当前位置:文档之家› 新人教版高中数学必修第一册课时跟踪检测(二十七) 函数的零点与方程的解

新人教版高中数学必修第一册课时跟踪检测(二十七) 函数的零点与方程的解

新人教版高中数学必修第一册课时跟踪检测(二十七)  函数的零点与方程的解
新人教版高中数学必修第一册课时跟踪检测(二十七)  函数的零点与方程的解

课时跟踪检测(二十七) 函数的零点与方程的解

A 级——学考合格性考试达标练

1.函数f (x )=2x 2-3x +1的零点是( )

A .-12

,-1 B .12,1 C .12,-1 D .-12

,1 解析:选B 方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12

,所以函数f (x )=2x 2-3x +1的零点是12

,1. 2.函数y =x 2-bx +1有一个零点,则b 的值为( )

A .2

B .-2

C .±2

D .3

解析:选C 因为函数有一个零点,所以Δ=b 2-4=0,所以b =±2.

3.若函数f (x )的图象是一条连续不断的曲线,且f (0)>0,f (1)>0,f (2)<0,则y =f (x )有唯一零点需满足的条件是( )

A .f (3)<0

B .函数f (x )在定义域内是增函数

C .f (3)>0

D .函数f (x )在定义域内是减函数

解析:选D 因为f (1)>0,f (2)<0,所以函数f (x )在区间(1,2)上一定有零点.若要保证只有一个零点,则函数f (x )在定义域内必须是减函数.

4.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( )

A .(-2,-1)

B .(-1,0)

C .????0,12

D .????12,1

解析:选C 因为f (0)=e 0-3<0,f ????12=e 12+2-3>0,所以函数的零点所在的区间为

????0,12,故选C. 5.若函数f (x )=ax +1在区间(-1,1)上存在一个零点,则实数a 的取值范围是( )

A .a >1

B .a <1

C .a <-1或a >1

D .-1

解析:选C 函数f (x )=ax +1在区间(-1,1)上存在一个零点,则f (-1)·f (1)<0,即(1-a )·(1+a )<0,解得a <-1或a >1,故选C.

6.函数f (x )=(x -1)(x 2+3x -10)的零点有______个.

解析:∵f (x )=(x -1)(x 2+3x -10)

=(x -1)(x +5)(x -2),

∴由f (x )=0得x =-5或x =1或x =2.

答案:3

7.若f (x )=?

????x 2-x -1,x ≥2或x ≤-1,1,-1

得?????x ≥2或x ≤-1,x 2-x -1=x 或?

????-1

答案:1,1+ 2

8.函数f (x )=ln x +3x -2的零点个数是________.

解析:由f (x )=ln x +3x -2=0,得ln x =2-3x ,设g (x )=ln x ,

h (x )=2-3x ,图象如图所示,两个函数的图象有一个交点,故函数f (x )

=ln x +3x -2有一个零点.

答案:1

9.判断下列函数是否存在零点,如果存在,请求出.

(1)f (x )=-x 2+2x -1;

(2)f (x )=x 4-x 2;

(3)f(x)=4x+5;

(4)f(x)=log3(x+1).

解:(1)令-x2+2x-1=0,解得x1=x2=1,

所以函数f(x)=-x2+2x-1的零点为1.

(2)因为f(x)=x2(x-1)(x+1)=0,

所以x=0或x=1或x=-1,

故函数f(x)=x4-x2的零点为0,-1和1.

(3)令4x+5=0,则4x=-5<0,

∵4x>0恒成立,∴方程4x+5=0无实数解.

所以函数f(x)=4x+5不存在零点.

(4)令log3(x+1)=0,解得x=0,

所以函数f(x)=log3(x+1)的零点为0.

10.已知函数f(x)=2x-x2,问方程f(x)=0在区间[-1,0]内是否有解,为什么?

解:有解.因为f(-1)=2-1-(-1)2=-1

2<0,

f(0)=20-02=1>0,

且函数f(x)=2x-x2的图象是连续曲线,所以f(x)在区间[-1,0]内有零点,即方程f(x)=0在区间[-1,0]内有解.

B级——面向全国卷高考高分练

1.函数f(x)=x3-4x的零点为()

A.(0,0),(2,0)B.(-2,0),(0,0),(2,0)

C.-2,0,2 D.0,2

解析:选C令f(x)=0,得x(x-2)(x+2)=0,解得x=0或x=±2,故选C.

