当前位置:文档之家› 概率第一章练习题讲解

概率第一章练习题讲解

概率第一章练习题讲解
概率第一章练习题讲解

e h

e 叫对偶律

. B.BC

D.

C. D.B AB B

A ?

若相互独立,则有

d

n

独立,则

独立,则

=

d

A

l l t

h i n

n

t h

e i r

b 条件概率

设是样本空间公式

互斥,则有

n d

A

l l t

h i n

g s

i n

t P()=0.6P(A B)=0.8特别地,若

,则有AB=A

所以当

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计习题 含解答 答案

概率论与数理统计复习题(1) 一. 填空. 1.3.0)(,4.0)(==B P A P 。若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。 2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。 3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=}0{X P 。 4.1)()(==X D X E 。若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则 =≠}0{X P 。 5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P 6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。 7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示), =XY ρ 。 8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。 9.设1?θ和2?θ均是未知参数θ的无偏估计量,且)?()?(2221θθE E >,则其中的统计量 更有效。 10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的

长度愈 愈好。但当增大置信水平时,则相应的置信区间长度总是 。 二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求: (1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。 三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。(1)求敌机被击落的概率;(2)若敌机被击落,求它中两弹的概率。 四. X 的概率密度为? ??<<=其它 ,0,0 ,)(c x kx x f 且E(X)=32。(1)求常数k 和c ;(2) 求X 的分布函数F(x); 五. (X,Y )的概率密度 ???<<<<+=otherwise ,02 0,42 ),2(),(y x y kx y x f 。求 (1)常数k ;(2) X 与Y 是否独立;(3)XY ρ; 六..设X ,Y 独立,下表列出了二维随机向量(X ,Y )的分布,边缘分布的部分概率,试 将其余概率值填入表中空白处.

高中古典概率中等题目精选(附答案)说课材料

高中古典概率中等题目精选(附答案)

第4n+1次家教材料,编辑了我觉得很好的又很基本的题目. 一、选择题(11分,每题一分) 1、从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( ) A 、 2 1 B 、 10 3 C 、 5 1 D 、 5 2 2、将8个参赛队伍通过抽签分成A 、B 两组,每组4队,其中甲、乙两队恰好不在同组的概率为( ) A 、 74 B 、 21 C 、 72 D 、 53 3、袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( ) A 、 11 1 B 、 33 2 C 、 33 4 D 、 33 5 4、将4名队员随机分入3个队中,对于每个队来说,所分进的队员数k 满足0≤k≤4,假设各种方法是等可能的,则第一个队恰有3个队员分入的概率是( ) A 、 8116 B 、 8121 C 、 818 D 、 81 24 5、将骰子抛2次,其中向上的数之和是5的概率是( ) A 、 9 1 B 、 4 1 C 、 36 1 D 、9 6、下列事件中,随机事件的个数为( ) (1)物体在重力作用下会自由下落、 (2)方程x2+2x+3=0有两个不相等的实根、 (3)某传呼台 每天的某一时段内收到的传呼要求次数不超过10次、 (4)下周日会下雨、 A 、1 B 、2 C 、3 D 、4 7、下列试验能构成事件的是( ) A 、掷一次硬币 B 、射击一次 C 、标准大气压下,水烧至100℃ D 、摸彩票中头奖 8、先后抛掷两枚均匀的正方体骰子(它们的各个面分别是标有点数1, 2,3,4,5,6),骰子朝上的面的点数分别为,x y ,则2log 1x y 的概率为( ) A.16 B. 5 36 C.112 D.12

1概率统计试题分析

概率统计试题分析 1 一、填空题 1、已知3.0)(,5.0)(=-=B A P B P ,求( )P A B = 0.2 。 2、设X 和Y 相互独立,都在区间[1,3]上服从均匀分布,记事件 }{}{a Y B a X A >=≤=,,且7 ()9 P A B = ,则常数 a = 5733 a =或。 3、某机构有一个9人组成的顾问小组,如每个顾问提出正确意见的概率是7.0,现在该机构对某事可行与否征求各位顾问的意见, 并按多数人意见做出决策,做出正确决策的概率= (写出计算表达式)9 9950.70.3k k k k C -=??∑ 4、设(0,1)X U :,则2ln Y X =-的概率密度为 21, 0()2 00 y Y e y f y y -?>?=??≤? 5、如果存在常数)0(,≠a b a , 使()1P Y aX b =+=,且 +∞<

