当前位置:文档之家› 烧碱制备工艺流程

烧碱制备工艺流程

烧碱制备工艺流程
烧碱制备工艺流程

烧碱的制备工艺简介

现代工业主要通过电解饱和NaCl溶液来制备烧碱。电解法又分为水银法、隔膜法和离子膜法,我国目前主要采用的是隔膜法和离子膜法,这二者的主要区别在于隔膜法制碱的蒸发工序比离子膜法要复杂,而离子膜法多了淡盐水脱氯及盐水二次精制工序。

目前我国主要采取隔膜电解法和离子膜电解法。在这次年产五万吨烧碱工艺流程序初步设计中我采取的是隔膜法制烧碱的氢气处理方法,并简要讨论工艺中的能耗情况。原料为粗盐(含大量杂质的氯化钠),根据生产工艺中的耗能情况,将烧碱制法分为整流、盐水精制、盐水电解、液碱蒸发、氯氢处理、固碱生产和废气吸收工序等七个流程。。

图1 烧碱工艺总流程示意图

1-整流2-盐水精制3-电解4-氯氢处理

5-液碱蒸发

6-固碱生产

1.1整流

整流是将电网输入的高压交流电转变成供给电解用的低压直流电的工序,其能耗主要是变压、整流时造成的电损,它以整流效率来衡量。整流效率主要取决于采用的整流装置,整流工序节能途径是提高整流效率。当然减少整流器输出到电解槽之间的电损也是不容忽略的。

1.2盐水精制

将工业盐用水溶解饱和并精制(除去Ca2+、M g2+、S 02-

等有害离子和固体杂

4

质)获得供电解用精制饱和盐水,是盐水精制工序的功能。

一一次盐水精制:

一次澄清盐水的制备是氯碱生产工艺至关重要的工段,精制效果的好坏直接影响产品的质量和产量。传统性的一次盐水精制工艺,采用配水、化盐、加精制剂反应、澄清、砂滤,然后再经炭素烧结管过滤器过滤。近几年新建氯碱装置一次盐水工艺大都采用膜过滤技术制取精制盐水,该工艺路线省去了砂滤器、炭素烧结管过滤器。经生产实践证明,经膜过滤分离方法制得的一次盐水质量指标、设备投资等都比传统工艺理想。所以一次精制盐水工艺采用膜过滤器过滤工艺。

采用膜过滤器(不预涂)

图2 盐水一次精制流程图

二次盐水精制:

二次盐水精制采用螯合树脂塔进行吸附。离子膜法电解槽使用的高度选择性离子交换膜要求入槽盐水的钙、镁离子含量低于20wtppb,普通的化学精制法只能使盐水中的钙、镁离子含量降到10wtppb左右。若使钙、镁离子含量降到20wtppb的水平,必须用螯合树脂处理。

二次盐水精制的主要工艺设备是螯合树脂塔,分二塔式和三塔式流程。塔的运行与再生处理及其周期性切换程序控制,可由程序控制器PLC实现,PLC与集散控制系统DCS可以实现数据通讯;也可以直接由DCS实现控制。

建议采用三塔式流程。

图3 盐水二次精制流程图

1.3电解

精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴

极室,通电后H2O在阴极表面放电生成H2,Na+则穿过离子膜由阳极室进入

阴极室,此时阴极室导入的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl2。电解后的淡盐水则从阳极室导出,经添加食盐增加浓度后可循环利用。

阴极室注入纯水而非NaCl溶液的原因是阴极室发生反应为2H++2e-=H2↑;而Na+则可透过离子膜到达阴极室生成NaOH溶液,但在电解开始时,为增强溶液导电性,同时又不引入新杂质,阴极室水中往往加入一定量NaOH 溶液。

具体流程:由二次盐水精制工序送来的精制盐水,通过盐水高位槽,进入电解槽的阳极液进料总管。其流量由每个电解槽的自调阀来控制,以保证阳极液的浓度达到规定值。进槽值由送入每台电解槽的直流电流进行串控制。

浓度31%的高纯盐酸用来中和从阴极室通过离子膜渗透到阳极室的OH-离子,盐酸经过自动调节与阳极液一起送入阳极室。精制盐水在阳极室中进行电解,产生氯气,同时NaCL浓度降低。电解槽进、出口之间的NaCL分解率为约50%。每个阳极室都有两个挠性软管,一个连接进料总管,另一个连接出料总管。电解后产生的氯气和淡盐水混合物通过软管汇集排入阳极液总管,并在总管中进行气体和液体分离。氯气在氯气总管中进行汇集后送入淡盐水储槽顶部。在此,氯气中的水分被分离并滴落,然后氯气被送往界外。氯气压力由自调阀控制。淡盐水送入淡盐水储槽底部,然后用淡盐水循环泵一部分经液位自调控制送往脱氯工序;另一部分送往电解槽,进槽淡盐水流量由自动控制。阴极液在阴极室电解产生氢气和烧碱,碱液进入阴极液循环槽,通过阴极液循环泵一部分经阴极液冷却器进入碱高位槽后,进入电槽,这部分电解液进槽前加纯水稀释,纯水量自调由直流电和碱串级控制;另一部分电解液经液位自调控制送入碱冷却器冷却至约45℃后送往碱储槽,然后送往罐区。氢气在阴极液出口总管中分离,并在氢气主管线中进行汇集后,送到碱液循环槽顶部。氢气中的水分被分离并滴落,然后氢气送往界外。氢气压力由自调阀控制,与氯气压力串级控制,使氢气和氯气之间压差保持在设定范围内(5KPa)。

