当前位置:文档之家› 原子核物理学

原子核物理学

原子核物理学
原子核物理学

Triple

p n

--

12C

αααHoyle St.

αα

α

126

8228

Nuclear Chart

>>

N

Z

r -p r o c e s s 300 3000 ( 6000 ?

E - +

288

2208

2

50

2050

82

ZeroDegree

(old)

RI 2007

fRC

IRC

SRC

RRC

RIPS

RARF 1990-GANIL,GSI,MSU ~100MeV (C,O,Ar)

RI-beam Factory 2007- (GSI Fair

ZeroDegree

(old)

RI 2007

fRC

IRC

SRC

RRC

RILAC

RIPS

RARF ZeroDegree

BigRIPS

TOF(F3-F7) [ns]

Nb

Y Tc

Rh (Z=45)

Ag

In Sb

I

Xe

Rb

Br (Z=35)

As

Ga Cu

Co

Zr (Z=40)Mo

Ru

Pd Cd Sn (Z=50)Te

Sr Kr Se Ge Zn (Z=30)

Ni

Fe

98Y

132Sn

10411791Br 76Zn

70Ni

82Ge A/Z=2.5

64Ni r-process path

124Sn

238U + Be(5mm) at 345 MeV/ , F1 : +-2mm, Brho : 76

M e V /c 2)

Z Z

24Mg 24Al

24Si

24Na

24Ne

24F

24O

25Mg

25Al

25Si

25Ne

25F

25Na

F+e -+ν

24Si ?24Al+e ++ν

24Si+e -?24Al+ν(

9Li

Li

11Be 10Be

n

n

n S=300keV

I. Talmi and I. Unna, PRL4, 469 (1960).

11Be, 11Li 2s 1p ?(Talmi Unna)

I.Hamamoto)

Myo, Kato, Ikeda et al.)

?

( V

Why?

N=7

N=8

∑=Ψ

Ψ=

στ

πO O G mc ft i

f ,2ln 22

23

2h 11Li ?11Be*+e -+ν

11Be(g.s.)+γβdecay of 11Li

N.Aoi et al.,

10Be+n+(γ)

11Be 1/2+ 0p

1/2

dominant)

[]

2

211)0()1()Li (p s Core βα+?=ΨGamow Teller

log ft =5.67(4)) ? ?p

β2=51(6)%

Saxon Potential)

-++

-+-+ MeV 413/1?≈A ωh

Major shell

Borromean

9Li

11Li n

n

α

He

n

n

α

n

n

α+ n n + n α+ n + n

3

α

or ‘cigar’?

α

n J.M. Bang, M. Zhukov et al.,

Phys.Rep. 264, 27 (1996).

Borromean

“ ”

T. Suzuki et al. @GSI, PRL75,3241 (1995).

A. Ozawa,T. Suzuki, I. Tanihata et al.NPA693,32(2001).

Neutron radii (n

Proton radii p

σI

Isotope shift

?E F

n

p F S S E ?=?

n p

ρr

n p

ρr

core

halo

n p

r core Skin

p n

n n

n

p

p p

M.Freer et al., Phys.Rev.Lett. 82, 1383 (1999).

12Be

A.Saito, S.Shimoura et al., More molecular States!

B

He Li

17B

He

Li

19B

N=8

Y.Kanada-Enyo and H.Horiuchi PRC52,647(1995).

H.Takemoto,H.Horiuchi and A.Ono PRC63,034615(2001).

Mg*

γ

Si

Doppler

N=20 34Mg

,,)()(m

M M i f f I Elm O M I El B f i =

[2(8l l T π )(El B

reduced transition probability)

f f i i M I M I →

e 2 =1/

∑==Z

k l

m l k Y r Ze Elm O 1

)(

)(f f Elm O M I El

C

16C

16O

H.J.Ong et al., PRC73, 024610(2006).16C(p,p’) ?neutron deformation dominant

N.Imai et al.

Phys.Rev.Lett. 92, 062501 (2004).

Y.Kanada-Enyo, PRC71,014303(2005)

Mayer

Jensen

2p,1f,0h

82

Saxon Potential)

