率设置为信号源最高频率值20Hz,如图1.4.4。

北邮 通信网实验报告

北京邮电大学实验报告通信网理论基础实验报告 学院:信息与通信工程学院 班级:2013211124 学号: 姓名:

实验一 ErlangB公式计算器 一实验内容 编写Erlang B公式的图形界面计算器,实现给定任意两个变量求解第三个变量的功能: 1)给定到达的呼叫量a和中继线的数目s,求解系统的时间阻塞率B; 2)给定系统的时间阻塞率的要求B和到达的呼叫量a,求解中继线的数目s,以实现网络规划; 3)给定系统的时间阻塞率要求B以及中继线的数目s,判断该系统能支持的最大的呼叫量a。 二实验描述 1 实验思路 使用MA TLAB GUITOOL设计图形界面,通过单选按钮确定计算的变量,同时通过可编辑文本框输入其他两个已知变量的值,对于不同的变量,通过调用相应的函数进行求解并显示最终的结果。 2程序界面 3流程图 4主要的函数 符号规定如下: b(Blocking):阻塞率; a(BHT):到达呼叫量;

s(Lines):中继线数量。 1)已知到达呼叫量a及中继线数量s求阻塞率b 使用迭代算法提高程序效率 B s,a= a?B s?1,a s+a?B(s?1,a) 代码如下: function b = ErlangB_b(a,s) b =1; for i =1:s b = a * b /(i + a * b); end end 2)已知到达呼叫量a及阻塞率b求中继线数量s 考虑到s为正整数,因此采用数值逼近的方法。采用循环的方式,在每次循环中增加s的值,同时调用B s,a函数计算阻塞率并与已知阻塞率比较,当本次误差小于上次误差时,结束循环,得到s值。 代码如下: function s = ErlangB_s(a,b) s =1; Bs = ErlangB_b(a,s); err = abs(b-Bs); err_s = err; while(err_s <= err) err = err_s; s = s +1; Bs = ErlangB_b(a,s); err_s = abs(b - Bs); end s = s -1; end 3)已知阻塞率b及中继线数量s求到达呼叫量a 考虑到a为有理数,因此采用变步长逼近的方法。采用循环的方式,在每次循环中增加a的值(步长为s/2),同时调用B s,a函数计算阻塞率并与已知阻塞率比较,当本次误差小于预设阈值时,结束循环,得到a值。 代码如下: function a = ErlangB_a(b,s)

微机原理与接口技术硬件实验报告

微原硬件实验报告 班级:07118 班 学号:070547 班内序号:26 姓名:杨帆

实验一熟悉实验环境及IO的使用 一,实验目的 1. 通过实验了解和熟悉实验台的结构,功能及使用方法。 2. 通过实验掌握直接使用Debug 的I、O 命令来读写IO 端口。 3. 学会Debug 的使用及编写汇编程序 二,实验内容 1. 学习使用Debug 命令,并用I、O 命令直接对端口进行读写操作, 2.用汇编语言编写跑马灯程序。(使用EDIT 编辑工具)实现功能 A.通过读入端口状态(ON 为低电平),选择工作模式(灯的闪烁方式、速度 等)。 B.通过输出端口控制灯的工作状态(低电平灯亮) 三,实验步骤 1.实验板的IO 端口地址为EEE0H 在Debug 下, I 是读命令。(即读输入端口的状态---拨码开关的状态) O 是写命令。(即向端口输出数据---通过发光管来查看) 进入Debug 后, 读端口拨动实验台上八位拨码开关 输入I 端口地址回车 屏幕显示xx 表示从端口读出的内容,即八位开关的状态ON 是0,OFF 是 1 写端口 输入O 端口地址xx (xx 表示要向端口输出的内容)回车 查看实验台上的发光二极管状态,0 是灯亮,1 是灯灭。 2. 在Debug 环境下,用a 命令录入程序,用g 命令运行 C>Debug -a mov dx, 端口地址 mov al,输出内容 out dx, al

mov ah, 0bh int 21h or al, al jz 0100 int 20h -g 运行查看结果,修改输出内容 再运行查看结果 分析 mov ah, 0bh int 21h or al, al jz 0100 int 20h 该段程序的作用 3.利用EDIT 工具编写汇编写跑马灯程序程序 实现功能 A.通过读入端口状态(ON 为低电平),选择工作模式(灯的闪烁方式、速度等)。 B.通过输出端口控制灯的工作状态(低电平灯亮) C>EDIT 文件名.asm 录入程序 按Alt 键打开菜单进行存盘或退出 编译文件 C>MASM 文件名.asm 连接文件 C>LINK 文件名.obj 运行文件或用Debug 进行调试。 四,程序流程图