图4 精制盐水电解示意图

图5 电解反应方程式

1.4 氯氢处理

氯气处理工序均包括氯气洗涤、冷却除雾、干燥、压缩;氢气处理均包括氢气洗涤、压缩、脱氧、干燥。

离子膜法制碱时,建议氯气处理工艺方案:湿氯气经氯水洗涤,钛管换热器,氯气除盐、降温后经一段填料塔、二段泡罩塔干燥,使氯气含水量≤50wtppm,氯气输送选用大型离心式氯气压缩机(透平压缩机)。通常根据氯气压缩机压力的不同,将氯气液化方式分为高压法、中压法和低压法三种。高压法消耗冷冻量少,不需要制冷机,能耗低。但对氯气处理工艺、氯气输送设备的要求高,增加投资费用。因此,国内一般采用中、低压液化方法生产液氯。如下图所示。

图6 电解后氯气处理示意图

1-氯气洗涤塔;2-鼓风机;3-Ⅰ段冷却器;4-Ⅱ段冷却器;5-水雾捕集器;

6-填料干燥塔;7-泡罩干燥塔;8-酸雾捕集器;9-氯压机氢气处理工艺:电解出来的饱和湿氢气中含有大量的水和其他气体,一般采用间接法和直接法除去以达到工艺要求。由于在本次设计中不充分考虑热综合利用,所以采用直接法进行氢气的处理,可以简化工艺流程,节约投资费用。它是由电解槽中出来的氢气经氢气缓冲罐后进入一段洗涤塔洗去一部分的杂质及使氢气冷却至50℃后在经二段洗涤塔除杂质及冷却至30℃,之后再经过丝网除雾器除去盐和碱的雾沫后,用罗茨鼓风机抽送至分配台进行下一阶段的分配。氢气处理工艺流程图见下:

4、淡盐水脱氯工序电解槽出来的淡盐水和氯氢处理来的氯水混合后,用31%的高纯盐酸将PH值调节到约 1.5,送入脱氯塔的顶部。脱氯塔的压力为-70~75Kpa,由真空泵进行控制。脱氯塔出口处游离氯降低到50mg/L ,脱出的氯气汇入氯气总管,也可送

入废气吸收塔。脱氯后的淡盐水先用NaOH把PH调到9~11,再将亚硫酸钠储槽中配制的浓度为10wt%的亚硫酸钠溶液用亚硫酸钠泵加入到淡盐水管道中,以彻底除去残余的游离氯。游离氯含量为0的脱氯盐水送回一次盐水工序化盐。

1.5 液碱蒸发

将电解槽生产的液碱通过蒸发系统用蒸汽加热将一部分水蒸出,并将绝大部分盐(N a C I) 分离出去,从而获得成品液碱。

1.6 固碱生产

将蒸发获得的液碱采用大锅熬煮或升膜一降膜一闪蒸方法进一步浓缩生产固碱,其主要消耗是燃料(煤、重油、氢气)。因此,固碱生产节能主要是充分利用燃料燃烧热量和节约燃料的流程等。

烧碱的制作工艺流程

烧碱得制备工艺简介 烧碱得制备方法有两种:苛化法与电解法。现代工业主要通过电解饱与NaCl溶液来制备烧碱。电解法又分为水银法、隔膜法与离子膜法,我国目前主要采用得就是隔膜法与离子膜法,这二者得主要区别在于隔膜法制碱得蒸发工序比离子膜法要复杂,而离子膜法多了淡盐水脱氯及盐水二次精制工序。 目前国内得烧碱生产主要采用得就是离子膜电解法生产烧碱,我们主要针对离子膜电解法介绍烧碱得制作工艺,并简要讨论工艺中得能耗情况。原料为粗盐(含大量杂质得氯化钠),根据生产工艺中得耗能情况,将烧碱制法分为整流、盐水精制、盐水电解、液碱蒸发、氯氢处理、固碱生产与废气吸收工序等七个流程。 据测算,电解法烧碱生产吨碱综合能耗在各工序得分布如下: 整流2、0%;盐水精制3、9% ; 电解53、2%;氯氢处理1、2%;液碱蒸发25、1%;固碱生产14、6%。从上述可知,电解与液碱蒸发就是主要耗能工序。电解工序中得电耗约为吨碱电耗得90%,碱蒸发中得蒸汽消耗占吨碱蒸汽消耗得74%以上。 图1?烧碱工艺总流程示意图 1整流: 整流就是将电网输入得高压交流电转变成供给电解用得低压直流电得工序,其能耗主要就是变压、整流时造成得电损,它以整流效率来衡量。整流效率主要取决于采用得整流装置,整流工序节能途径就是提高整流效率。当然减少整流器输出到电解槽之间得电损也就是不容忽略得。 2盐水精制: 将工业盐用水溶解饱与并精制(除去Ca2+、M g2+、S 02-4等有害离子与固体杂质)获得供电解用精制饱与盐水,就是盐水精制工序得功能。 一次盐水精制: 采用膜过滤器(不预涂) 1-整流2-盐水精制3-电解4-氯氢处理 5-液碱蒸发 6-固碱生产

小结(硫铵工段)