2.函数y=x2+a存在零点,则a的取值范围是()

A.a>0 B.a≤0

C.a≥0 D.a<0

解析:选B 函数y =x 2+a 存在零点,则x 2=-a 有解,所以a ≤0.

3.函数f (x )=ax 2+bx +c ,若f (1)>0,f (2)<0,则f (x )在(1,2)上的零点( )

A .至多有一个

B .有一个或两个

C .有且仅有一个

D .一个也没有

解析:选C 若a =0,则f (x )=bx +c 是一次函数,由f (1)·f (2)<0得零点只有一个;若a ≠0,则f (x )=ax 2+bx +c 为二次函数,若f (x )在(1,2)上有两个零点,则必有f (1)·f (2)>0,与已知矛盾.故选C.

4.方程log 3x +x =3的解所在的区间为( )

A .(0,2)

B .(1,2)

C .(2,3)

D .(3,4)

解析:选C 令f (x )=log 3x +x -3,则f (2)=log 32+2-3=log 323

<0,f (3)=log 33+3-3=1>0,那么方程log 3x +x =3的解所在的区间为(2,3).

5.函数f (x )=|x -2|-ln x 的零点的个数为________.

解析:由题意知,函数f (x )的定义域为(0,+∞),函数f (x )在(0,

+∞)内的零点就是方程|x -2|-ln x =0的根.令y 1=|x -2|,y 2=ln

x (x >0),在同一平面直角坐标系中画出两个函数的图象,由图知,两

个函数图象有两个交点,故方程|x -2|-ln x =0有2个根,即对应函数有2个零点.

答案:2

6.已知函数f (x )是定义域为R 的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有________个零点,这几个零点的和等于________.

解析:因为函数f (x )是定义域为R 的奇函数,且在(0,+∞)上是增函数,所以f (0)=0.又因为f (-2)=0,所以f (2)=-f (-2)=0,故该函数有3个零点,这3个零点之和等于0.

答案:3 0

7.已知函数f (x )=x 2-bx +3.

(1)若f (0)=f (4),求函数f (x )的零点.

(2)若函数f (x )一个零点大于1,另一个零点小于1,求b 的取值范围.

解:(1)由f (0)=f (4)得3=16-4b +3,即b =4,所以f (x )=x 2-4x +3,令f (x )=0即x 2-4x +3=0得x 1=3,x 2=1.

所以f (x )的零点是1和3.

(2)因为f (x )的零点一个大于1,另一个小于1,如图.

需f (1)<0,即1-b +3<0,所以b >4.

故b 的取值范围为(4,+∞).

C 级——拓展探索性题目应用练

已知函数f (x )=log 12x +12x -172. (1)用单调性的定义证明:f (x )在定义域上是单调函数; (2)证明:f (x )有零点; (3)设f (x )的零点x 0落在区间???

?1n +1,1n 内,求正整数n 的值. 解:(1)证明:显然,f (x )的定义域为(0,+∞).

任取x 1,x 2∈(0,+∞),不妨设x 10,x 1x 2>0,则12x 1-12x 2=x 2-x 12x 1x 2

>0,log 12x 1>log 12x 2,即log 12x 1-log 12x 2>0,所以f (x 1)-f (x 2)=(log 12x 1-log 12

x 2)+????12x 1-12x 2>0,所以f (x 1)>f (x 2).故f (x )在定义域(0,+∞)上是减函数.

(2)证明:因为f (1)=0+12-172=-8<0,f ????116=4+8-172=72

>0,所以f (1)·f ????116<0,又因为f (x )在区间???

?116,1上是连续的,所以f (x )有零点. (3)f ????111=log 12

111+112-172 =log 211-3>log 28-3=0,

f ????110=lo

g 12

110+5-172

=log 210-72=log 25-52 =log 225-log 232<0,

所以f ????110f ????111<0,

所以f (x )的零点x 0落在区间????111,110内.故n =10.