北邮scilab_通信原理软件实验报告

信息与通信工程学院通信原理软件实验报告

实验二时域仿真精度分析 一、实验目的 1. 了解时域取样对仿真精度的影响 2. 学会提高仿真精度的方法 二、实验原理 一般来说,任意信号s(t)是定义在时间区间(-无穷,+无穷)上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。为此将把s(t)按区间[-T/2 ,+T/2 ]截短为按时间间隔dert T均匀取样,得到的取样点数为N=T/dert T. 仿真时用这个样值集合来表示信号s(t)。Dert T反映了仿真系统对信号波形的分辨率,越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,其重复周期是1/t; 。如果信号的最高频率为 那么必须有 才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。设 则称为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是,那么不能用 此仿真程序来研究带宽大于这的信号或系统。换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*Bs,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信号。 三、实验步骤 1.将正弦波发生器模块、示波器模块、时钟模块按下图连接:

时钟设置0.01,得到的结果如下: 时钟设置0.3,以后得到的结果如下:

五、思考题 (1)观察分析两图的区别,解释其原因。 答:因为信号周期是1,而第一个图的采样周期是0.01,所以一个周期内能采样100个点,仿真出来的波形能较精确地显示成完整波形,而第二个图采样周期是0.3,所以一个周期内只有三个采样点,故信号失真了。 (2)将示波器的控制时钟的period的参数改为0.5,观察仿真结果,分析其原因。 结果如下:

北邮通信原理软件实验报告

通信原理软件实验报告 学院:信息与通信工程学院班级:

一、通信原理Matlab仿真实验 实验八 一、实验内容 假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。 二、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示: 由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。

2、双边带抑制载波调幅(DSB—SC AM)信号的产生 双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波c(t)相乘得到,如图所示: m(t)和正弦载波s(t)的信号波形如图所示: 若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。 3、单边带条幅SSB信号 双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。 单边带条幅SSB AM信号的其表达式: 或 其频谱图为:

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

通信原理实验报告

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

北邮微原硬件实验

信息与通信工程学院 微原硬件实验报告 姓名: 班级: 学号: 班内序号: 【一.基本的I/O实验】 实验一 I/O地址译码 一、实验目的 掌握I/O地址译码电路的工作原理。 二、实验原理和内容 1、实验电路如图1-1所示,其中74LS74为D触发器,可直接使用实验台 上数字电路实验区的D触发器,74LS138为地址译码器。译码输出端Y0~Y7在实验台上“I/O地址“输出端引出,每个输出端包含8个地址,Y0:

280H~287H,Y1:288H~28FH,……当CPU执行I/O指令且地址在280H~2BFH范围内,译码器选中,必有一根译码线输出负脉冲。 例如:执行下面两条指令 MOV DX,2A0H OUT DX,AL(或IN AL,DX) Y4输出一个负脉冲,执行下面两条指令 MOV DX,2A8H OUT DX,AL(或IN AL,DX) Y5输出一个负脉冲。 图1-1 利用这个负脉冲控制L7闪烁发光(亮、灭、亮、灭、……),时间间隔通过软件延时实现。 2、接线: Y4/IO地址接 CLK/D触发器 Y5/IO地址接 CD/D触发器 D/D触发器接 SD/D角发器接 +5V Q/D触发器接 L7(LED灯)或逻辑笔 三、硬件接线图及软件程序流程图 1.硬件接线图 2.软件程序流程图