22 1 1(1)~(4)n i i n X χ=-∑ 8、设∧ θ是θ的无偏估计,()0D θ∧ >,则比较大小2 ()E θ∧ > 2 θ 二、(10分)对有100名学生的班级考勤情况进行评估,从课堂上随机点了10位同学的名字,如果班上学生的缺勤人数从0到2是等可能的,并且已知该班考核为全勤,计算该班实际上确实全勤的概率。 解 设i A 表示实际缺勤人数0,1,2i =,所以1 ()3 i P A = 设B 表示点名为全勤(优秀)1010010100 ()i i C P B A C -=,0,1,2i = 0002 ()() 110 ()0.369298 ()() i i i P A P B A P A B P A P B A == = =∑ 三、(12分)设二维随机变量()Y X ,的联合密度函数为: ()201,02 ,3 xy x x y f x y ?+ <<<

概率论习题及答案习题详解

222 习题七 ( A ) 1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自 X 的一个样本,试求参数p 的矩估计量与极大似然估计量. 解:由题意,X 的分布律为: ()(1),0k N k N P X k p p k N k -??==-≤≤ ??? . 总体X 的数学期望为 (1)(1) 011(1)(1) 1N N k N k k N k k k N N EX k p p Np p p k k ----==-????=-=- ? ?-???? ∑∑ 1((1))N Np p p Np -=+-= 则EX p N = .用X 替换EX 即得未知参数p 的矩估计量为?X p N =. 设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为 11 1211(,,;)()(1) n n i i i i n n x nN x n i i i i N L x x x p P X x p p x ==- ==∑ ∑??===?- ??? ∏∏ 取对数 11 1ln ln ln ()ln(1)n n n i i i i i i N L x p nN x p x ===??=+?+-?- ???∑∑∑, 11 ln (1) n n i i i i x nN x d L dp p p ==-=--∑∑.

223 令 ln 0d L dp =,解得p 的极大似然估计值为 11?n i i x n p N ==∑. 从而得p 的极大似然估计量为 11?n i i X X n p N N ===∑. 2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为 2 2,0(;)0, x x f x θ θθ?<,求θ的矩估计. 解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则 20 22 ()3 x EX xf x dx x dx θ θθ+∞ -∞ ==? =? ? 3 2 EX θ?= 用X 替换EX 即得未知参数θ的矩估计量为3 ?2 X θ =. 3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为 ?? ?? ?≤>=--0 ,0, 0, );(1x x e x x f x α λαλαλ 其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计. 解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为

古典型概率几何型概率专题典型例题练习题

概率 1、从1、 2、 3、 4、 5、 6、7中任取一个数,求下列事件的概率. (1)取出的数大于3; (2)取出的数能被3整除; (3)取出的数大于3或能被3整除. 2、某班数学兴趣小组有男生三名,分别记为32,,a a a 1,女生两名,分别记为21,b b ,现从中任选2名学生去参加校数学竞赛. (1)写出这种选法的样本空间;(2)求参赛学生中恰有一名男生的概率; (3)求参赛学生中至少有一名男生的概率. 3、甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率. 4、在集合{} 40,50),(≤≤≤≤y x y x 内任取1个元素,能使不等式012 19 34≥-+y x 成立的概率是多少?

1、甲、乙二人参加普法知识竞赛,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人一次各抽取一题, (1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙二人至少有一个抽到选择题的概率是多少? 2、假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少. 3、将长为l的棒随机折成3段,求3段构成三角形的概率. 4、(2008高考江苏卷6)在平面直角坐标系xoy中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域,E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率.