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之间的关系课 后课时精练新人教B 版必修第一册 A 级:“四基”巩固训练 一、选择题 1.下列说法中正确的有( ) ①f (x )=x +1,x ∈[-2,0]的零点为(-1,0); ②f (x )=x +1,x ∈[-2,0]的零点为-1; ③y =f (x )的零点,即y =f (x )的图像与x 轴的交点; ④y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标. A .①③ B .②④ C .①④ D .②③ 答案 B 解析 根据函数零点的定义,f (x )=x +1,x ∈[-2,0]的零点为-1,函数y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标.因此,说法②④正确.故选B. 2.函数f (x )=x 2 -x -1的零点有( ) A .0个 B .1个 C .2个 D .无数个 答案 C 解析 Δ=(-1)2 -4×1×(-1)=5>0,所以方程x 2 -x -1=0有两个不相等的实根,故函数f (x )=x 2 -x -1有2个零点. 3.函数f (x )=2x 2 -3x +1的零点是( ) A .-1 2,-1 B.12,1 C.1 2,-1 D .-12 ,1 答案 B 解析 方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12,所以函数f (x )=2x 2 -3x +1的 零点是1 2 ,1. 4.函数y =x 2 -bx +1有一个零点,则b 的值为( )

A .2 B .-2 C .±2 D .3 答案 C 解析 因为函数有一个零点,所以Δ=b 2 -4=0,所以b =±2. 5.设a <-1,则关于x 的不等式a (x -a )? ?? ??x -1a <0的解集为( ) A .(-∞,a )∪? ?? ??1a ,+∞ B .(a ,+∞) C.? ????-∞,1a ∪(a ,+∞) D.? ?? ??-∞,1a 答案 A 解析 ∵a <-1,∴a (x -a )? ????x -1a <0?(x -a )? ?? ??x -1a >0.又a <-1,∴1a >a ,由函数f (x ) =(x -a )·? ?? ??x -1a 的图像可得所求不等式的解集为(-∞,a )∪? ?? ??1a ,+∞. 二、填空题 6.函数f (x )=? ???? 2x -4,x ∈[0,+∞, 2x 2 -3x -2,x ∈-∞,0的零点为________. 答案 2,-1 2 解析 当x ≥0时,由2x -4=0,得x =2;当x <0时,由2x 2 -3x -2=0,得x =-12或 2(舍去).故函数f (x )的零点是2,-1 2 . 7.已知函数f (x )=ax 2 -5x +2a +3的一个零点为0,则f (x )的单调递增区间为________. 答案 ? ????-∞,-53 解析 由已知,得f (0)=2a +3=0,∴a =-32,∴f (x )=-32x 2 -5x ,∴f (x )的单调递 增区间为? ????-∞,-53. 8.已知a 为常数,则函数f (x )=|x 2 -9|-a -2的零点个数最多为________. 答案 4 解析 令g (x )=|x 2 -9|,h (x )=a +2,在同一平面直角坐标系内画出两个函数的图像,如图所示.

高中数学函数的零点和最值

函数的零点 1、函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点。 方程f(x)=0有实数根?函数y=f(x)的图象与x 轴有交点?函数y=f(x)有零点 注意:零点是一个实数,不是点。 练习:函数23)(2 +-=x x x f 的零点是( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 方程f(x)=0的根的个数就是函数y=f(x)的图象与x 轴交点的个数。 方程f(x)=0的实数根就是函数y=f(x)的图象与x 轴交点的横坐标。 方法:①(代数法)求函数的零点就是求相应的方程的根,一般可以借助求根公式或因式分解等办法,求出方程的根,从而得出函数的零点。 ②(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 练习:Ⅰ求零点 ①y=x 3-1, ② y=2^x-1, ③y=lg(x 2-1)-1, ④y=2^|x|-8, ⑤y=2+log 3x Ⅱ结合函数的图像判断函数f(x)=x 3-7x+6的零点 Ⅲ判断函数f(x)=lnx+2x 是否存在零点及零点的个数 2、一元二次方程和二次函数 例,当a>0时,方程ax 2+bx+c=0的根与函数y=ax 2+bx+c 的图象之间的关系如下表: 练习:如果函数f(x)= ax 2-x-1仅有一个零点,求实数a 的范围。 3、零点存在性定理: 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。 例1:观察二次函数f (x)=x 2- 2x - 3的图象: ① 在区间[-2,1]上有零点_______; f (-2)=_____,f (1)=_____, f (-2) · f(1)___0(< 或 > 或 =) ② 在区间[2,4]上有零点_______; f (2) · f(4)___0(< 或 > 或 =) 例1图 例2图 例2:观察函数 y = f (x)的图象: ①在区间[a ,b]上___(有/无)零点; f (a) · f(b)___0(< 或 > 或 =) ②在区间[b ,c]上___(有/无)零点; f (b) · f(c)___0(< 或 > 或 =) 练习:①判断函数f(x)=x2-2x-1在区间(2,3)上是否存在零点? 4、函数最值: 最大值:一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x0∈I ,使得f(x0) = M ,那么,称M 是函数y=f(x)的最大值. 方法:利用函数单调性的判断函数的最大(小)值 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b). 练习:①函数 f (x )= )1(11 x x --的最大值是______ ②函数f (x )=ax (a >0,a ≠1)在[1,2]中的最大值比最小值 大2a ,则a 的值为______ ③设a 为实数,函数f (x )=x2+|x -a|+1,x ∈R. (1)讨论f (x )的奇偶性;(2)求f (x )的最小值. ④已知二次函数f (x )=(lga )x2+2x +4lga 的最大值为3,求a 的值.