硫铵工段小结(9月5日—9月20日)1工艺流程 实习一段时间后,绘制工艺流程图如下: 煤气 氨汽 12 34 5 6 7 5 8 6 9 10 11 12 13 1415 16 17 硫酸 煤气 1:预热器; 2:饱和器; 3:满流槽; 4:母液贮槽;5:结晶槽; 6:离心机; 7:输送机; 8:干燥器 9:硫铵贮斗; 10:热风机; 11:旋风除尘器; 12:湿式除尘器; 13:大母液泵; 14:结晶泵; 15:小母液泵; 16:送风机; 17:引风机 硫铵工艺流程图 2工艺说明 来自冷鼓工段的煤气,经煤气预热器,加热到70-80℃进入硫铵饱和器上段的喷淋室,来自蒸氨工段的氨汽在煤气进入饱和器前与其混合。在饱和器内煤气分成两股沿饱和器内壁与内除酸器外壁的环形空间流动,并与喷洒的循环母液逆流接触,煤气与母液充分接触,使其中的氨被母液中的硫酸所吸收,生成硫酸铵,然后煤气合并成一股,沿原切线方向进入饱和器内的除酸器,分离煤气中夹带的酸雾后进入洗脱苯工段。 在饱和器下部取结晶室上部的母液,用大母液泵连续抽送至上端喷淋室。从饱和器满流口引出的母液,经加酸后,由水封槽溢流流入满流槽,然后通过小母液泵抽送至饱和器喷淋管,经喷嘴喷洒吸收煤气中的氨。饱和器母液中不断有硫

铵晶核生成,且沿饱和器内的中心管道进入下端的结晶室,在此,大量循环母液的搅动,晶核逐渐长大成大颗粒结晶沉积在结晶室底部,用结晶泵将其连同一部分母液送至结晶槽,在此分离的硫铵结晶和少量母液排放到离心机内进行离心分离,滤除母液,离心分离出的母液与结晶槽溢流出来的母液一同自流回饱和器。 从离心机分离出的硫铵结晶,由螺旋输送机送至沸腾干燥器,经热空气干燥后进入硫铵贮斗,然后称量包装进入成品库。沸腾干燥器用的热空气是由送风机从室外引入,空气经热风器,用煤气点燃后送入,沸腾干燥器排出的热空气经旋风除尘器捕集夹带的的细粒硫铵结晶后,由排风机抽送至湿式除尘器,进行再除尘后排入大气。 从罐区来的硫酸进入硫酸高位槽,经控制机构自流入饱和器的满流管,调节饱和器内溶液的酸度。硫酸高位槽溢流出的硫酸,进入硫酸贮槽,当硫酸贮槽内的硫酸到一定量时,用硫酸泵送回硫酸高位槽作补充。 硫铵饱和器是周期性的连续操作设备。应定期加酸补水,当用水冲洗饱和器时,所形成的大量母液从饱和器满流口溢出,通过插入液封内的满流管流入满流槽,再经满流槽流至母液贮槽,暂时贮存。满流槽和母液槽液面上的酸焦油可用人工捞出。而在每次大加酸后的正常生产过程中,又将所贮存的母液用母液泵送回饱和器作补充。此外,母液贮槽还可供饱和器检修、停工时,贮存饱和器内的母液用。 3生产技术指标 母液的酸度:4—6%; 大加酸时的酸度:8—10%; 洗水温度应保持在≥60℃; 水洗操作时间:≤1h; 硫酸消耗不超过850kg/t; 预热器后煤气温度70—90℃; 饱和器母液温度:50—55℃; 饱和器后煤气含氨:≤30mg/m3; 饱和器阻力:1—5KPa,不大于6KPa; 预热器阻力:500Pa;

烧碱工艺

第三章工程分析 一、现有工程工程概况及污染源调查 (一)产品及规模 现有工程主要产品及生产规模为: 烧碱30000t/a,液氯18000t/a,盐酸21000t/a。 (二)生产工艺 该厂现有3万吨/年烧碱装置为金属阳极隔膜电解法,其工艺过程主要包括化盐、电解、氢处理、氯处理、液氯、碱蒸发、盐酸等工段。 1、盐水工段 盐水生产是将原料盐溶解成饱和的氯化钠溶液,并经精制反应、澄清、过滤、中和等过程使之成为电解所需的合格的精盐水。在盐水生产过程中,排放物主要是盐泥。 2、电解工段 将化盐工段送来的精制盐水连续均匀地分别输入各个电解槽,在直流电的作用下,盐水被电解生成H2、Cl2、NaOH溶液。 在阳极上产生的氯气经氯气管送至氯气处理工序;在阴极上产生的氢气导入氢气管送至氢气站,电解液自阴极箱导出管导出,流入电解液总管,送蒸发工段。反应原理为:阳极反应:2Cl-2e → Cl2 阴极反应:2H2O+2e →H2↑+2OH- Na++OH-→ NaOH 总反应式:2NaCl+2H2O=2NaOH+Cl2↑+H2↑ 由上述食盐水溶液电解反应式可知,电解过程中每生成一吨100%NaOH电解液,可同时产生0.886吨氯气及0.025吨氢气,需要折合100%NaCl1.461吨。 3、氢气处理工段 自电解工段来的80~90℃的高温氢气通过冷凝,除去所含水份,再用罗茨鼓风机加压送入氯化氢合成工段。 4、氯气处理及液氯工段