5、(2008高考宁夏文)设有关于x 的一元二次方程2220x ax b ++=. (Ⅰ)若a 是从0123,,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率. 6、甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率. 7、如图,在等腰三角形ABC 中,∠B =∠C =30°,求下列事件的概率: 问题1 在底边BC 上任取一点P ,使BP <AB ; 问题2 在∠BAC 的内部任作射线AP 交线段BC 于P ,使BP <AB . A C P B 第7题

概率论一二章习题详解

习题一 (A ) 1. 用三个事件,,A B C 的运算表示下列事件: (1),,A B C 中至少有一个发生; (2),,A B C 中只有A 发生; (3),,A B C 中恰好有两个发生; (4),,A B C 中至少有两个发生; (5),,A B C 中至少有一个不发生; (6),,A B C 中不多于一个发生. 解:(1)A B C (2)ABC (3) ABC ABC CAB (4) AB BC CA (5) A B C (6) AB BC C A 2. 在区间[0,2]上任取一数x , 记 1 {| 1},2 A x x =<≤ 13 {| }42 B x x =≤≤,求下列事件的表达式: (1)AB ; (2)AB ; (3) A B . 解:(1){|1412132}x x x ≤≤<≤或 (2)? (3){|014121x x x ≤<<≤或 3. 已知()0.4,()0.2,()0.1P A P BA P CAB ===,求()P A B C .

解:0.2()()P A P AB =-, 0.1()(())()()()()()() P C AB P C A B P C P CA CB P C P CA P CB P ABC -=-=-=--+ ()()()()()()()()P A B C P A P B P C P AB P BC P CA P ABC =++---+ =0.40.20.10.7++= 4. 已知()0.4,()0.25,()0.25P A P B P A B ==-=,求()P B A -与 ()P AB . 解:()()()0.25P A B P A P AB -=-=, ()0.15P AB =, ()()()0.250.150 P B A P B P AB -=-=-=, ()()1()() ()P A B P A B P A P B P A B ==--+ 10.40.250.150.5=--+= 5.将13个分别写有,,,,,,,,,,,,A A A C E H I I M M N T T 的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN ”的概率. 解:2322248 13!13! p ????= = 6. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰好有1件次品的概率. 解:12 5453 5099 392 C C p C == 7. 某学生研究小组共有12名同学,求这12名同学的生日都集中在第二季度(即4月、5月和6月)的概率. 解: 12 12312 p =: 8. 在100件产品中有5件是次品,每次从中随机地抽取1件,取后不放回,求第三次才取到次品的概率. 解:设i A 表示第i 次取到次品,1,2,3i =,

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

高一古典概型练习题附详细答案

《古典概型》练习题(有祥细解答) 一、选择题 1.为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型3个兴趣小组,小明要选报其中的2个,则基本事件有() A.1个B.2个 C.3个D.4个 [答案] C [解析]基本事件有{数学,计算机},{数学,航空模型},{计算机,航空模型},共3个,故选C. 2.下列试验中,是古典概型的为() A.种下一粒花生,观察它是否发芽 B.向正方形ABCD内,任意投掷一点P,观察点P是否与正方形的中心O重合C.从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率 D.在区间[0,5]内任取一点,求此点小于2的概率 [答案] C [解析]对于A,发芽与不发芽的概率一般不相等,不满足等可能性;对于B,正方形内点的个数有无限多个,不满足有限性;对于C,满足有限性和等可能性,是古典概型;对于D,区间内的点有无限多个,不满足有限性,故选C. 3.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,不是基本事件的为() A.{正好2个红球} B.{正好2个黑球} C.{正好2个白球} D.{至少1个红球} [答案] D [解析]至少1个红球包含,一红一白或一红一黑或2个红球,所以{至少1个红球}不是基本事件,其他项中的事件都是基本事件. 4.在200瓶饮料中,有4瓶已过保质期,从中任取一瓶,则取到的是已过保质期的概率是() A.0.2 B.0.02