函数与方程零点问题考点例题讲解

函数与方程 考纲解读 1.求常见函数的零点;2.判断基本初等函数零点所在区间;3.判断二次函数零点个数及分布;4.根据函数零点与方程根的关系求参数范围;5.根据具体函数的图象,能够用二分法求相应方程的近似解. [基础梳理] 1.函数的零点 (1)函数零点的定义 对于函数y =f (x ),把使f (x )=0的实数x 叫作函数y =f (x )的零点. (2)函数零点的判定(零点存在性定理) 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根. 2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系 (x 0),(x 0) (x 0) 无交点 1.函数f (x )=lg x +x -3的零点个数为( ) A .0 B .1 C .2 D .3 答案:B 2.函数f (x )=e x - 1+4x -4的零点所在区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3) 答案:B 3.函数f (x )=ln x -2 x 的零点所在的大致范围是( ) A .(1,2) B .(2,3) C.????1e ,1和(3,4) D .(4,+∞) 答案:B

4.用二分法求f (x )=2x +3x -7的零点的近似解,若第一次零点区间为(1,2),则第二次的零点区间为________. 答案:(1,1.5) 5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1 x 的零点为__________. 答案:-1 [考点例题] 考点一 判定函数零点区间|方法突破 [例1] (1)函数f (x )=2x +ln 1 x -1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(1,2)与(2,3) [解析] f (x )=2x +ln 1x -1=2x -ln(x -1),当1<x <2时,ln(x -1)<0,2 x >0,所以f (x )> 0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln 1=1,f (3)=2 3-ln 2=2-3ln 23=2-ln 83.∵8= 22≈2.828>e ,∴8>e 2,即ln 8>2,即f (3)<0.又f (4)=1 2-ln 3<0,∴f (x )在(2,3)内存在 一个零点. [答案] B (2)已知函数f (x )=2x +x ,g (x )=log 3x +x ,h (x )=x -1 x 的零点依次为a ,b ,c ,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c [解析] 在同一坐标系下分别画出函数y =2x ,y =log 3x ,y =-1 x 的图象,如图,观察它们与y =-x 的交点可知a

高中数学《方程的根与函数的零点》公开课优秀教学设计一

2016年全国高中青年数学教师优秀课展示与培训活动交流课案 课 题:3.1.1 方程的根与函数的零点 教 材:人教A 版高中数学·必修1 【教材分析】 本节课的内容是人教版教材必修1第三章第一节,属于概念定理课。“函数与方程”这个单元分为两节,第一节:“方程的根与函数的零点”,第二节:“用二分法求方程的近似解”。 第一节的主要内容有三个:一是通过学生已学过的一元二次方程、二次函数知识,引出零点概念;二是进一步让学生理解:“函数()y f x =零点就是方程()0f x =的实数根,即函数 ()y f x =的图象与x 轴的交点的横坐标”;三是引导学生发现连续函数在某个区间上存在零 点的判定方法:如果函数()y f x =在区间[],a b 上图象是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。这些内容是求方程近似解的基础。本节课的 教学主要是围绕如何用函数的思想解决方程的相关问题展开,从而使之函数与方程紧密联系在一起。为后续学习二分法求方程的近似解奠定基础,本节内容起着承上启下的作用,承接以前学过的方程知识,启下为下节内容学习二分法打基础。 【教学目标】 1.理解函数零点的概念;掌握零点存在性定理,会求简单函数的零点。 2.通过体验零点概念的形成过程、探究零点存在的判定方法,提高学生善于应用所学知识研究新问题的能力。 3.通过本节课的学习,学生能从“数”“形”两个层面理解“函数零点”这一概念,进而掌握“数形结合”的方法。 【学情分析】 1.学生具备的知识与能力 (1)初中已经学过一元二次方程的根、一元二次函数的图象与x 轴的交点横坐标之间的关系。 (2)从具体到抽象,从特殊到一般的认知规律。 2. 学生欠缺的知识与能力 (1)超越函数的相关计算及其图象性质. (2)通过对具体实例的探究,归纳概括发现的结论或规律,并将其用准确的数学语言表达出