由电解来的80~90℃的高温氯气首先经过冷却,然后经三组并联的泡沫干燥塔,在塔板上与溢流下来的浓硫酸呈泡沫状充分接触,氯气中的水份被浓硫酸除去。 冷却时产生的含氯废水,现有装置直接排全厂循环水池。 由氯气处工序来的压缩氯气,经液化机组以氨制冷,将氯气在低温下液化,冷凝下来的液氯进入计量槽和液氯贮槽,并灌瓶包装出售,液化尾气送盐酸工段。 5、电解液蒸发工段 来自电解工段的电解液含碱浓度只有10%左右,把电解液用泵送入三效蒸发器,经过蒸发,碱液被浓缩至32-35%,然后进行冷却、配碱,分配合格的碱用泵送入碱栈台。 6、盐酸合成工段 反应式:H2+Cl2=2HCl 自氯氢处理来的氯气和氢气分别进入各自的缓冲器,再经各自的阻火器后,进入合成炉反应,生成的氯化氢气体由顶部加入的来自尾气吸收塔的稀盐酸吸收,再冷却制成盐酸,未被吸收的氯化氢气体经尾气吸收塔用水吸收,生成稀盐酸流入合成炉,剩余尾气由水喷射泵抽走。制成的盐酸送入成品酸罐出售。 工艺流程见图3-1。

化学工艺学 第九章-2电解食盐水溶液制烧碱

第九章电化学反应过程和氯化过程 9.2电解食盐水溶液制烧碱 一、基本概念 1.法拉第电解定律 法拉第在1834年提出的电解定律可表示为:在电解中,96500C(即1法拉第)的电量产生1克当量物质的化学变化。 G= (M/nF)*It=K*Q M:物质的相对原子量,n:物质的原子价(电极反应中的电子数) Q=It F=96500C=26.8Ah 电化当量:为1Ah电量析出的物质克数。K= M/nF 例如:电解食盐水的反应 整个阴极反应 总反应: 在阳极极上析出C12的电化当量为: 在阴极生成的烧碱的电化当量: K=40/26.8=1.4925(g/Ah) 2.分解电压、过电压和电压效率 a分解电压:对于化学反应: 此反应的逆反应需要的电压即为理论分解电压。化学反应达到平衡时,理论分解电压为:

还可以通过阴极、阳极半反应的能斯特方程计算。Er =φ(阳极)-φ(阴极),φ表示半反应的平衡电位,E 表示实际电位,Er 表示理论分解电位。 如,298.15K ,阳极液中NaCl 265kg/m 3,阴极液中NaOH 100 kg/m 3时, φ(Cl )=1.332V φ(H )=-0.840V Er =φ(阳极)-φ(阴极)=1.332+0.840=2.172V b 过电压 实际反应的电极电位与理论分解电压的差称为该电极的过电压。 影响过电压的因素:电极材料、电极表面状态、电流密度、温度、电解时间、电解质的性质和浓度以及电解质中的杂质等。 气体电极过程,产生的过电压相当大,而析出金属则除Fe 、Co 和Ni 外,产生的过电压一般均很小。电极表面粗糙,电解的电流密度降低以及电解液的温度升高,可以降低电解时的过电压。其中,电极材料对过电压的影响最大。 如:石墨阳极上析出氯气、析出氧气的实际电位(1000A/cm 2, NaCl 265kg/m 3) E (Cl )=φ(Cl )+E o (Cl )=1.332+0.25=1.582V E (O )=φ(O )+ E o (O )=0.814+1.09=1.904V c 槽电压和电压效率 电解槽两极上所加的电压称为槽电压,即实际分解电压, E (实)=Er +Eo +△E (降) △E (降):电流通过电解液、电极、导线、接点等的电压降 电压效率(ηE ) 3. 电流效率、电流密度和电能效率 电流效率I η:在实际生产过程中,由于有一部分电流耗于电极上产生的副反应和漏电现象,电流不能100%被利用,所以不能按前述的法拉第电解定律来精确计算所需的电量。工业上常用同一电量所得实际产量与理论计算所得量之比来表示电流利用效率ηI 。 电流密度。电极面上单位面积通过的电流强度,单位为A/m2。在实际生产中,为了控制分解电压,需采用合理的电流密度。 电能效率η:为电压效率与电流效率的乘积, E I ηηη=

焦化厂工艺流程文字叙述及流程图

备煤 炼焦所用精煤,一方面由外部购入,另一方面由原煤经洗煤后所得,洗精煤由皮带机送入精煤场。精煤经受煤坑下的电子自动配料称将四种煤按相应的比例送到带式输送机上除铁后,进入可逆反击锤式粉碎机粉碎后(小于3mm占90%以上),经带式输送机送至焦炉煤塔内供炼焦用。 炼焦 装煤推焦车在煤塔下取煤,捣固成煤饼后,按作业计划从机侧推入炭化室内。煤饼在炭化室内经过一个结焦周期的高温干馏,炼成焦炭并产生荒煤气。 炭化室内的煤饼结焦成熟后,由装煤推焦机推出并通过拦焦机的导焦栅送入熄焦车内。熄焦车由电机牵引至熄焦塔熄焦。熄焦后的焦炭卸至凉焦台,冷却后送往筛焦楼进行筛分和外运。 煤在干馏过程中产生的荒煤气汇集到炭化室的顶部空间,经上升管、桥管进入集气管。700℃的荒煤气在桥管内经过氨水喷洒后温度降至85℃左右,煤气和冷凝下来的焦油氨水一起经吸煤气管道送入煤气回收车间进行煤气净化及焦油回收。 焦炉加热燃用的净化煤气经预热器预热至45℃左右进入地下室,通过下喷管把煤气送入燃烧室立火道,燃烧后的废气经烟道、烟囱排入大气。 冷鼓