C.0.1 D.0.01 [答案] B [解析]所求概率为4 200=0.02. 5.下列对古典概型的说法中正确的是() ①试验中所有可能出现的基本事件只有有限个②每个事件出现的可能性相等③每个基本事件出现的可能性相等④基本事件总数为n,随机事件A若包含k个基本 事件,则P(A)=k n A.②④B.①③④ C.①④D.③④ [答案] B [解析]②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确. 6.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.1 2 B. 1 3 C. 1 4 D. 1 6 解析:从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种 不同的结果,取出的2个数之差的绝对值为2有(1,3),(2,4)2种结果,概率为1 3 ,故选B.答案:B 7.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则满足log2x y=1的概率为( ) A.1 6 B. 5 36 C. 1 12 D. 1 2 解析:由log 2x y=1得2x=y.又x∈{1,2,3,4,5,6},y∈{1,2,3,4,5,6},所以满足题意的有x= 1,y=2或x=2,y=4或x=3,y=6,共3种情况.所以所求的概率为 3 36 = 1 12 ,故选C.答案:C 8.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为( ) A.1 8 B. 3 16 C. 1 4 D. 1 2

概率论练习题与解析

概率论练习题与解析

十、概率论与数理统计 一、填空题 1、设在一次试验中,事件A 发生的概率为 p 。现进行n 次独立试验,则A 至少发生一 次的概率为n p )1(1--;而事件A 至多发生一 次的概率为1)1()1(--+-n n p np p 。 2、 三个箱子,第一个箱子中有4个黑球1 个白球,第二个箱子中有3个黑球3个白球, 第三个箱子有3个黑球5个白球。现随机地 取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。已知取出 的球是白球,此球属于第二个箱子的概率为 。 解:用i A 代表“取第i 只箱子”,i =1,2,3,用 B 代表“取出的球是白球”。由全概率公式 ?=?+?+?=++=120 53853163315131) |()()|()()|()()(332211A B P A P A B P A P A B P A P B P 由贝叶斯公式

?=?==5320120 536331)()|()()|(222B P A B P A P B A P 3、 设三次独立试验中,事件A 出现的概率 相等。若已知A 至少出现一次的概率等于 19/27,则事件A 在一次试验中出现的概率为 。 解:设事件A 在一次试验中出现的概率为 )10(<

概率论和数理统计考试试题和答案解析

一.填空题(每空题2分,共计60分) 1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 , =)B -A (p 0.1 ,)(B A P ?= 0.4 , =)B A (p 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2只,则第一次、 第二次取红色球的概率为: 1/3 。(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。 3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、 乙厂的产品分别占60%、40%的一批产品中随机抽取一件。 (1)抽到次品的概率为: 0.12 。 (2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4, Y X 与的协方差为: - 0.2 , 2Y X Z +=的分布律为: 6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 , (~,12N Y X Y 则+= 5 , 16 )。 7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则: =-)2(Y X E - 4 ,=-)2(Y X D 6 。 8、设2),(125===Y X Cov Y D X D ,)(,)(,则=+)(Y X D 30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。则:~X N (8 , 8/13 ), ~16252 S )25(2χ, ~5 2/8s X - )25(t 。

统计与概率经典例题(含答案和解析)

○…………外…………○…………装…………○…………订…………○…………线…………○ ………… 学校: ___ ___ _ _ __ _姓名:___ _ __ ___ _ _班级:__ __ _ _ ___ _ _考号:_ _____ __ ___ ○ … … … … 内 … … … … ○ … … … … 装 … … … …○ … … … … 订… … … … ○ … ………线…………○………… 统计与概率经典例题(含答案及解析) 1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表: ⑴表中a 和b 所表示的数分别为:a= .,b= .; ⑵请在图中补全频数分布直方图; ⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名? 2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1﹣5月新注册小型企业一共有 家.请将折线统计图补充完整; (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率. 3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

古典概型练习题(有详细答案)

古典概型练习题(有详细答案)