函数与方程的含参零点问题

函数与方程的含参零点问题 ?方法导读 函数与方程问题常以基本初等函数或分段函数为载体,考查函数零点的存在区间、确定零点的个数、参数的取值范围、方程的根或函数图象的交点等问题.函数与方程不仅考查考生计算、画图等方面的能力,还考查考生函数与方程、数形结合及转化化归等数学思想的综合应用.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. ?高考真题 【·天津卷理·】已知,函数,若关于的方程 恰有个互异的实数解,则的取值范围是______. ?解题策略 本题属于分段函数的零点问题,所以需要分类讨论: 当时,由,推出, 当时,由,推出, 再分别画出它们的图象,由图象可知, 当直线和的图象有两个不同的交点,而直线和 的图象无交点时满足条件. ?解题过程 当时,由,得, 当时,由,得,

令,作出直线,函数的图象如图所示, 的最大值为,由图象可知,若恰有个互异的实数解,则 ,得. ?解题分析 1.求函数零点问题,是高考试卷中的热点问题,这类问题要通过学生的直观想 象能力,画出函数图象求解比较直观、易理解; 2.本题由求解问题,通过变形转化为求和 的问题,然后通过图象可以顺利求解; 3.分类讨论思想贯穿整个高中阶段的数学学习中,在每年的高考试卷做题中都 会出现,尤其是解决综合题型时,很多学生不知道该如何分类讨论,所以学生在 平时的训练中要有意识的加以培养和应用. ?拓展推广 1.判断函数零点个数的常见方法 (1)直接法:解方程,方程有几个解,函数就有几个零点;

(2)图象法:画出函数的图象,函数的图象与轴的交点个数即为函数的零点个数; (3)将函数拆成两个常见函数和的差,从而 ,则函数的零点个数即为函数与函数 的图象的交点个数; (4)二次函数的零点问题,通过相应的二次方程的判别式来判断. 2.判断函数在某个区间上是否存在零点的方法 (1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间 上; (2)利用零点存在性定理进行判断; (3)画出函数图象,通过观察图象与轴在给定区间上是否有交点来判断. 3.已知函数有零点(方程有根)求参数值(取值范围)常用的方法 (1)把函数零点问题转化为方程根的问题 利用函数的零点方程的根,把求函数零点的相关问题转化为求方程根的问题,通过方程的根所满足的条件建立不等式来解决问题. (2)把函数零点问题转化为函数图象与坐标轴的交点问题 利用函数的零点函数的图象与轴的交点,把函数零点的相关问题转化为图象与坐标轴的交点问题,再利用数形结合的思想方法来解决问题. (3)把零点问题分离变量后转化为函数值域问题 将函数零点问题先转化为方程根的问题,然后进行变量分离,将参数分离出来转化为求函数值域问题,这种方法思路简洁,学生容易想到. (4)把函数零点问题转化为两个函数图象的交点问题