由焦炉送来的80-83℃的荒煤气,沿吸煤气管道入气液分离器。经气液分离后,煤气进入初冷器进行两段间接冷却;上段用32℃循环水冷却煤气,下段用16-18℃低温水冷却煤气,使煤气冷却至22℃,然后经捕雾器入电捕焦油器除去悬浮的焦油雾后进入鼓风机,煤气由鼓风机加压送至脱硫工段。 在初冷器下段用含有一定量焦油、氨水的混合液进行喷洒,以防止初冷器冷却水管外壁积萘,提高煤气冷却效果。 由气液分离器分离出的焦油氨水混合液自流入机械化氨水澄清槽,进行氨水、焦油和焦油渣的分离。分离后的氨水自流入循环氨水中间槽,用泵送到焦炉集气管喷洒冷却荒煤气,多余的氨水(即剩余氨水)送入剩余氨水槽,焦油自流入焦油中间槽,然后用泵将焦油送至焦油贮槽,静置脱水后外售,分离出的焦油渣定期用车送至煤场掺入精煤中炼焦。 脱硫 来自冷鼓工段的粗煤气进入脱硫塔下部与塔顶喷淋下来的脱硫 液逆流接触洗涤后,煤气经捕雾段除去雾滴后全部送至硫铵工段。 从脱硫塔中吸收了H2S的脱硫液送至再生塔下部与空压站来的压缩空气并流再生,再生后的脱硫液返回脱硫塔塔顶循环喷淋脱硫,硫泡沫则由再生塔顶部扩大部分排至硫泡沫槽,再由硫泡沫泵加压后送熔硫釜连续熔硫,生产硫磺外售。熔硫釜内分离的清液送至溶液循环槽循环使用。

硫酸烧碱储运工艺流程

(1)硫酸储运工艺流程 汽车槽车运来的98%浓硫酸溶液通过卸车软管靠重力流入半地下的浓硫酸卸车罐中(350V102),通过设在浓硫酸卸车罐上的潜液泵(350P102)将浓硫酸送到浓硫酸储罐(350V-101AB)中储存,再通过浓硫酸送料泵(350P101AB)将浓硫酸送到三套循环水装置。 由于浓硫酸温度低于10.5℃时易发生结晶,因此对于硫酸储罐和管线采用95℃热水进行伴热,为了安全,储罐伴热采取外部盘管伴热加温度调节进行控制。 每台硫酸储罐均设置了液位计、温度计、压力检测仪表,并对温度、压力、高低液位进行报警,汽车槽车来料采用地中衡计量,送出的硫酸由各装置分别计量,本站不考虑计量设施。 考虑三套循环水对浓硫酸的需求量以及外购硫酸的运输问题,设置2台150 m3浓硫酸储罐,1台30m3浓硫酸卸车罐,储罐的体积按24天储量设计。考虑硫酸的吸水性,在硫酸储罐增加氮封设施。 (2)烧碱储运工艺流程 汽车槽车运来的32%烧碱溶液通过卸车软管靠重力流入半地下的烧碱溶液卸车罐中(350V104),通过设在烧碱卸车罐上的潜液泵(350P104)将烧碱送到烧碱储罐(350V-103AB)中储存,再通过烧碱溶液送料泵(350P103AB)将烧碱溶液送到甲醇合成装置、热电站、MTO 装置、烯烃分离装置和污水处理站。 由于32%的烧碱溶液温度低于5℃时易发生结晶,因此对于烧碱溶液储罐和管线采用95℃热水进行伴热,其中储罐伴热采取内盘管伴热加温度调节进行控制。 每台烧碱溶液储罐均设置了液位计、温度计检测仪表,并对温度、高低液位进行报警,汽车槽车来料采用地中衡计量,送出的烧碱溶液由各装置分别计量,本站不考虑计量设施。 根据各装置对烧碱的需求量,设置2台300 m3烧碱贮罐,烧碱贮罐的体积按15天储量设计。