四、源程序 DATA SEGMENT DATA ENDS STACK SEGMENT STACK 'STACK' DB 100H DUP(?) STACK ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,SS:STACK ;基本框架;延时子程序 DELAY1 PROC NEAR MOV BX,500H PUSH CX LOOP2: MOV CX,0FFFH WAIT1: LOOP WAIT1 DEC BX JNZ LOOP2 POP CX RET DELAY1 ENDP START: MOV CX,0FFFFH ;L7闪烁控制 LOOP1: MOV DX,2A0H ;灯亮 OUT DX,AL CALL DELAY1 MOV DX,2A8H ;灯灭 OUT DX,AL CALL DELAY1 LOOP LOOP1 ;循环闪烁 CODE ENDS END START 五、实验结果 灯L7闪烁 实验二简单并行接口 一、实验目的 掌握简单并行接口的工作原理及使用方法。(选择273进行实验)二、实验原理和内容

北邮《现代通信技术》实验报告一

现代通信技术实验报告 班级: 2012211110 学号: 2012210299 姓名:未可知

在学习现代通信技术实验课上,老师提到的一个词“通信人”警醒了我,尽管当初填报志愿时选择了通信工程最终也如愿以偿,进入大三,身边的同学忙着保研、考研、出国、找工作,似乎大家都为了分数在不懈奋斗。作为一个北邮通信工程的大三学生,我也不断地问自己想要学习的是什么,找寻真正感兴趣的是什么,通信这个行业如此之大,我到底适合什么。本学期,现代通信技术这本书让我了解到各种通信技术的发展和规划,也让我对“通信人”的工作有了更深刻的认识。 一、通信知识的储备 《现代通信技术》第一页指出,人与人之间通过听觉、视觉、嗅觉、触觉等感官,感知现实世界而获取信息,并通过通信来传递信息。所谓信息,是客观事物状态和运动特征的一种普遍形式,客观世界中大量地存在、产生和传递着以这些方式表示出来的各种各样的信息。信息的目的是用来“消除不可靠的因素”,它是物质运动规律总和。因此,我们通信人的任务就是利用有线、无线等形式来将信息从信源传递到信宿,在传输过程中保证通信的有效性和可靠性。 而具体来讲,要实现信息传递,通信网是必需的通信体系,其中通信网分层的结构形式需要不同的支撑技术,包括业务网技术,向用户提供电话、电报、数据、图像等各种电信业务的网络;介入与传送网技术,实现信息由一个点传递到另一个点或一些点的功能。对此,我们通信工程专业学习课程的安排让我们一步步打下基础,建立起知识储备。 知识树如下: 如知识树所述,通信工程课程体系可以大致分为一下6类基础:

数学基础:工科数学分析,线性代数,复变函数,概率论基础,随机过程; 电路基础:电路分析,模拟电子技术,数字逻辑电路,通信电子电路; 场与波基础:电磁场与电磁波,微波技术,射频与天线; 计算机应用能力:C 语言程序设计,微机原理与接口技术,计算机网络,数据结构,面向对象程序设计,实时嵌入式系统 信号处理类课程:信号与系统,信号处理,图像处理,DSP 原理及应用; 通信类课程:通信原理,现代通信技术,信息论基础,移动通信,光纤通信等。 从大一开始学习的工科数学分析,大学物理,大学计算机基础等课程为基础类课程,旨在培养我们的语言能力,数学基础,物理基础,计算机能力,然后逐步加大难度,细化课程,方向逐渐明朗详细。同时,课程中加入了各种实验,锻炼了我们的动手能力。 二、通信知识的小小应用 实验课上老师说过,以我们所学的知识已经可以制作简单通信的手机的草图了,我对此跃跃欲试。经过思考和调研,以下是我对于简单手机设计的原理框图和思考结果。 一部手机的结构包括接收机、发射机、中央控制模块、电源和人机界面部分,如下图 手机结构设计图 电路部分包括射频和逻辑音频电路部分,射频电路包括从天线到接收机的解调输出,与发射的I/O 调制到功率放大器输出的电路。其中,射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路完成语音基带信号的调制、变频、功率放大等功能。要用到的超外差接收机、混频器、鉴相器等在《通信电子电路》书本中的知识。逻辑音频包括从接收解调到接收音频输出、送话器电路到发射I/O 调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路。由核心控制模块CPU 、EEPROM 、 FLASH 、SRAM 等部分组成,一个基本 天线 接收机 发射机 频率合成 电源 逻 辑 音 频 人 机 交 互