函数的零点与方程的解教学讲义

函数的零点与方程的解教学讲义 必备知识·探新知 基础知识 知识点1 函数的零点 (1)函数f (x )的零点是使f (x )=0的__实数x __. (2)函数的零点、函数的图象、方程的根的关系. 思考1:(1)函数的零点是点吗? (2)函数的零点个数、函数的图象与x 轴的交点个数、方程f (x )=0根的个数有什么关系? 提示:(1)不是,是使f (x )=0的实数x ,是方程f (x )=0的根. (2)相等. 知识点2 函数的零点存在定理 (1)条件:函数y =f (x )在区间[a ,b ]上的图象是__连续不断的曲线__,f (a )f (b )<0; (2)函数y =f (x )在区间(a ,b )上有零点,即存在c ∈(a ,b )使f (c )=0,这个c 也就是f (x )=0的根. 思考2:(1)函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,f (a )f (b )<0时,能否判断函数在区间(a ,b )上的零点个数? (2)函数y =f (x )在区间(a ,b )上有零点,是不是一定有f (a )f (b )<0? 提示:(1)只能判断有无零点,不能判断零点的个数. (2)不一定,如f (x )=x 2在区间(-1,1)上有零点0,但是f (-1)f (1)=1×1=1>0. 基础自测 1.函数f (x )=4x -6的零点是( C ) A .2 3 B .(3 2,0) C .3 2 D .-32 [解析] 令4x -6=0,得x =32,∴函数f (x )=4x -6的零点是3 2 . 2.(2020·广州荔湾区高一期末测试)函数f (x )=x -2+log 2x ,则f (x )的零点所在区间为( B )

函数与方程、零点

函数与方程 一、考点聚焦 1.函数零点的概念 对于函数))((D x x f y ∈=,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点,注意以下几点: (1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零。 (2)函数的零点也就是函数)(x f y =的图象与x 轴的交点的横坐标。 (3)一般我们只讨论函数的实数零点。 (4)求零点就是求方程0)(=x f 的实数根。 2、函数零点的判断 如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有0)()(

函数与方程(零点问题)

§2.8 函数与方程 函数零点问题 学习目标;(1)理解函数零点定义,会应用函数零点存在性定理 (2)体会函数与方程的转化思想 一 知识导练 1. (必修1 P43练习3改编) 函数32()2f x x x x =-+的零点是____________. 解析:解方程x3-2x2+x =0得x =0或x =1,所以函数的零点是0或1. 导航:函数零点的求解 2.(必修1 P111复习13改编)已知函数()23x f x x =-,则函数f(x)的零点个数是____. 解析:解法1:令f(x)=0,则2x =3x ,在同一坐标系中分别作出y =2x 和y =3x 的图象,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f(x)的零点个数为2. 解法2:由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内. 导航:函数零点个数的判定 3.给出以下三个结论:(1)0一定是奇函数的一个零点; (2)单调函数有且仅有一个零点; (3)周期函数一定有无穷多个零点. 其中正确的结论共有_____个。 4.(必修1 P97习题8)若关于x 的方程27(13)20x m x m -+--=的一个根在区间(0,1)上,另一个在区间(1,2)上,则实数m 的取值范围为_____________. 解析:设f(x)=7x2-(m +13)x -m -2,则???? ?f (0)>0,f (1)<0,f (2)>0,解得-41. 要点回顾:

高中数学函数的零点教学设计

第4讲与函数的零点相关的问题 函数零点的个数问题 1.函数f(x)=xcos 2x在区间[0,2π]上的零点的个数为( D ) (A)2 (B)3 (C)4 (D)5 解析:要使f(x)=xcos 2x=0,则x=0,或cos 2x=0,而在区间[0,2π]上,通过观察y=cos 2x 的函数图象,易得满足cos 2x=0的x的值有,,,,所以零点的个数为5个. 2.(2015南昌二模)已知函数f(x)=函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是( B ) (A)5 (B)6 (C)7 (D)8 解析:函数y=f(x)-g(x)的零点个数就是函数y=f(x)与y=g(x)图象的交点个数.在同一坐标系中画出这两个函数的图象: 由图可得这两个函数的交点为A,O,B,C,D,E,共6个点. 所以原函数共有6个零点.故选B. 3.(2015南昌市一模)已知函数f(x)=若关于x的方程f[f(x)]=0有且只有一个实数解,则实数a的取值范围为. 解析:依题意,得a≠0,令f(x)=0,得lg x=0,即x=1,由f[f(x)]=0,得f(x)=1, 当x>0时,函数y=lg x的图象与直线y=1有且只有一个交点,则当x≤0时,函数y=的图象与直线y=1没有交点,若a>0,结论成立;若a<0,则函数y=的图象与y轴交点的纵坐标-a<1,得-1