古典概型练习题 1.从12个同类产品(其中10个正品,2个次品) A.3个都是正品 B.至少有一个是

两位数大于40的概率为 A. 1 5B. 2 5 C. 3 5 D. 4 5 ( ) 4.袋中有3个白球和2个黑球,从中任意摸出2 个球,则至少摸出1个黑球的概率为 A. 3 7B. 7 10 C. 1 10 D. 3 10 ( ) 5.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取 2张,那么这 2 张纸片数字之积为偶数的概率为( ) A. 1 2 B. 7 18 C. 13 18 D. 11 18 6.某小组共有10名学生,其中女生3名,现选举

A. 7 15 B. 8 15 C. 3 5 D. 1 7.下列对古典概型的说法中正确的个数是( ) ①试验中所有可能出现的基本事件只有有限个; ②每个事件出现的可能性相等; ③基本事件的总数为n,随机事件A包含k个基

本事件,则()k P A =; n ④每个基本事件出现的可能性相等; A. 1 B. 2 C. 3 D. 4 8.从装有2个红球和2个白球的口袋中任取两球, 那么下列事件中互斥事件的个数是 ( ) ⑴至少有一个白球,都是白球;⑵至少有一 个白球,至少有一个红球; ⑶恰有一个白球,恰有2个白球;⑷至少有一 个白球,都是红球. A.0 B.1 C.2 D.3 9.下列各组事件中,不是互斥事件的是( ) A.一个射手进行一次射击,命中环数大于8与命中环数小于6 B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分 C.播种菜籽100粒,发芽90粒与发芽80粒 D.检查某种产品,合格率高于70%与合格率为70% 10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上

古典概率教(学)案

概率初步 李桂梅 烟台机械工程学校

课题:10.2 概率初步 新授课

并利用你们预习的几个概念判断下列事件属于 哪种事件呢? 1、连续抛一枚质地均匀的硬币,恰有一次正面向上 2、抛一颗骰子向上点数小于6 3、袋装有红、黄、蓝3个大小形状完全相同的球,从中任取1个球,是白球容的学习做准备。 概念形成问题探究:你能求出这些随机试验的样本空间 中基本事件总数是多少吗?每个基本事件发生 的可能性相等吗? 思考:这几个随机试验有哪些特点? 古典概型概念:在随机试验中,出现的结果只 有有限个,且它们出现的可能性是相等的,这 样的试验称为古典概型。 是不是所有的随机试验都是古典概型 呢? 火眼金睛巩固概念 判断下列随机试验是否是古典概型,不是的说 明理由。 1、从一副扑克牌中任意抽取一牌,观察抽到的 牌上的数。 2、种下一粒种子,观察它是否发芽? 结合实例 动手操作 自主观察 总结规 律,得出 概念。 通过判断 加深对古 典概型的 两个条件 的理解 承上启下, 给出古典 概型概念。 通过自己 动手操作、 细心观察 总结古典 概型的两 个特点。 四个与生 活紧密相 关的例子 明确古典 概型特点。

概念巩固 公式探求3、向一个圆面随机地投射一个点,如果该点落 在圆任意一点都是等可能的,你认为这是古典 概率吗?为什么? 4、随机地向一靶心进行射击,这一试验的结果 只有有限个:命中10环、命中9环……命中5 环和不中环.你认为这是古典概率吗?为什 么? 设悬激趣提出问题 情境:在篮球比赛前,有这样一位裁判员,想 以抽签方式决定两支球队的进攻方向,他准备 三大小花色相同的扑克牌,1红桃,2黑桃,让 其中一方队长从三牌中任意的抽一,抽到红桃 则有选择权,抽到黑桃,则选择权给对方。 想一想,议一议 此随机试验是否为古典概型?裁判员这 样做对抽牌的一方公平吗? 学生分组 讨论,互 相抢答为 所在小组 加分 学生分组 讨论,各 组代表积 极发表结 论 插入视频 由为中国 获得首金 的易思玲 打靶为例 培养学生 爱国主义 思想,树立 为国争光 的信心。 创设情境 利用古典 概型概念 提出问题 为后面的 古典概率 公式的推 导做好。

高中古典概率中等题目精选(附答案)