8086软硬件实验报告(微机原理与接口技术上机实验)

实验一实验环境熟悉与简单程序设计 实验目的 (1)掌握DEBUG调试程序的使用方法。 (2)掌握简单程序的设计方法。 实验内容 编程将BH中的数分成高半字节和低半字节两部分,把其中的高半字节放到DH中的低4位(高4位补零),把其中的低半字节放到DL中的低4位(高4位补零)。如: BH=10110010B 则运行程序后 DH=00001011B DL=00000010B 实验准备 (1)熟练掌握所学过的指令。 (2)根据实验内容,要求预先编好程序。 实验步骤 (1)利用DEBUG程序输入、调试程序。 (2)按下表要求不断地修改BH的内容,然后记录下DX的内容。 实验报告 (1)给出程序清单。 (2)详细说明程序调试过程。

程序: CODE SEGMENT START : MOV BH,00111111B MOV AL,BH MOV CL,4 SHR AL,CL MOV DH,AL MOV AL,BH AND AL,00001111B MOV DL,AL MOV CL,0 CODE ENDS END START

实验二简单程序设计 实验目的 (3)掌握DEBUG调试程序的使用方法。 (4)掌握简单程序的设计方法。 实验内容 试编写一个汇编语言程序,要求实现功能:在屏幕上显示:Hello world My name is Li Jianguo 参考程序如下:(有错) data segment out1 db 'Hello world' ax db 'My name is Li Jianguo' data ens code segment assume cs:code;ds:data lea dx,out1 mov ah,2 int 21h mov dl,0ah mov ah,2

北邮通信原理实验报告

北京邮电大学通信原理实验报告 学院:信息与通信工程学院班级: 姓名: 姓名:

实验一:双边带抑制载波调幅(DSB-SC AM ) 一、实验目的 1、了解DSB-SC AM 信号的产生以及相干解调的原理和实现方法。 2、了解DSB-SC AM 信号波形以及振幅频谱特点,并掌握其测量方法。 3、了解在发送DSB-SC AM 信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。 4、掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的调试方法。 二、实验原理 DSB 信号的时域表达式为 ()()cos DSB c s t m t t ω= 频域表达式为 1 ()[()()]2 DSB c c S M M ωωωωω=-++ 其波形和频谱如下图所示 DSB-SC AM 信号的产生及相干解调原理框图如下图所示

将均值为零的模拟基带信号m(t)与正弦载波c(t)相乘得到DSB—SC AM信号,其频谱不包含离散的载波分量。 DSB—SC AM信号的解调只能采用相干解调。为了能在接收端获取载波,一种方法是在发送端加导频,如上图所示。收端可用锁相环来提取导频信号作为恢复载波。此锁相环必须是窄带锁相,仅用来跟踪导频信号。 在锁相环锁定时,VCO输出信号sin2πf c t+φ与输入的导频信号cos2πf c t 的频率相同,但二者的相位差为φ+90°,其中很小。锁相环中乘法器的两个 输入信号分别为发来的信号s(t)(已调信号加导频)与锁相环中VCO的输出信号,二者相乘得到 A C m t cos2πf c t+A p cos2πf c t?sin2πf c t+φ =A c 2 m t sinφ+sin4πf c t+φ+ A p 2 sinφ+sin4πf c t+φ 在锁相环中的LPF带宽窄,能通过A p 2 sinφ分量,滤除m(t)的频率分量及四倍频载频分量,因为很小,所以约等于。LPF的输出以负反馈的方式控制VCO,使其保持在锁相状态。锁定后的VCO输出信号sin2πf c t+φ经90度移相后,以cos2πf c t+φ作为相干解调的恢复载波,它与输入的导频信号cos2πf c t 同频,几乎同相。 相干解调是将发来的信号s(t)与恢复载波相乘,再经过低通滤波后输出模拟基带信号 A C m t cos2πf c t+A p cos2πf c t?cos2πf c t+φ =A c 2 m t cosφ+cos4πf c t+φ+ A p 2 cosφ+cos4πf c t+φ 经过低通滤波可以滤除四倍载频分量,而A p 2 cosφ是直流分量,可以通过隔直