答案:(-1,0)∪(0,+∞) 4.(2015北京卷)设函数f(x)= ①若a=1,则f(x)的最小值为; ②若f(x)恰有2个零点,则实数a的取值范围是. 解析:①当a=1时,f(x)=其大致图象如图所示: 由图可知f(x)的最小值为-1. ②当a≤0时,显然函数f(x)无零点; 当01,由二次函数的性质可知,当x≥1时,f(x)有2个零点,则要使f(x)恰有2个零点,则需要f(x)在(-∞,1)上无零点,则2-a≤0,即a≥2.综上可知,满足条件的a的取值范围是[,1)∪[2,+∞). 答案:①-1 ②[,1)∪[2,+∞) 确定函数零点所在的区间 5.(2015四川成都市一诊)方程ln(x+1)-=0(x>0)的根存在的大致区间是( B ) (A)(0,1) (B)(1,2) (C)(2,e) (D)(3,4) 解析:设f(x)=ln(x+1)-, 则f(1)=ln 2-2<0,f(2)=ln 3-1>0, 得f(1)f(2)<0,函数f(x)在区间(1,2)有零点,故选B. 6.(2015河南郑州市一模)设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是 f(x),g(x)的零点,则( A )

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

函数与方程(零点)

§1-10 函数的应用---根与零点及二分法 【课前预习】阅读教材P86-90完成下面填空 1.方程()0=x f 有实根 ? ? 7.若()y f x =的最小值为1,则()1y f x =-的零点个数为 ( ) A .0 B .1 C .0或l D .不确定

8.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点 9.若函数()f x 在[],a b 上连续,且有()()0f a f b >.则函数()f x 在[],a b 上 ( ) A .一定没有零点 B .至少有一个零点C .只有一个零点 D .零点情况不确定 10.如果二次函数)3(2 +++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞ 11.方程22lg x x -=的实数根的个数是 ( ) A .1 B .2 C .3 D .无数个 12.二次函数()f x =ax 2 +bx+c 中,ac<0则函数的零点个数是 13.若()f x 的图像关于y 轴对称,且()f x =0有三个零点,则这三个零点之和等于 14.若()f x =???--≤≥--2 1,11 2,12 x x x x x 或则函数g(x)= ()f x -x 的零点为 15.已知()f x 是R 上最小正周期为2的周期函数,且当0≤x<2时,()f x =x 3 -x,则函数y=()f x 的图像在区间[0,6]上与x 轴的交点的个数为 16.已知函数()f x =4x +m.2x +1仅有一个零点,求m 的取值范围,并求出零点 17.若函数()f x =(m-2)x 2 +mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则的取值范围是( ) A .(-21,41) B.(- 41,21) C.( 41,21) D.[ 41,2 1] 18.数()f x =ax+b(a ≠0)有一个零点是2,那么函数g(x)=bx 2 -ax 的零点是 19.数()f x =x 3 -3x+a 有3个不同的零点,则实数a 的取值范围是( ) A .(-2,2) B. [-2,2] C.(-∞,1) D. (1,+∞) 20.=cosx 在(-∞,+∞)内 ( ) A .没有根 B.有且仅有一个根 C. 有且仅有两个根 D. 有无穷多个根 21.()ln 2f x x x =-+的零点个数为 。 [学后反思]____________________________________________________

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿 1教材分析 1.1地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识. 之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合

从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2学情分析 2.1学生具备必要的知识与心理基础. 通过前面的学习,学生己经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础. 方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成