-++

-+-+ MeV 413/1?≈A ωh

Major

shell

0s 1/2=1s 1/2

(

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

原子核物理知识点归纳

原子核物理重点知识点 第一章 原子核的基本性质 1、对核素、同位素、同位素丰度、同量异位素、同质异能素、镜像核等概念的理解。 (P2)核素:核内具有一定质子数和中子数以及特定能态的一种原子核或原子。 (P2)同位素:具有相同质子数、不同质量数的核素所对应的原子。 (P2)同位素丰度:某元素中各同位素天然含量的原子数百分比。 (P83)同质异能素:原子核的激发态寿命相当短暂,但一些激发态寿命较长,一般把寿命 长于0.1s 激发态的核素称为同质异能素。 (P75)镜像核:质量数、核自旋、宇称均相等,而质子数和中子数互为相反的两个核。 2、影响原子核稳定性的因素有哪些。(P3~5) 核内质子数和中子数之间的比例;质子数和中子数的奇偶性。 3、关于原子核半径的计算及单核子体积。(P6) R =r 0A 1/3 fm r 0=1.20 fm 电荷半径:R =(1.20±0.30)A 1/3 fm 核力半径:R =(1.40±0.10)A 1/3 fm 通常 核力半径>电荷半径 单核子体积:A r R V 3033 434ππ== 4、核力的特点。(P14) 1.核力是短程强相互作用力; 2.核力与核子电荷数无关; 3.核力具有饱和性; 4.核力在极短程内具有排斥芯; 5.核力还与自旋有关。 5、关于原子核结合能、比结合能物理意义的理解。(P8) 结合能:),()1,0()()1,1(),(),(2 A Z Z Z A Z c A Z m A Z B ?-?-+?=?= 表明核子结合成原子核时会释放的能量。 比结合能(平均结合能):A A Z B A Z /),(),(=ε 原子核拆散成自由核子时外界对每个核子所做的最小平均功,或者核子结合成原子核时平均每一个核子所释放的能量。 6、关于库仑势垒的理解和计算。(P17) 1.r>R ,核力为0,仅库仑斥力,入射粒子对于靶核势能V (r ),r →∞,V (r ) →0,粒子靠近靶核,r →R ,V (r )上升,靠近靶核边缘V (r )max ,势能曲线呈双曲线形,在靶核外围隆起,称为库仑势垒。 2.若靶核电荷数为Z ,入射粒子相对于靶核 的势能为:r Ze r V 2 0241 )(πε=,在r =R 处, 势垒最高,称为库仑势垒高度。

科学技术发展史论文

成都理大学 科学技术史论文题目:世界科技发展史回顾与未来科技发展展望 彭静 201206020228 核自学院 指导老师:周世祥

世界科技发展史回顾与未来科技发展展望 科学技术发展史是人类认识自然、改造自然的历史,也是人类文明史的重要组成部分。今天,当人类豪迈地飞往宇宙空间,当机器人问世,当高清晰度数字化彩电进入日常家庭生活,当克隆羊多利诞生惊动整个世界之时,大家是否会感受到,人类经历了一个多么漫长而伟大的科学技术发展历程。 一.古代科技发展概况 大约在公元前4000年以前,人类由石器时代跨入青铜器时代,并逐渐产生了语言和文字。在于自然界的长期斗争中,人类不断推动着生产工具和生产技术的进步,与此同时,人类对自然界的认识也不断丰富,科学技术的萌芽不断成长起来。 世界文明发端于中国,埃及,印度和巴比伦四大文明古国。中国古代科学技术十分辉煌,但主要在技术领域。中国的四大发明对世界文明产生巨大影响。古代中国科技文明的主要支桂有天文学、数学、医药学、农学四大学科和陶瓷、丝织、建筑三大技术,及世界闻名的造纸、印刷术、火药、指南针四大发明。四大发明:造纸、印刷术、火药、指南针。 生活在尼罗河和两河流域的古埃及和巴比伦人在天文学,数学等方面创造了杰出的成就,埃及金字塔名垂史册,印度数学为世界数学发展史大侠光辉的一页。 古希腊是科学精神的发源地,古希腊人创造了辉煌夺目的科学奇迹,在人类历史上第一次形成了独具特色的理性自然观,为近代科学的诞生奠定了基础。在人类历史上第一次形成了独具特色的的理性自然观,为近代科学的诞生奠定了基础。毕达哥拉斯,希波克拉底,以及百科全书式的学者亚里士多德都是那一时期的解除代表人物。公元前3世纪,进入希腊化时期的古希腊获得更大的发展,出现了欧几里得,阿基米德和托勒密三位杰出的科学家,使得古代科学攀上三座高峰。 公元最初的500多年中,欧洲的科学技术持续衰落,5世纪后进入黑暗的年代,并且延续了1000多年,科学一度成为宗教的婢女。但是科学精神在14世纪发出自己的呐喊,近代实验科学的始祖逻辑尔-培根像一颗新星,点亮了欧洲的天空。 在整个古代,技术发展的水平不高,科学也没有达到系统的程度,不同地域的人民之间还未建立起长期稳定的经济、文化联系, 但许多古代的科学技术成果, 如阳历和阴历, 节气、月、星期和其它时间单位的划分, 恒星天区的划分和名称,数学的基础知识和十进制记数法、印度——阿拉伯数字、轮车技术、杠杆技术、造纸术、印刷术等等,都已深深镶入了整个人类文明大厦的基础。 古代自然科学的发展还停留在描述现象,总结经验的阶段,个学科的分野并不明确,因而具有实用性,经验性和双重性,但它给近代科学的发展准备了充分的条件。 2.近现代科学技术的发展