北京邮电大学微机原理硬件实验报告

北京邮电大学微机原理硬件实验报告

实验报告一:I/0地址译码和简单并行接口 ——实验一&实验二 一、实验目的 掌握I/O地址译码电路的工作原理;掌握简单并行接口的工作原理及使用方法。 二、实验原理及内容 a) I/0地址译码 1、实验电路如图1-1所示,其中74LS74为D触发器,可直接使用实验台上数 字电路实验区的D触发器,74LS138为地址译码器。译码输出端Y0~Y7在实验台上“I/O地址“输出端引出,每个输出端包含8个地址,Y0:280H~ 287H,Y1:288H~28FH,……当CPU执行I/O指令且地址在280H~2BFH范围内,译码器选中,必有一根译码线输出负脉冲。 例如:执行下面两条指令 MOV DX,2A0H OUT DX,AL(或IN AL,DX) Y4输出一个负脉冲,执行下面两条指令 MOV DX,2A8H OUT DX,AL(或IN AL,DX) Y5输出一个负脉冲。 利用这个负脉冲控制L7闪烁发光(亮、灭、亮、灭、……),时间间隔经过软件延时实现。 2、接线: Y4/IO地址接 CLK/D触发器

Y5/IO地址接 CD/D触发器 D/D触发器接 SD/D触发器接 +5V Q/D触发器接L7(LED灯)或逻辑笔 b) 简单并行接口 1、按下面图4-2-1简单并行输出接口电路图连接线路(74LS273插通 用插座,74LS32用实验台上的“或门”)。74LS273为八D触发器, 8个D输入端分别接数据总线D0~D7,8个Q输出端接LED显示电 路L0~L7。 2、编程从键盘输入一个字符或数字,将其ASCⅡ码经过这 个输出接口输出,根据8个发光二极管发光情况验证正确 性。 3、按下面图4-2-2简单并行输入接口电路图连接电路 (74LS244插通用插座,74LS32用实验台上的“或门”)。 74LS244为八缓冲器,8个数据输入端分别接逻辑电平开关 输出K0~K7,8个数据输出端分别接数据总线D0~D7。 4、用逻辑电平开关预置某个字母的ASCⅡ码,编程输入这 个ASCⅡ码,并将其对应字母在屏幕上显示出来。 5、接线:1)输出 按图4-2-1接线(图中虚线为实验所需接线,74LS32为实验 台逻辑或门) 2)输入 按图4-2-2接线(图中虚线为实验所需接线,74LS32为实 验台逻辑或门) 三、硬件连线图 1、I/O地址译码

北京理工大学自动化专业微机原理硬件软件实验

微机原理与接口技术 硬件实验报告 班级: 姓名: 学号: 实验一: 8259中断控制器实验 一、实验目的 1. 掌握8259的工作原理。 2. 掌握编写中断服务程序的方法。 3. 掌握初始化中断向量的方法。 二、实验内容 用单脉冲发生器的输出脉冲为中断源,每按一次产生一次中断申请,点亮或熄灭发光二极管。 三、实验设备 微机实验教学系统实验箱、8086CPU模块 四、连线 ①单脉冲发生器输出P+与8259的IR0相连 ②8259的片选CS8259与CS0相连 ③8259的INT与8086的INT相连 ④8259的INTA与8086的INTA相连 ⑤CS273与CS1相连 ⑥00与LED1相连 其它线均已连好如下图: 五、实验步骤 (1)连线。 (2)编辑程序,编译链接后,调试程序。 (3)调试通过后,在中断服务程序内设置断点,运行程序,当接收到中断请求后,程序停在中断服务程序内的断点处。 (4)撰写实验报告。