第4n+1次家教材料,编辑了我觉得很好的又很基本的题目. 一、选择题(11分,每题一分) 1、从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( ) A 、 2 1 B 、 10 3 C 、 5 1 D 、 5 2 2、将8个参赛队伍通过抽签分成A 、B 两组,每组4队,其中甲、乙两队恰好不在同组的概率为( ) A 、 74 B 、 21 C 、 72 D 、 53 3、袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( ) A 、 11 1 B 、 33 2 C 、 33 4 D 、 33 5 4、将4名队员随机分入3个队中,对于每个队来说,所分进的队员数k 满足0≤k≤4,假设各种方法是等可能的,则第一个队恰有3个队员分入的概率是( ) A 、 8116 B 、 8121 C 、 818 D 、 81 24 5、将骰子抛2次,其中向上的数之和是5的概率是( ) A 、 9 1 B 、 4 1 C 、 36 1 D 、9 6、下列事件中,随机事件的个数为( ) (1)物体在重力作用下会自由下落、 (2)方程x2+2x+3=0有两个不相等的实根、 (3)某传呼台 每天的某一时段内收到的传呼要求次数不超过10次、 (4)下周日会下雨、 A 、1 B 、2 C 、3 D 、4 7、下列试验能构成事件的是( ) A 、掷一次硬币 B 、射击一次 C 、标准大气压下,水烧至100℃ D 、摸彩票中头奖 8、先后抛掷两枚均匀的正方体骰子(它们的各个面分别是标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为,x y ,则2log 1x y 的概率为( ) A. 16 B. 536 C.112 D.12 9、4、从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品 全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( ) A. A 与C 互斥 B. B 与C 互斥 C. 任何两个均互斥 D. 任何两个均不互斥

概率论复习题讲解

第一章 1. 假设有两箱同种零件:第一箱内装50件,其中10件为一等品;第二箱内装30件,其中18件一等品,现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),求: (1)先取出的零件是一等品的概率; (2)在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的概率。 解:设Ai={取到第i 个箱子},i=1,2,Bj={第j 次取到一等品},j=1,2 (1)由全概率公式 5 2301821501021)()()()()(2121111=?+?= +=A B P A P A B P A P B P (2)所求概率为) () ()(12112B P B B P B B P = ,其中 1942.029 30171821495091021)()()()()(2212121121=???+???= +=A B B P A P A B B P A P B B P 故:4856.05 21942 .0) ()()(12112≈== B P B B P B B P 2. 某段时间[t 0,t 0+t]内,t>0,证券交易所来了k 个股民的概率为t e k k t λλ-! )(,k=0,1,2……,λ >0,每个来到交易所的股民购买长虹股票的概率为p ,且各股民是否购买这种股票相互独立。 (1)求此段时间内,交易所共有r 个股民购买长虹股票的概率; (2)若已知这段时间内有r 个股民购买了长虹股票,求交易所内来了m 个股民的概率。 解:设A k ={交易所来了k 个股民},k=0,1,2,……,B={有r 个股民购买长虹股票}。 (1)由于......2,1,0,! )()(==-k e k t A P t k k λλ, ,1.....2,1,0,0)(-==r k A B P k ......1,,)1()(+=-=-r r k p p C A B P r k r r k k 故由全概率公式可得 tp r r k r r k r k k k k e r tp t e k k t p p C A B P A P B P λλλλ--∞ =∞==--==∑∑! )(!)() 1()()()(0 (2)由Bayes 公式得所求概率为 ,......1,,)! ()]1([)() ()()() 1(+=--== ---r r m e r m p t B P A B P A P B A P p t r m m m m λλ 显然,1,......1,0,0)(-==r m B A P m 3. 设一射手每次命中目标的概率为p ,现对同一目标进行若干次独立射击,直到命中目标5