核技术及其应用的发展

核技术与核安全 核动力技术的核心是反应堆技术,反应堆可用来发电,供热,驱动运载工具等.反应堆还可以产生大量中子,故在有些核技术应用中亦可利用反应堆作为中子源,或利用反应堆中子做活化分析,生产放射性核素等."核能工程与技术"和"辐射防护与环境保护"也是"核科学与技术"之下的二级学科. 实际上核技术与核物理是密不可分的,这两个学科在发展过程中始终是互相依托,互相渗透的.同时,作为核探测技术和射线应用技术的基础,研究各种射线和荷能粒子束与物质的相互作用是十分重要的.其相互作用既可以产生物理的变化,也可以产生化学的变化,还可以产生生物学的变化.相应的研究构成了辐射物理学,辐射化学和辐射生物学的主要内容.在核技术的应用中还经常要对放射性核素进行分离,或用放射性核素标记化合物,这属于放射化学的范畴.因此,核技术及应用这一学科与核物理学,辐射物理学,辐射化学,放射化学等学科有密切的联系,其中辐射物理往往也被纳入核技术的范畴内.近年来核技术在医学中的应用得到迅速发展,相应地又产生了医学物理,核医学等学科.另一方面,核技术的研究经常涉及大型仪器设备的研制,其本身又是物理,机械,真空技术,电子学,射频技术,计算机技术,控制技术,成像技术等多种学科和技术的综合.故此核技术充分体现了多种学科的交叉这一特点,是现代科学技术的重要组成部分,也是当代重要的高技术之一.第二次世界大战之后核技术开始大规模地应用到国民经济之中,形成了许多新兴的产业,如辐射加工,无损检测,核医学诊断设备与9放射治疗设备,同位素和放射性药物生产等.据统计,美国和日本的国民经济总产值(GDP)中核技术的贡献约占3%~4%.美国核技术产生的年产值约为3500亿美元,其中非核能部分约占80%. 现代很多科学技术成就的取得都是与核技术的贡献分不开的.仅以诺贝尔奖为例,1931年美国科学家劳伦斯发明回旋加速器,为此获得了1939年诺贝尔物理奖.1932年英国科学家Cockcroft和Walton制造了第一台高压倍压加速器并用其完成了首次人工核反应,获1957年诺贝尔物理奖.此外还有八项诺贝尔物理奖和化学奖是利用加速器进行实验而获得的.在探测器方面,威尔逊因发明云室探测器而获1927年诺贝尔物理奖,其后布莱克特因改进威尔逊云室实现自动曝光而获1948年诺贝尔物理奖,鲍威尔发明照相乳胶法并用其发现π介子而获1950年诺贝尔物理奖,这之后格拉泽因发明气泡室使粒子探测效率提高1000倍而获1960年诺贝尔物理奖,阿尔瓦雷兹因改进气泡室并用其发现共振态粒子而获1968年诺贝尔物理奖,沙帕克因发明多丝正比室和漂移室而获1992年诺贝尔物理奖.在核分析技术方面,1948年美国科学家利比建立了14C测年方法并为此获得了1960年诺贝尔化学奖,穆斯堡尔因发现穆斯堡尔效应而获1961年诺贝尔物理奖,布罗克豪斯和沙尔因发展了中子散射技术而获1994年诺贝尔物理奖.核技术对于科学发展的重要推动作用由此可见一斑.由于核技术为多种学科的基础研究提供了灵敏而精确的实验方法和分析手段,自20世纪80年代以来各国竞相建造与核技术密切相关的大型科学工程,如大型对撞机,同步辐射装置,自由电子激光装置,散裂中子源,加速器驱动次临界反应堆,大型放射性核束加速器等,其造价动辄数亿美元乃至数十亿美元.美国能源部2003年11月发布研究报告"未来科学的装置",列出了今后20年重点发展的28项大型科学工程,其中基于加速器的有14项,占了一半.我国自改革开放以来先后建造了北京正负电子对撞机,兰州重离子加速器,合肥同步辐射装置等大科学工程,辐照和放疗用电子加速器,大型集装箱探测装置,辐射加工和同位素生产等也已经形成了一定规模的产业. 1 在工业中的应用 核技术的工业应用始于20世纪50年代兴起的辐射加工.辐射加工利用60Co源产生的γ射线或电子加速器产生的电子束照射物料,可引起高分子材料的聚合,交联和 1

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

物理学发展简史

物理学发展简史 专业:物流工程111 学生:吴建平 学号:2011216031 老师:代群

摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展

引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 一古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致来,这一时期,力学、数学、天文学、化学得到了迅速发展。 二近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。 公元15世纪,哥白尼经过多年关于天文学的研究,创立了科学的日心说,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。开普勒的理论为牛顿经典力学的建立提供了重要基础。从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。 近代物理学之父伽利略,用自制的望远镜观测天文现象,使日心说的观念深入人心。他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。他提出惯性原理,驳斥了亚里士多德外力是维持物体运动的说法,为惯性定律的科学逐渐从哲学中分裂出建立奠定了基础。伽利略的发现以及他所用的科学推理方法是人类思想史上