六、实验源程序 CODE SEGMENT PUBLIC ASSUME CS:CODE ORG 100H START: MOV DX,4A0H ;写ICW1 MOV AX,13H OUT DX,AX MOV DX,4A2H ;写ICW2 MOV AX,80H ;IR0的中断向量码为80H OUT DX,AX MOV AX,01 OUT DX,AX ;一般嵌套,非缓冲,非自动EOI MOV AX,0 ;写OCW1 OUT DX,AX ;允许中断 ;中断向量存放在(0000H:0200H)开始的四个单元里 MOV AX,0 MOV DS,AX MOV SI,200H ;中断类型号为80H MOV AX,OFFSET HINT ;中断服务程序的入口地址 MOV DS:[SI],AX ADD SI,2 MOV AX,CS MOV DS:[SI],AX STI ;开中断,设置IF=1 JMP $ ;原地跳转 HINT: ;中断服务程序 XOR CX,0FFH ;CX取反 MOV DX,4B0H ;CS273接口的地址,与8个LED灯相连 MOV AX,CX ;输出高低电平控制LED灯的亮灭 OUT DX,AX MOV DX,4A0H ;OCW2的地址 MOV AX,20H ;一般EOI命令,全嵌套方式 OUT DX,AX IRET ;中断返回 CODE ENDS END START 七、实验思考题 1.将P+连线连接到IR1—IR7任意一个;重新编写程序。 将P+接到IR1,在原程序的基础上,把写ICW2的控制字改为81H,再把中断向量的入口地址改为0204H即可。程序如下: CODE SEGMENT PUBLIC ASSUME CS:CODE

北京邮电大学 通信原理实验报告 硬件部分

北京邮电大学实验报告 题目:基于TIMS通信原理实验报告 班级:2009211126班 专业:信息工程 姓名: 成绩:

实验1振幅调制(AM)与解调 一、实验目的 (1)掌握具有离散大载波(AM)调制的基本原理; (2)掌握包络检波器的基本构成和原理; (3)掌握调幅波调制系数的意义和求法。 二、实验原理 幅度调制是由DSB-SC AM信号加上一离散的大载波分量(设载波的初始相位φc=0),其表示式为 s t=A c1+m t cos2πf c t 式中要求基带信号波形m t≤1,使AM信号的包络A c1+m t总是正的,式中的A c cos2πf c t是载波分量A c m t cos2πf c t是DSB-SC AM信号。 定义 m n t= m(t) max?|m(t)|,|m(t)|≤1 a=max m t,|m(t)|≤1 称标量因子a为调制系数或调幅系数。 有两种调制方式,调制框图如下 AM 信号调制原理框图1 AM 信号调制原理框图2 解调原理框图如下 AM 信号解调原理框图

三、实验步骤 1、按如下所示的连接图连接好 AM信号调制连接图 AM信号解调连接图 2、调节加法器上两路输入信号的放大倍数,同时用示波器监测,在保证加法器输出波形不削顶的情况下,调节至交流信号峰值与直流成分之比(即调制系数)为小于1、等于1、大于1,观察调制信号和解调信号波形图; 3、观察滤波器输入输出波形的变化,分析原因。 四、实验结果 音频振荡器的输出频率调整为1kHZ,直流电压幅度调整为1V。 a<1时,基带与调制信号波形如下