烧碱工艺简介

烧碱生产工艺简介 建厂伊始,我公司采用从日本旭化成高电密自然循环复极式电解槽及相关工艺,装置运行状况优良,被日本旭化成公司评为中日合作示范工厂。零极距离子膜电解技术是近年来投入运行的节能型电解技术,国家已开始大规模推广,我公司已在新建四期装置上使用,现有装置也要进行零极距技术改造,进一步降低顿碱电耗和生产成本。 烧碱生产系统包括一次盐水精制、电解、氯氢处理、氯化氢合成、高压液氯和蒸发固碱六个工序。以下是各工序工艺流程介绍: 1、一次盐水精制: 本工序利用预处理器和凯膜过滤器为中心设备,采用热水化盐、空气吹出、膜过滤等物理方法和烧碱—纯碱化学沉淀方法相结合达到盐水精制的目的,最终得到含盐305g/l,可溶性钙镁杂质不大于4mg/l,悬浮物不大于1mg/l的合格一次盐水,供给电解使用。同时,通过淡盐水外送纯碱生产系统并补充生产水以及膜法除硝装置来避免硫酸根富集,稳定生产。 其主要工艺为60℃左右、310g/L浓度的粗盐水,加入过量烧碱溶液,使镁离子生成氢氧化镁沉淀;其反应为Mg2++2OH-=Mg(OH) 2 ↓ 随后混有氢氧化镁沉淀的粗盐水先加压溶气,再进入预处理器泄压析气,氢氧化镁沉淀作为空气析出的凝结核积聚空气小气泡,比重减小,与氯化铁絮凝剂作用后,其上升为浮泥从顶部排出;大颗粒氢氧化镁和原盐中的泥沙等下沉为底泥排出;随后澄清液进入后反应槽,与过量纯碱溶液发生反应,残余少量氢氧化镁被生成的碳酸钙沉淀共沉,其反应方程式为 Ca2++CO 32-=CaCO 3 ↓ 沉淀颗粒通过凯膜过滤器一次性滤出,得到60℃、310g/L,钙镁离子浓度总和小于4mg/L 的合格一次盐水。 2、电解: 电解工序是烧碱生产的核心,主要设备是电解槽、螯合树脂塔和真空脱氯塔。在工艺上,一次盐水含钙镁离子浓度不能满足电解要求,需将合格一次盐水送入串联运行的螯合树脂塔,通过离子交换除去重金属离子,得到钙镁离子浓度总和小于0.02mg/L的二次精制盐水,送入电解槽阳极室通电电解;在电解槽阳极室,精盐水中的Cl-放电生成氯气,水合Na+穿过离子膜进入阴极室;同时,阴极室内的稀烧碱液中氢离子放电生成氢气,氢氧根与进来的Na+结合生成烧碱。总化学反应方程式为 2NaCl+2H2O-通电→2NaOH+Cl2↑+H2↑ 未参加电解反应的淡盐水溶解少量氯气,从电解槽流出,经缓冲后由泵输送进入真空脱氯塔。塔内绝对压力在34kPa,对应状态盐水沸点在72℃左右,淡盐水(85℃左右)进入脱氯塔内发生过热沸腾,氯气和水蒸气迅速进入气相并不断被气泵抽出压入氯气总管,完成物理脱氯;脱氯后淡盐水靠亚硫酸钠化学还原脱除残余游离氯后返回盐水化盐。电解槽阴极室生成的烧碱大部分经缓冲后泵送高位槽,加水稀释后进入电解槽继续反应,少量引出作为产品,进入蒸发工序或直接售出。 3、氯氢处理: 电解输送的高温湿氯气先经过填料洗涤塔淋洗降温至35℃左右,再经过列管冷却器降温至12~15℃左右,除去湿氯气中97%以上的水分,然后通过串联的填料硫酸干燥塔和泡罩硫酸干燥塔将氯气含水将至100ppm以下完成干燥任务,最终由氯气压缩机加压至140kPa左右, 1

焦化厂硫铵工段设计毕业设计说明书

XXX 大学 本科生毕业设计 姓名:学号: 学院: 专业: 设计题目:焦化厂硫铵工段设计 指导教师:职称:教授 年月

中国矿业大学毕业设计任务书 学院专业年级学生姓名 任务下达日期: 毕业设计日期: 毕业设计题目:120万吨焦化厂硫铵工段设计 毕业设计主要内容和要求: 1.按照设计规模并根据焦化设计规范的要求,对焦化厂硫铵工段的生产进 行工艺论证,确定工艺流程。 2.根据工艺流程和设计规范进行工艺物料平衡,水平衡和热量平衡计算, 根据计算结果进行设备选型。 3.对硫铵工段的生产设备和工艺管道进行设计布置,绘制硫铵生产的工艺 流程图,总平面布置图,设备与工艺管道平面图和立体图,绘制一张主要设备的装配图。 4.根据生产要求,对硫铵工段设计的非工艺技术部分提出设计要求,根据 岗位设置与岗位操作编制岗位人员编制。 5.进行硫铵工段的建设投资估算和产品生产成本的经济技术分析。 6.编制设计说明书。 院长签字:指导教师签字:

指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:指导教师签字: 年月日

评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:评阅教师签字: 年月日

大学毕业设计答辩及综合成绩

内容摘要 本设计为年产焦炭120万吨焦化厂回收车间硫铵工段的工艺设计,该焦化厂拟建于徐州市西北郊区.本设计内容包括:生产原理、工艺流程、计算及设备的选型、工艺布置、操作规程、成本估算、经济分析等。 本设计采用技术成熟的饱和器法中半直接法来回收煤气中的氨,工艺流程如下:从冷凝工段来得煤气首先进入煤气预热器,然后进入饱和器,在饱和器内,煤气中的氨与硫酸反应生产硫铵,硫铵经后续操作分离,从饱和器出来的煤气经除酸器后送往粗苯工段。 工艺计算包括饱和器的物料和热量平衡计算,通过计算来确定母液的适宜温度和煤气预热温度。通过对主要设备如饱和器、除酸器、煤气预热器、沸腾干燥器、蒸氨塔、循环泵、结晶泵等的计算。 同时根据本设计的规模,对工段的工艺布置原则作了简要说明,对工段生产操作也作了简要说明,对非工段部分提出了一些具体要求,通过岗位操作定员知道本工段需要职工人员数。 根据本设计的规模,对投资和赢利情况作了估算。 最后,给出了图纸目录及说明。 本设计在老师的悉心指导下,同学的帮助下完成,在此表示感谢!!!