原子核物理试题

期末考试试卷(B 卷) 课程名称: 原子核物理 学院: 核科学与技术学院 姓名: 校园卡号: (共150分,请选其中的100作答) 1. 我们知道原子核体积近似地与A 成正比,试说明其内在的物理原因。 2. 重核裂变后,生成的中等重的核常伴随着β衰变,为什么? 3. Bi 21183 衰变至Tl 20781,有两组α粒子,其能量分别为6621keV ,6274keV 。前 者相应是母核衰变至子核基态,后者为衰变至激发态。试求子核Tl 20781激发态的能量。 4. 对于Ca Sc s 42 2068.04221??→?, 查表得3.310),(=m E Z f ,并已知子核的能级特性为+O 。试判断母核的能级特性。 5. 质子轰击7Li 靶,当质子的能量为0.44, 1.06, 2.22 和3.0MeV 时,观测到共振。已知质子和7Li 的结合能为17.21MeV ,试求所形成的复合核能级的激发能。 6. 简述处于激发态的复合核的中子蒸发能谱,并推导之。 7. 什么是内转换电子,内转换电子与β跃迁电子的区别。 期末考试试卷(B 卷)答案 题 号 一 二 三 四 五 六 七 八 九 十 总 分 分 数 阅卷教师

1.解: 核力的作用要比库仑力强,而且主要是吸引力,这样才能克服库仑力形成原子核。核子之间的磁力也比核力小很多,万有引力更是微不足道。 核力是短程力,粗略的说,核力是短程力的强相互作用,而且起作用的主要是吸引力。 2.解: 重核的中质比大于1,甚至达到1.54.对于重核,核内的质子数增多,库仑力排斥增大了,要构成稳定的核就必须要还有更多的种子以消耗库仑排斥力作用。贝塔稳定线表示原子核有中子,质子对称相处的趋势,即中子数和质子数相当时原子核比较稳定。 3.解: 子核的激发能量: MeV E E A A E 7.353]62746621[207211)]()([410=-=--= αα 4.解: 4242 21 20 0.68 3.31/2log log(0.6810) 3.13 s Sc Ca f T β+ ???→?=?= 1/2 l o g f T ?判断跃迁种类几次规则知道该β + 衰变为容许跃迁 01,0;0,1 (1)1;1 i i i i I I I πππ?=-=±=?=?+=+=+故而,故而, 所以,母核42 21 Sc 的能级特性为:0+1+。 5.解: 复合核的激发能为: 代入数据得到: **12**3417.60,18.1319.15,19.84E M eV E M eV E M eV E M eV ==== 6.解: 再通过复合核的反应中,出射粒子的能量也具有麦克斯韦分布的特点,在适当的条件下叫分布也是各向同性的。因此,我们可以用液滴蒸发的图像来处理复合核的衰变,这就是中子蒸发能谱。 推导如下: 令剩余核的激发能 n E E E -=0*由于复合核的衰变至剩余核的激发能为n E E E +→**之间的概率与此间的能级成正比,同时与复合核的中子宽度)(n n E Γ成正比, 于是: n n n n n n dE E E E dE E n )()()(0-Γ∝ρ 又反应截面可以写为 ΓΓ=b CN ab ) (ασσ *A aA a A m E E B m m =++

核技术应用

核技术的应用 ——工业、农业、医学

作为核专业的学生,我们简称自己的专业为核工,而总是忽略后半部分——核技术,我们在关注核电站等工程的同时似乎对核技术有些忽视。鉴于这种现象,我们组的主题是核技术在工业、农业、医学等三方面的应用,希望以点带面,以此提高大家对核技术科学方面的重视,也希望对大家有所帮助。 1995年,美国核技术应用GDP贡献4.7%,是核电的3.67倍,而我国2003年核技术对国民经济的贡献才仅为可怜的0.4%。95年来,我国核技术应用的平均增长率达到18%,在2009年核技术应用产值总计已达1000亿元人民币,为国民经济发展做出了突出的贡献。下面是核技术分别在三个方面应用的介绍: 一、核技术在工业方面的应用 目前,我国已形成了基本配套的军民两用核动力与核燃料循环科研开发工业体系,具备了自主设计建造中小型核电站的能力和核电站燃料组件的生产能力,核技术(包括核供热、同位素和辐射技术等)在工业、农业和医学等领域得到广泛应用。经过几十年的发展,我国在科研、设计、建设和运行等方面积累了许多宝贵经验,培养和造就了一支专业齐全、具有相当实力的科研、开发、设计和工程建设队伍。我国的核能和平利用产业已经形成了一定的规模,在某些技术领域达到了世界先进水平 1.辐射加工:即利用γ射线和加速器产生的电子束辐照被加工物体,使其品质或性能得以改善的过程。辐射加工可以获得优质的化工材料,储存和保鲜食品,消毒医疗器材,处理环境污染物等,是20