调制与解调输出

北邮《微机原理与接口技术》阶段作业汇总

《微机原理与接口技术》作业汇总 1.若欲使RESET有效,只要A即可。 A.接通电源或按RESET键 2.8086微处理器中的ES是D寄存器 D.附加数据段 3.8086 微处理器中BP 寄存器是A A.基址指针寄存器 4.8086/8088 微处理器中的BX是A A.基址寄存器 5.8086/8088微处理器顺序执行程序时,当遇到C指令时, 指令队列会自动复位,BIU会接着往指令队列中装入新的程序段指令。C.JCXZ 6.8086微处理器读总线周期中地址信号AD15~AD0在A期间处于高阻。 A.T2 7.8086/8088 微处理器引脚中B信号线能够反映标志寄 存器中断允许标志IF的当前值。 B.S5 8.访问I/O端口可用地址线有B条。B.16 9.8086/8088 微处理器可访问内存储器地址为A A.00000~FFFFFH 10.字符串操作时目标串逻辑地址只能由B提供 B.ES、DI 11.8086/8088微处理器中堆栈段SS作为段基址,则偏移 量为B。 B.SP 12.若有两个带有符号数ABH和FFH相加,其结果使F 中CF和OF位为C。 C.1;0 13.8086微处理器内部通用寄存器中的指针类寄存器是B。 B.BP 14.8086/8088微处理器内部能够计算出访问内存储器的20位物理地址的附加机构是。B.BIU中的地址加法器15.当标志寄存器TF=1时,微处理器内部每执行完一条 指令便自动进行一次B。B.内部中断 16.8086/8088微处理器内部寄存器中的累加器是A寄存 器。 A.16位数据寄存器 17.8086微处理器中的BIU和EU是处于B的工作状态 B.并行 18.8086中指令队列和堆栈特点分别是C C.先进先出;后进先出 19.微型计算机各部件之间是用A连接起来的。 A.系统总线 20.若把组成计算机中的运算器和控制器集成在一块芯片 上称为C。 C.微处理器 21.相联存储器是指按C进行寻址的存储器。 C.内容指定方式 22.单地址指令中为了完成两个数的算术运算,除地址码 指明的一个操作数外,另一个数常需采用D。 D.隐含寻址方式 23.某存储器芯片的存储容量为8K×12位,则它的地址 线为C。 C.13 24.下列8086指令中,格式错误的是C。 C.MOV CS,2000H 25.寄存器间接寻址方式中,操作数处在C。C.主存单元 26.某计算机字长16位,其存储容量为2MB,若按半字 编址,它的寻址范围是C。 C.2M 27.某一RAM 芯片,其容量为1024×8位,其数据线和 地址线分别为C。 C.8,10 28.CPU在执行OUT DX,AL指令时,A寄存器的内容 送到数据总线上。 A.AL 29.计算机的存储器系统是指D。 D.cache,主存储器和外存储器 30.指令MOV AX, [3070H]中源操作数的寻址方式为C C.直接寻址 31.EPROM是指D D.光擦可编程的只读存储器 32.指令的寻址方式有顺序和跳跃两种方式,采用跳跃寻 址方式,可以实现D.程序的条件转移成无条件转移33.8086 CPU对存贮器操作的总线周期的T1状态, AD0~AD15引脚上出现的信号是A。A.地址信号 34.堆栈是按D组织的存储区域。D.先进后出原则 35.8086/8088中源变址寄存器是A。A.SI 36.8086/8088中SP是D寄存器。D.堆栈指针寄存器 37.8086/8088中FR是A寄存器。A.标志寄存器 38.8086/8088中IP是C寄存器。C.指令指针寄存器 39.假设AL寄存器的内容是ASCII码表示的一个英文字 母,若为大写字母,将其转换为小写字母,否则不变。 试问,下面哪一条指令可以实现此功能A。 A.ADD AL, 20H 40.逻辑右移指令执行的操作是A。 A.符号位填0,并 顺次右移1位,最低位移至进位标志位 41.假设数据段定义如下: DSEG SEGMENT DAT DW 1,2,3,4,5,6,7,8,9,10 CNT EQU ($-DAT)/2 DSEG ENDS 执行指令MOV CX,CNT后,寄存器CX的内容是D D.4 42.在下列段寄存器中,代码寄存器是B。B.CS 43.在执行POP[BX]指令,寻找目的操作数时,段地 址和偏移地址分别是B。B.在DS和BX中 44.设DS=5788H,偏移地址为94H,该字节的物理地址 是B。B.57914H 45.设AX=1000H NEG AX