高中数学 经典资料 第118课--隐零点及卡根思想

第118课 隐零点及卡根思想 基本方法:导数解决函数综合性问题最终都回归于函数单调性的判断,而函数的单调性与其导数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计成为导数综合应用中最为核心的问题.导函数的零点,根据其数值上的差异,我们可以分为两类:一类是数值上能精确求解的,我们不妨称为“显零点”;另一类是能判断其存在但数值上无法精确求解的,我们不妨称为“隐零点”. (1)函数“隐零点”的存在性判断 对于函数“隐零点”的存在性判断,常采用下列两种方法求解:①若连续函数()f x 在(,)a b 上单调,且()()0f a f b ×<,则()f x 在(,)a b 上存在唯一零点;②借助图像分析,即将函数()f x 的零点问题转化为方程()0f x =的解的判断,并通过合理的变形将方程转化为合适的形式在处理. (2)函数“隐零点”的虚设和代换 对于函数“隐零点”,由于无法求出其显性表达式,这给我们求解问题带来一定困难.处理这类问题的基本方法为“虚设及代换”:在确定零点存在的条件下虚设零点0x ,再借助零点的表达式进行合理的代换进而求解. (3)函数“隐零点”的数值估计-卡根思想 函数“隐零点”尽管无法求解,但是我们可以进行数值估计,最简单的方法即为判断其存在性的前提下利用二分法进行估计,估值范围越精确越容易解决问题.对于“隐零点”的代数估计,可以通过单调函数构造函数不等式进行估计. 一、典型例题 1.已知函数()22e x f x x x =+-,记0x 为函数()f x 极大值点,求证: ()0124f x <<.答案:见解析 解析:()()22e x f x x x x =+-∈R ,则()22e x x x f +'=-, 设22e )2(()e ,x x x g x g x '==+--,令()0g x '=得ln2x =, 当(),ln2x ∈-∞时,()()0,g x g x '>为增函数;当()ln2,x ∈+∞时,()()0,g x g x '<为减函数; 所以,()()g x f x '=在ln2x =处取得极大值2ln20>, 容易判断()f x '一定有2个零点,分别是()f x 的极大值点和极小值点. 设0x 是函数()f x 的一个极大值点,则()00022e 0x f x x '=+-=, 所以,00e 22x x =+,又()3 2235e 0,26e 02f f ??''=->=-< ???,所以03,22x ??∈ ???,此时()022*******e 2(,2)2x f x x x x x ??=+-=-∈ ?? ?,所以()0124f x <<.2.已知函数()4ln (1)x f x x x += >.若*k N ∈,且()1 k f x x <+恒成立.求k 的最大值.答案:6

函数与方程(零点)

§1-10 函数的应用---根与零点及二分法 【课前预习】阅读教材P86-90完成下面填空 1.方程()0=x f 有实根 ? ? 2.零点定理:如果函数()x f y =在区间 上的图象是 的一条曲线,并且 有 ,那么,函数()x f y =在区间 内有零点,即存在()b a c ,∈,使得 ,这个c 也就是方程()0=x f 的根. 3.二分法求函数()x f y =零点近似值的步骤: ⑴确定区间 ,验证 ,给定 。 ⑵求 ; ⑶计算 ;①若 ,则 ; ②若 ,则令 ; ③若 ,则令 。 ⑷判断 【课初5分钟】课前完成下列练习,课前5分钟回答下列问题 1.下列函数中有2个零点的是 ( ) A .lg y x = B .2x y = C .2y x = D .1y x =- 2.若函数()f x 在区间[],a b 上为减函数,则()f x 在[],a b 上 ( ) A .至少有一个零点 B .只有一个零点 C .没有零点 D .至多有一个零点 3.函数)(x f =-x 2+5x-6的零点是 4. 函数)(x f =x 21-( 21)x 的零点个数 5.函数)(x f =x 3-x 2-x+1在[0,2]上 零点 6.下列函数图像与x 轴均有交点,但不宜用二分法求函数零点的是( ) A B C D 7.若()y f x =的最小值为1,则()1y f x =-的零点个数为 ( ) A .0 B .1 C .0或l D .不确定 8.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点 9.若函数()f x 在[],a b 上连续,且有()()0f a f b >.则函数()f x 在[],a b 上 ( )

高中数学-函数零点问题

函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(北京)设函数f (x )=????? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (天津)已知函数f (x )=? ??? ? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实 数a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

函数的零点问题

函数零点问题的求解 【教学目标】 知识与技能: 1.理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数 零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 过程与方法: 1.函数零点反映了函数和方程的联系,函数零点与方程的根能相互转化,能把方程问题合理 转化为函数问题进行解决. 2.函数的零点问题的解决涉及到分类讨论,数形结合,化归转化等数学思想方法,有效提升了 学生的数学思想方法的应用. 情感、态度与价值观: 1.培养学生认真、耐心、严谨的数学品质; 2.让学生在自我解决问题的过程中,体验成功的喜悦. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理问题的意识. 【教学难点】 根据函数零点所在的区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 【教学过程】 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2. 零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有

相关主题
文本预览
相关文档 最新文档