世纪70年代的一门新技术,也称辐射工艺。目前在高分子材料辐射改,性、食品辐照保藏、卫生医疗用品的辐射消毒等方面,已有一些国家实现了工业化和商业化。辐射加工技术具有下列特点:①辐照过程不受温度影响,可以在低温下或室温下进行,因此辐照对象可以是气态、液态或固态;②γ射线或能量高的电子束穿透力强,可均匀深入到物体内部,因此可以在已包装或封装的情况下进行加工处理;③容易控制,适于连续操作;④不必加其他化学试剂和催化剂,保证产品纯度;⑤反应速率快,形成高效生产线。 由于辐射加工的独特优点,辐射化学工业产品的品种和数量不断增加,在高分子辐照交联、辐射裂解、辐射接枝术,辐射聚合以及有机物的辐射合成等方面已有几十种产品。特别是高分子辐射改性方面,产品最多。其中聚乙烯绝缘层的辐射交联,已应用于电线、电缆的制造工艺中。这种辐射交联电线耐热、耐腐蚀性能好,可提高设备的可靠性,并使之小型化;已广泛用于航天、通信、汽车、家用电器等工业中的配线材料。辐射交联聚乙烯热收缩薄膜、薄板和管道,已用于包装材料、电缆接头等。用电子束辐照装置对木材、金属、纸张等表面涂层的固化有很多优点,如节能、无公害、占地面积小、生产速度快、涂层性能好等。辐射接枝可以改善层压制品的粘接性。例如,聚乙烯粉末辐照后与丙烯酸进行接枝,将接枝物压成薄膜再与铝箔层压,可作瓶盖等。用甲基丙烯酸甲酯等单体浸渍过的木材,辐照后加工形成木材-塑料复合材料,在尺寸稳定性、吸水性、强度、抗霉防腐、表面物理性能等方面都有显著改善,可用于制作地板、工艺品、

原子核物理学发展史

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 序言 (2) 1.伦琴和X射线的发现 (3) 1.1偶然的发现 (3) 1.2机遇是留给有准备的人 (3) 2.贝克勒尔发现放射性 (3) 2.1贝克勒尔发现铀盐辐射 (4) 3.居里夫人和镭的发现 (4) 3.1钋的发现 (4) 3.2不知疲倦的科学家 (5) 3.3生活的不幸成为研究的动力 (6) 4.卢瑟福和α射线的研究 (6) 4.1卢瑟福发现α射线 (7) 4.2卢瑟福提出有核原子模型 (8) 5.总结 (9) 参考文献 (10) 致谢 (11)

摘要:在21世纪,原子核物理学已经在人类生活,军事上都得到了广泛应用,但有多少人知道其发现的历程呢!在以牛顿理论系统建立的经典力学的大厦笼罩下,原子核物理学又是经过多少科学家的反复推导和验证诞生的呢!或许岁月的长河会掩盖住过往的尘沙,但它无法遮挡住那如黄金般闪耀的历程! 在本文中我们将通过文献研究法和调查法,跟寻科学家的脚步,来重新认知原子核物理的发展的历程。并且着重通过对卢瑟福对α射线的研究,尤其是α粒子的大角度散射实验,来亲自感受原子核发现的经过。最后讨论原子和物理的发现和发展给人类带来的好处和坏处,正确的对待科学,应用科学,使我们的家园变得更美好。 关键字:X射线放射性α射线 Abstract:In the 21st century, nuclear physics has been in the human life, the military has been widely used, but how many people know that their findings of course! In Newton's theory of classical mechanics system set up for our shadowat, omic nucleus physics and after how many scientists of derivation and validation is born again and again! The long river of years may obscure past dust, but it cannot block the shine like gold of course! In this article, we will through the literature research and survey method and steps of scientists, to the cognitive development of nuclear physics. And emphatically based on the research of the rutherford to alpha rays, especially of alpha particles, large Angle scattering experiment, after found to experience personally the nucleus. Finally discussed the discovery and development of atoms and physical brings to the human, the advantages and disadvantages of the correct treatment of science, applied science, make our home more beautiful. Keywords:X ray radioactive alpha