电解法烧碱成本核算规程

电解法烧碱成本核算规程 为了统一烧碱产品成本核算方法,提高氯碱成本核算质量,便于各企业之间对比分析,加强成本管理,不断降低成本,提高经济效益,根据国务院颁发的《国营企业成本管理条例》和财政部的有关规定,结合电解法烧碱的生产特点,制定本规程。 一、总则 (一)按月结算成本。以每月一日到月未的最后一天为一个成本计算期。 (二)按实际消耗数据计算实际成本。 (三)发生的成本费用,按各步实际受益分配为原则,对共同性费用,采用合理的比例进行分配。 (四)采用平行结转分步法进行核算,隔膜法烧碱分盐水精制、电解、蒸发和固碱四步计算成本,水银法烧碱分盐水精制、电解和固碱三步计算成本,并按联产品分离率进行碱、氯、氢成本分离(盐水精制和电解也可以合并为一步计算)。 (五)加强定额管理、原始记录和计量等基础工作,建立和健全各项物资的计量、检验、收发、领退和清查盘点制度,为成本核算提供确切的数据。 (六)严格执行国家统一规定的成本开支范围和开支标准,未经批准,企业不得自行扩大开支范围和提高开支标准。 二、成本项目 1.原材料; 2.燃料和动力; 3.工资; 4.提取的职工福利基金; 5.车间经费; 6.扣除联产品; 7.企业管理费。 1-5项之和为分离前车间成本。 分离前车间成本减第6项,为烧碱分离后车间成本。 分离后车间成本加第7项,为烧碱工厂成本, 三、原材料、燃料和动力的计算 (一)原材料耗用量的计算 原材料是指生产过程中参加化学反应,并直接构成产品实体的或有助于产品形成所耗用的各种材料。 1.原盐:原盐是构成烧碱实体的主要原料,由于原盐的货源不同,氯化钠的含量不同,应按实际投料量中氯化钠的平均含量折算成100%计算单耗。 2.水:烧碱生产用水作辅助材料核算。外购水的耗用是以水表计量为准。为了反映水的利用程度,企业应加强循环水的计量,单独计算循环水的单耗和成本。 3.纯碱、盐酸、氯化钡:均按当月实际耗用量计算。 4.自用碱(水银法烧碱用):按本月实际耗用量计算。 5.水银:按当月实际补充的水银量计算。

烧碱、PVC生产工艺摘要

氯碱公司烧碱、PVC生产工艺摘要 一、烧碱生产工艺 包括一次盐水、二次盐水及电解、氯氢处理、氯化氢合成及盐酸、液氯及包装、蒸发及固碱等工段。 生产32%烧碱、50%烧碱、99%片碱、液氯、高纯盐酸、副产次氯酸钠、稀硫酸、为氯乙烯生产提供合格的氯化氢气体。 1.一次盐水工段 本工段任务是经过化学方法和物理方法去除原盐中Ca、Mg 等可溶性和不溶性杂质、有机物,为二次盐水及电解工序输送合格的一次盐水。 2.二次盐水及电解 二次盐水及电解是烧碱工序的核心,任务是在电解槽中生产出32%烧碱产品,氢气、氯气送氯氢处理工段,淡盐水返回一次盐水工序化盐。其中电解工序岗位环境被办公室人员所熟知,氯碱公司的电解槽(两期)现已成为集团标准参观路线的重要部分。 3.氯氢处理工段 该工段包括氯气处理、氢气处理、事故氯气吸收。目的是分别将电解工段生产的氯气和氢气进行冷却、干燥并压缩输送到下游工段,同时吸收处理事故状态下产生的氯气,副产次氯酸钠。 4.液氯及包装工段 液氯工段的任务是将平衡生产的部分富余氯气进行压缩、

液化并装瓶。通常根据氯气压缩机压力的不同,将氯气液化方式分为高压法、中压法和低压法三种。 5.氯化氢合成及盐酸 本工段任务是将氯氢处理工段来的氯气和氢气,在二合一石墨合成炉内进行燃烧,合成氯化氢气体,经冷却后送至氯乙烯工序。从液氯来的液化尾氯气与氢气进入二合一石墨合成炉,生成氯化氢气体。经石墨冷却器冷却,再经两级降膜吸收器和尾气塔,用纯水吸收,生成31%的高纯盐酸供电解工段使用或对外销售。 6.蒸发及固碱工段 本工段任务是将电解工段生产的部分32%烧碱浓缩为50%烧碱和99%片碱。采用世界先进的瑞士博特公司降膜工艺及设备,降膜法生产片碱的能耗低于国内传统的大锅法,而且生产环境好、连续稳定便于控制。 二、PVC生产工艺 主要分为制备乙炔、合成氯乙烯、氯乙烯聚合三个主要工序。 1.乙炔发生 主要分为电石破碎、乙炔发生、乙炔清净和渣浆处理三部分。 电石破碎:将合格的原料电石,通过粗破机和细破机进行破碎处理。 乙炔发生:破碎合格的原料电石,经准确计量后,投入到乙炔发生器内进行水解反应,制成粗乙炔气体,供清净工序生