北邮研究生计算机网络VOIPSIP实验报告

计算机网络实验课程报告 课题:SIP客户端的开源实现 姓名张涛 学院网络技术研究院 班级 学号 注册组号 2015年11月21日

1.小组信息 2.实验目的 1)理解VOIP,SIP技术,用开源代码实现一个SIP客户端(PJSIP) 2)用实现的客户端完成在SIP呼叫中心上的注册和测试 3.实验背景知识 3.1.阅读VOIP,SIP技术相关内容,加深对VOIP技术原理的理解。 1)VOIP技术原理 在现在的网络通信中,Email服务已经不是现在首选的通信方式了更多的即时通信,语音服务等,在网络上面层出不穷VoIP传统的电话网是以电路交换方式传输语音,所要求的传输宽带为64kbit/s而所谓的VoIP是以IP分组交换网络为传输平台,对模拟的语音信号进行压缩打包等一系列的特殊处理,使之可以采用无连接的UDP协议进行传输为了在一个IP 网络上传输语音信号,要求几个元素和功能最简单形式的网络由两个或多个具有VoIP功能的设备组成,这一设备通过一个IP网络连接VoIP设备是如何把语音信号转换为IP数据流,并把这些数据流转发到IP目的地,IP目的地又把它们转换回到语音信号两者之音的网络必须支持IP传输,且可以是IP路由器和网络链路的任意组合因此可以简单地将VoIP的传输过程分为下列几个阶段语音-数据转换语音信号是模拟波形,通过IP方式来传输语音,不管是实时应用业务还是非实时应用业务,首先要对语音信号进行模拟数据转换,也就是对模拟语音信号进行8位或6位的量化,然后送入到缓冲存储区中,缓冲器的大小可以根据延迟和编码的要求选择许多低比特率的编码器是采取以帧为单位进行编码典型帧长为10 30ms考虑传输过程中的代价,语间包通常由60120或240ms的语音数据组成数字化可以使用各种语音编码方案来实现,目前采用的语音编码标准主要有ITU-T G.711源和目的地的语音编码器必须实现相同的算法,这样目的地的语音设备帮可以还原模拟语音信号原数据到IP转换一旦语音信号进行数字编码,下一步就是对语音包以特定的帧长进行压缩编码大部份的编码器都有特定的帧长,若一个编码器使用15ms的帧,则把从第一来的60ms的包分成4帧,并按顺序进行编码每个帧合120个语音样点(抽样率为8kHz)编码后,将4个压缩的帧合成一个压缩的语音包送入网络处理器网络处理器为语音添加包头时标和其它信息后通过网络传送到另一端点语音网络简单地建立通信端点之间的物理连接(一条线路),并在端点之间传输编码的信号IP网络不像电路交换网络,它不形成连接,它要求把数据放在可变长的数据报或分组中,然后给每个数据报附带寻址和控制信息,并通过网络发送,一站一站地转发到目的地传送在这个通道中,全部网络被看成一个从输入端接收语音包,然后在一定时间(t)内将其传送到网络输出端t可以在某全范围内变化,反映了网络传输中的抖动网络中的同间

北邮移动通信实验报告

信息与通信工程学院移动通信实验报告 班级: 姓名: 学号: 序号: 日期:

一、实验目的 1移动通信设备观察实验 1.1RNC设备观察实验 a) 了解机柜结构 b) 了解RNC机框结构及单板布局 c) 了解RNC各种类型以及连接方式 1.2基站设备硬件观察实验 a) 初步了解嵌入式通信设备组成 b) 认知大唐移动基站设备EMB5116的基本结构 c) 初步分析硬件功能设计 2网管操作实验 a) 了解OMC系统的基本功能和操作 b) 掌握OMT如何创建基站 二、实验设备 TD‐SCDMA移动通信设备一套(EMB5116基站+TDR3000+展示用板卡)、电脑。 三、实验内容 1TD-SCDMA系统认识 TD-SCDMA是英文Time Division-Synchronous Code Division Multiple Access(时分同步码分多址)的简称,TD-SDMA是由中国提出的第三代移动通信标准(简称3G),也是ITU批准的三个3G标准中的一个,以我国知识产权为主的、被国际上广泛接受和认可的无线通信国际标准。是我国电信史上重要的里程碑。 TD-SCDMA在频谱利用率、业务支持灵活性、频率灵活性及成本等方面有独特优势。TD-SCDMA由于采用时分双工,上行和下行信道特性基本一致,因此,基站根据接收信号估计上行和下行信道特性比较容易。TD-SCDMA使用智能天线技术有先天的优势,而智能天线技术的使用又引入了SDMA的优点,可以减少用户间干扰,从而提高频谱利用率。TD-SCDMA还具有TDMA的优点,可以灵活设置

上行和下行时隙的比例而调整上行和下行的数据速率的比例,特别适合因特网业务中上行数据少而下行数据多的场合。但是这种上行下行转换点的可变性给同频组网增加了一定的复杂性。TD-SCDMA是时分双工,不需要成对的频带。因此,和另外两种频分双工的3G标准相比,在频率资源的划分上更加灵活。 图1 3G网络架构 2硬件认知 2.1 RNC设备认知 TDR3000整套移动通信设备机框外形结构如图2所示。

相关主题
文本预览
相关文档 最新文档