核技术及其应用的发展

核技术及其应用的发展 人防五队风水专业乔亚鑫3382011515 1896年贝克勒尔发现铀的天然放射性,从此诞生了一门新的科学:原子核科学技术。1919年卢瑟福利用天然α射线轰击各种原子,确立了原子的核结构,随后又首次用人工方法实现了核反应。但是用天然射线源能够研究的核反应很有限,人们开始寻找一种可以产生具有不同能量的各种粒子束的装置,于是粒子加速器应运而生。同时,为了探测各种射线和核反应的产物,还需要有辨别粒子种类和能量的探测器及相应的电子学设备。在研究核物理的过程中人们发现,放射性一方面可能造成人体的伤害,另一方面它也可以在医学、工农业和其它方面有许多应用。于是相应地,辐射防护技术与射线应用技术也发展起来。此外,核物理的研究还导致了许多放射性核素的发现。它们的半衰期长至数千万年,短至不足1秒。在不同场合下选择适当的放射性核素,可以做示踪剂、测年工具或药物使用。这就是放射性核素技术(或称为同位素技术)。上述粒子加速器技术、核探测技术与核电子学、射线和粒子束技术、放射性核素技术等,通常统称为核技术。概括而言,核技术就是利用放射性现象、物质(包括荷能粒子)和规律探索自然、造福人类的一门学科,其主要内容是研究射线、荷能粒子束和放射性核素的产生、与物质相互作用、探测和各种应用的技术。在我国现行的研究生培养体系中“核技术及应用”属于一级学科“核科学与技术”之下的一个二级学科。核技术还包括核武器技术与核动力技术(或称为核能技术)。核动力技术的核心是反应堆技术,反应堆可用来发电、供热、驱动运载工具等。反应堆还可以产生大量中子,故在有些核技术应用中亦可利用反应堆作为中子源,或利用反应堆中子做活化分析、生产放射性核素等。“核能工程与技术”和“辐射防护与环境保护”也是“核科学与技术”之下的二级学科。 实际上核技术与核物理是密不可分的,这两个学科在发展过程中始终是互相依托、互相渗透的。同时,作为核探测技术和射线应用技术的基础,研究各种射线和荷能粒子束与物质的相互作用是十分重要的。其相互作用既可以产生物理的变化,也可以产生化学的变化,还可以产生生物学的变化。相应的研究构成了辐射物理学、辐射化学和辐射生物学的主要内容。在核技术的应用中还经常要对放射性核素进行分离,或用放射性核素标记化合物,这属于放射化学的范畴。因此,核技术及应用这一学科与核物理学、辐射物理学、辐射化学、放射化学等学科有密切的联系,其中辐射物理往往也被纳入核技术的范畴内。近年来核技术在医学中的应用得到迅速发展,相应地又产生了医学物理、核医学等学科。另一方面,核技术的研究经常涉及大型仪器设备的研制,其本身又是物理、机械、真空技术、电子学、射频技术、计算机技术、控制技术、成像技术等多种学科和技术的综合。故此核技术充分体现了多种学科的交*这一特点,是现代科学技术的重要组成部分,也是当代重要的高技术之一。第二次世界大战之后核技术开始大规模地应用到国民经济之中,形成了许多新兴的产业,如辐射加工、无损检测、核医学诊断设备与 放射治疗设备、同位素和放射性药物生产等。据统计,美国和日本的国民经济总产值(GDP)中核技术的贡献约占3%~4%。美国核技术产生的年产值约为3500亿美元,其中非核能部分约占80%。

原子核物理发展现状简介_赵恩广

第26卷总第313期2008年第4期(上半月) 物理教学探讨 Journal of Physics T eaching Vol.26No.313 (S) 4.2008.1. 专家 论坛 原子核物理发展现状简介 赵恩广 中国科学院理论物理研究所,北京市100080 编者按:2007年初,按中国科协的规划,中国物理学会组织了一些专家学者编写中国的物理学科发展报告。这里,我们邀请参与编写发展报告的部分专家,对物理学一些分支领域的发展现况做扼要介绍,供各位物理教师参考。下文是本系列推出的第一篇文章。 作者简介:中国科学院理论物理研究所研究员,博士生导师。1963年毕业于吉林大学物理系,1963-1967年是两弹元勋于敏先生研究生,从1992年起任中国核物理学会核结构专业委员 会主席和副主席。长期从事极端条件下的核结构,核天体物理中的中子星性质及核内非核子自 由度的研究。主持多项国家级科学项目,其中研究项目/高自旋与超变形核态的研究01993年获 原国家教委科技进步二等奖,/原子核与超核性质的介子探针研究01997年获原国家教委科技进步二 等奖,/原子核的奇特性质及新集体转动模式的研究02000年获教育部自然科学一等奖。 贝克勒尔1896年发现了铀元素的天然放射性,揭开了现代物理的序幕。同时,它也标志着原子核物理的起点。核物理的主要研究对象是原子核的结构、反应和衰变。一百多年来,通过核物理的研究,人们对物质结构、微观世界与宏观世界运动规律的认识不断深化;到20世纪末,核物理的发现和成果,得到过17个年度的诺贝尔物理学奖和8个年度的诺贝尔化学奖;核武器的研制与核能源的开发利用,对人类历史进程发生了巨大的影响;因此,原子核物理一直受到社会的普遍关注。下面,我们把原子核物理的发展现状,做一简要介绍。 原子核的尺寸很小,它的线度只有原子的十万分之一。但是,它的质量却占一个原子的99.9%以上。所以,我们的地球和宇宙中星体的质量,基本上都是由原子核贡献的。而恒星中对抗引力塌缩的力量,主要是来自轻原子核的燃烧过程。所以,原子核物理的研究范围,既可以小到10-15米的微观尺度,也可以大到宏观的恒星尺度。 从上个世纪30年代中子的发现起,就建立了原子核主要由中子和质子(它们又统称核子)组成的图像。这个图像,至今仍然正确。但是,由于粒子物理的发展,人们可以把一些其它的粒子,如+超子和2超子,束缚在原子核内,构成了所谓的超核。对超核的研究,已经成为核物理的一个重要领域。核子间的主要相互作用是强相互作用,又称核力。此外,弱相互作用与电磁相互作用在原子核中也扮演着重要的角色。原子核是一个由这些基本相互作用支配的有限量子多体系统,由此而建立的核多体理论独具特色。这些理论既有非相对论性的,也有相对论性的,它们仍处于不断的发展之中。 自然界存在的稳定原子核不到300种。如果以中子数为横轴,质子数为纵轴,把原子核排列起来,就构成所谓的核素图。图中的每个原子核叫一个核素。到目前,加上实验室发现和产生的各种寿命的不稳定原子核,核素的总数已经有3000多个。但是,理论预言,核素的总数应当有8000多个。对这些未知核素以及已经发现的不稳定核素进行探索和研究,构成了当代原子核物理的几个重大前沿领域,包括放射性核束物理、核天体物理以及超重元素的合成。 图1核素图。图中的直线标出了中子和质子幻数。 在核素图中(图1),所有稳定的原子核,都落在一条从左下角伸向右上角的斜线的附近。这条线被称为B-稳定线。因为,这些核相对于B-衰变是稳定的。相对于B-衰变稳定的原子核内,其质子和中子数目,都有一个比较合适的比例。当核素逐渐离开B-稳定线时,这个比例会变得过大或过小,其寿命不断变短。现有的原子核理论,基本是来自对稳定核的研究。在远离B-