古典概率模型习题

3.2.1 古典概型(第一课时) [自我认知]: 1.在所有的两位数(10-99)中,任取一个数,则这个数能被2或3整除的概率是 ( ) A.1 3 B. 2 3 C. 1 2 D. 5 6 2.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为 ( ) A. 60% B. 30% C. 10% D. 50% 3.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为 ( ) A. 0.65 B. 0.55 C. 0.35 D. 0.75 4.某射手射击一次,命中的环数可能为0,1,2,…10共11种,设事件A:“命中环数大于8”,事件B:“命中环数大于5”,事件C:“命中环数小于4”,事件D:“命中环数小于6”,由事件A、B、C、D中,互斥事件有 ( ) A. 1对 B. 2对 C. 3对 D.4对 5.产品中有正品4件,次品3件,从中任取2件,其中事件:①恰有一件次品和恰有2件次品; ②至少有1件次品和全都是次品;③至少有1件正品和至少有一件次品;④至少有1件 次品和全是正品.4组中互斥事件的组数是 ( ) A. 1组 B. 2组 C. 3组 D. 4组 6.某人在打靶中连续射击2次,事件“至少有一次中靶”的互斥事件是 ( ) A.至多有一次中靶 B. 两次都中靶 C.两次都不中靶 D.只有一次中靶 7.对飞机连续射击两次,每次发射一枚炮弹,设A=﹛两次都击中﹜,B=﹛两次都没击中﹜,C=﹛恰有一次击中﹜,D=﹛至少有一次击中﹜,其中彼此互斥的事_____________________,互为对立事件的是__________________。 8.从甲口袋中摸出1个白球的概率是1 2 ,从乙口袋中摸出一个白球的概率是 1 3 ,那么从两个 口袋中各摸1个球,2个球都不是白球的概率是___________。 9.袋中装有100个大小相同的红球、白球和黑球,从中任取一球,摸出红球、白球的概率各是0.40和0.35,那么黑球共有______________个 [课后练习] 10.在下列试验中,哪些试验给出的随机事件是等可能的? ①投掷一枚均匀的硬币,“出现正面”与“出现反面”。 ②一个盘子中有三个大小完全相同的球,其中红球、黄球、黑球各一个,从中任取一个球,“取 出的是红球”,“取出的是黄球”,“取出的是黑球”。 ③一个盒子中有四个大小完全相同的球,其中红球、黄球各一个,黑球两个,从中任取一球, “取出的是红球”,“取出的是黄球”,“取出的是黑球”。 班次姓名

概率论与数理统计重点总结及例题解析

概率论与数理统计重点总结及例题解析 一:全概率公式和贝叶斯公式 例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。(同步45页三、1) 解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。P(A1)=1/2, P(A2)=1/3, P(A3)=1/6, P(B| A1)=0.08,P(B| A2)=0.09,P(B| A3)=0.12。 由全概率公式P(B) = P(A1)P(B|A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09 由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9 练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】

练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5) (1)取出的零件是一等品的概率; (2)在先取的是一等品的条件下,后取的仍是一等品的条件概率。 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一 等品} (1)P(1 B )=P(1 A )P(1 B |1 A )+P(2 A )P(1 B |2 A )=5 230 182150 10 21= + (2)P(1 B 2 B )= 194 .02121230 2 182 50 2 10=+ C C C C ,则P(2 B |1 B )= ) ()(121B P B B P = 0.485 二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为 ?? ?<<=others x x x f 02 0)(λ 求:(1)常数λ;(2)EX ;(3)P{1

《概率论与数理统计》期末考试试题及解答

一、】 二、 填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的 概率为__________. 答案: 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 《 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 】 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. { 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则

2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 04,()()0,. Y Y X y f y F y f <<'===? 其它 另解 在(0,2)上函数2 y x = 严格单调,反函数为()h y =— 所以 04,()0,. Y X y f y f <<==?其它 4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2 )1(-=>e X P ,则 =λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4 {min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ -->=-≤==,故 2λ= % {min(,)1}1{min(,)1}P X Y P X Y ≤=-> 1(1)(1)P X P Y =->> 4 1e -=-. 5. 设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. ~ 答案: 1 111 ln n i i x n θ== -∑ 解答: 似然函数为 111 (, ,;)(1)(1)(,,)n n n i n i L x x x x x θθθθθ==+=+∏

相关主题
文本预览
相关文档 最新文档