原子核物理复习资料

1、核的自旋:原子核的角动量,通常称为核的自旋。 2、衰变常量:衰变常量是在单位时间内每个原子核的衰变概率。 3、半衰期:半衰期是放射性原子核数衰减到原来数目的一半所需的时间。 4、平均寿命:平均寿命是指放射性原子核平均生存的时间。 5、放射性活度:在单位时间内有多少核发生衰变,亦即放射性核素的衰变率,叫衰变率。 6、放射性:原子核自发地放射各种射线的现象,称为放射性。 7、放射性核素:能自发的放射各种射线的核素称为放射性核素,也叫做不稳定核素。 8、核衰变:原子核衰变是指原子核自发的放射出α或β 等粒子而发生的转变。 9、衰变能:原子核衰变时所放出的能量。 10、核素:具有相同质子数Z和中子数N的一类原子核,称为一种核素。 11、同位素:质子数相同,中子数不同的核素。 12、同中子素:中子数相同,质子数不同的核素。 13、同量异位素:质量数相同,质子数不同的核素。 14、同核异能素:质量数和质子数相同而能量状态不同的核素。 15、镜像核:质子数和中子数呼唤的一对原子核。 16、质量亏损:组成某一原子核的核子质量与该原子核质量之差。 17、核的结合能:自由核子组成原子核所释放的能量。 18、比结合能:原子核平均每个核子的结合能。 19、最后一个核子的结合能:是一个自由核子与核的其余部分组成原子核时,所释放的能量。 21、内转换现象:原子核从激发态到较低的能态或基态的跃迁时把核的激发能直接交给原子的壳层电子而发射出来。 22、内转换电子:内转换过程中放出来的电子。(如果单出这个就先写出内转换现象的定义) 23、内电子对效应: 24、级联γ辐射的角关联:原子核接连的放出的两个γ光子,若其概率与这两个γ光子发射方向的夹角有关,即夹角改变时,概率也变化,这种现象称为级联γ辐射角关联,亦称γ-γ角关联。 25、穆斯堡尔效应:原子核辐射的无反冲共振吸收。 26、核的集体模型:每个核子在核内除了相对其它核子运动外,原子核的整体还发生振动与转动,处于不同运动状态的核,不仅有自己特定的形状,还具有不同的能量和角动量,这些能量与角动量都是分立

核技术应用

核技术应用读书笔记 核技术是建立在核科学基础之上的一门现代技术,因而泛称核科学技术。核科学技术作为现代化科学技术的组成部分,其渊源可以追溯到1896年天然放射性的发现,至今已有100多年的历史。带电粒子加速器的发现与核反应堆的建造为核科学技术的发展,奠定了雄厚的物质基础。第二次世界大战期间核科学技术在军事领域的突破,体现了核科学技术发展的时代特征,即技术的科学化与科学的技术化。世界第一颗原子弹的爆炸显示了核能释放的巨大威力,开创了本世纪现代科学技术定向发展的新格局,即动用国家一级的权威,动员全社会的力量,精心 规划布署,全力推进科学、技术、工程、产业、经济的一体化。 核 器 主 和 的 、 截 电 建 个 , 技术可望从实验室走向实用,为人类提供取之不尽的干净能源。威力很大的核爆炸将为工程建设、改造环境和开发资源服务。核动力将在交通运输及星际航行等方面发挥更大的作用。核技术在其他领域中的应用也将进一步扩大。 核科学与核技术在二十世纪取得了辉煌的成就。目前仍然是现代科学中的一个非常重要的前沿领域,保持着旺盛的生命力,不仅具有重大的科学意义,而且在高新技术及交叉学科领域的研究中起着重要作用。当前核科学与核技术发展的特点体现为:一方面对物质层次结构、宇宙起源等的探索不断深入,另一方面在能源、人口与健康、环境、信息、材料、农业、国家安全等领域以及多种学科的基础研究中的应用日益广泛。

核探测技术在地学中主要应用于放射性勘查。放射性勘查是一种地球物理找矿方法,它是以岩石或矿石在一定的几何空间造成的放射场的差异为基础的。通过专门的核探测仪器测量射线强度和放射性核素含量,以达到寻找矿产资源和地质工程勘探的目的。 放射性勘查方法很多,按其测量对象不同,可分为Y测量、Bn及其子体测量。其中Y测量又分航空Y测量、航空Y能谱测量、地面Y测量和地面Y 能谱测量。Bn及其子体测量又分射气测量、径迹测量、。卡测量、活性炭测量和’,。Po法测量等等。本节将对地面Y测量、射气测量和径迹测量等放射性勘查方法给予介绍。 转民”的序幕。 经过20多年的发展,在核技术应用产业方面,我国目前已形成具有一定规模和水平的科研开发与产业化体系。据报道,国内从事核技术应用开发和生产的企事业单位有300多家,产业规模为年总产值400亿元,约占国内生产总值的0.4%。国内开展核应用技术产业化较早的中国原子能科学研究院的经营性收入,已由1980年的400多万元增长到2004年的2.4亿元。为了进一步加速核应用技术的推广和应用,国家发改委明确了国家“十一五”期间支持民用非动力核技术应用高技术产业化的目标,即加快高技术成果的产业化,引导、推动民用非动力核技术应用产业的持续、快速、健康增长,促使我国核技术应用产业在5年左

核技术与应用习题

一.有一样品,用14MeV快中子做活化分析,通过16O(n,p)16N(σ=0.09b)反应,分析其中的16O,但样品中含有19F,亦可通过19F(n, α)16N(σ=0.057b)生成16N,同时知道19F还可以通过19F(n, p)19O(σ=0.02b)生成19O。实验中照射样品300s,冷却10s,=7.4s)1754 KeV 的γ射线(分支比为0.24,内转换系数为0.57)60s,测16N (T 1/2 得16N 峰面积记数为1985,再测量19O(T =30s)1356 KeV的γ射线(分支比为 1/2 0.54,内转换系数为0.78)60s,得峰面积记数为1054。现已知中子通量密度为5?109中子/cm2*s,探测器效率为0.3,19F丰度100%,16O丰度99.7%。请你计算样品中16O含量为多少克。(20分) 解:16O→16N和19F→16N的16N的总计数1985 19F→19O的19O的计数1054 由19O计数求得19F含量,从而求出19F对16N计数的贡献,从16N计数1985中减去19F对16N计数的贡献,则是由16O生成的16N的计数,从而可以求出16O 的含量, 由公式 带入相关的数据可求出W =5.678×10-4克 F 则由5.678×10-4克19F生成的16O计数 N= 带入数据得N=982 1985-982=1003 则16O含量W 带入相关数据得出为: O =3.1×10-4克 W O 2.在玻璃碳基体上,用真空喷镀法镀上一层10nm厚的Au(M=197)元素,以4MeV的粒子入射,假设在入射和出射路径上的能损均为10KeV,在散射角为170度方向放置一探测器,那么在道宽为1.6KeV的多道谱仪中背散射谱中Au 峰的宽度是多少? 答:k=0.9225 E1=E0×k=4×0.9225=3.69Mev E2=(4-0.01)×0.9225-0.01=3.6708Mev △E=E1-E2=3.69Mev-3.6708Mev=19.2Kev

初中物理物理学发展简史课件试题

物理学发展简史 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1.古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2.近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中具有至高无上地位的宗教教义,因而流传时间长达1300余年。 公元15世纪,哥白尼经过多年关于天文学的研究,创立了“日心说”,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。开普勒的理论为牛顿经典力学的建立提供了重要基础。从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。 近代物理学之父伽利略,用自制的望远镜观测天文现象,使“日心说”的观念深入人心。他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。他提出惯性原理,驳斥了亚里士多德“外力是维持物体运动”的说法,为惯性定律的建立奠定了基础。伽利略的发现以及他所用的科学推理方法是人类思想史上最伟大的成就之一,而且标志着物理学真正的开端。 16世纪,牛顿总结前人的研究成果,系统的提出了力学三大运动定律,完成了经典

相关主题
文本预览
相关文档 最新文档