离子膜烧碱生产工艺浅析

龙源期刊网 https://www.doczj.com/doc/9317124205.html, 离子膜烧碱生产工艺浅析 作者:许明 来源:《中国化工贸易·上旬刊》2017年第03期 摘要:离子膜法生产烧碱是目前世界上最先进的制碱技术,国内许多氯碱企业虽然也发 现了成套引进的生产工艺存在某些工艺设计不合理、原材料及能源浪费等问题,但由于氯碱生产属于高危生产行业,且离子膜烧碱生产系统自动化程度高、联锁点多、技术复杂,一旦出现失误极易造成严重的安全环保事故和巨大的经济损失等原因,一直没有研究开发出有效的解决办法,致使我国的离子膜烧碱生产工艺一直无大的改进或实质性进展。本文分析了离子膜烧碱生产工艺。 关键词:离子膜;能耗;烧碱;生产工艺 离子膜电解法又称膜电槽电解法,是利用阳离子交换膜将单元电解槽分隔为阳极室和阴极室,使电解产品分开的方法。离子膜电解法是在离子交换树脂(见离子交换剂)的基础上发展起来的一项新技术。利用离子交换膜对阴阳离子具有选择透过的特性,容许带一种电荷的离子通过而限制相反电荷的离子通过,以达到浓缩、脱盐、净化、提纯以及电化合成的目的。这项技术已经用于氯碱的生产,海水和苦咸水的淡化,工业用水和超纯水的制备,酶、维生素与氨基酸等药品的精制,电镀废液的回收,放射性废水的处理等方面,其中应用最广泛、成效最显著的是氯碱工业。在氯碱工业中,利用阳离子交换膜电解槽电解食盐或氯化钾水溶液来制造氯气、氢气和高纯度的烧碱(氢氧化钠)或氢氧化钾。 1 离子膜烧碱生产工艺 1.1 配水 在电解的工序中,需要脱离掉淡盐水中多余的硫酸根。被输送到一次盐水工序的淡盐水包含两个部分:第一部分便是流经自动控制的装置调节出的盐水;第二部分是存储在储槽中的上清液(已经沉淀处理)。从其它的工序中回收出来的水,调节所用的水和盐泥中排滤出的滤液,经过一定比例的调和就形成了化盐水。 1.2 化盐和盐水的精制 把化盐水的温度调到适合,在盐池的底部经过逆流的方式接触到原盐,在逆流的水流中 添加氢氧化钠溶液同液体中的镁离子发生化学反应,产生沉淀氢氧化镁而被分离出去,有机质也被逐步的分解为较小的分子。经过混合器加压后的粗盐水,会进入预处理器中。在盐水中的小分子和悬浮状的物质就会以沉淀的形式被除去。留在反应槽里面的清盐水经过膜分离之后,合格的还要进行第二次的盐水再精制。螯合树脂就是二次精制中必备的药品。过滤后的一次盐

电解法制烧碱联合成..

电解法制烧碱联合成本分配方法的探讨 (一) 摘要氯碱行业目前遵循的《电解法烧碱成本核算规程》已不适当,主要反映在联合成本分配方法上,本文对这一问题进行了探讨,可变现净值法可能更适合电解法制烧碱联合成本的分配。 关键词联合成本分配可变现净值法 电解食盐水生产烧碱的工艺过程大致可分为:盐水精制、电解、蒸发、氯处理、氢处理、氯气液化等。 基本的化学反应方程式2Nacl+2H2O →2NaOH+Cl2↑+H2↑ 电解工序是联产品的分离点,电解以后分离出三种产品烧碱、氯气和氢气。烧碱经蒸发等工序可以生产出不同浓度、不同形状的产品,如30%液碱、42%液碱、固碱、片碱等碱产品;氯气经氯处理等工序生产出各种氯产品,如液氯、盐酸、三氯化磷、二氯乙烷、聚氯乙烯、四氯化碳等;氢气经氢处理等工序生产出不同的氢产品或作为燃料燃烧。 在进行成本核算时,相应的成本分为分离前制造成本(即联合成本)和分离后制造成本。为了对外提供财务报告,遵循配比原则,分离前的制造成本需按一定的方法分配到产品中去,烧碱生产中应该采取什么方法来分配联合成本呢?这正是本文探讨的内容。 1 目前烧碱成本核算存在的主要问题 目前氯碱行业执行的是94年颁布的《电解法烧碱成本核算规程》,该规程延续了原化工部84年颁布的成本核算规程中关于联产品成本核算的方法,即按分离率分配联合成本,仅对分离率进行了修订,该规程规定:隔膜电解法烧碱成本分离率为烧碱60%、氯气36%、氢气4%,离子膜电解法烧碱成本分离率为烧碱74%、氯气23%、氢气3%。烧碱产品成本核算采用的是总成本减分离点氯气、氢气联产品成本等于烧碱产品成本。该规程存在的主要问题有: 1.1 氯气、氢气作为烧碱成本项目的减项来计算烧碱产品成本的核算方法目前已不适当 联产品是具有相对较高销售价值,在分离点之前不能被分别确认为单个产品的产品。当一个能够生产出两种或更多产品的单一生产过程只生产一种具有相对较高销售价值的产品时,这种产品叫主产品。副产品是相对而言只有较低的销售价值的产品。废品是具有极低的销售价值的产品。主产品、联产品与副产品、废品的分类会随环境、时间变化而变化。主产品、联产品与副产品、废品的会计核算是

烧碱的制作工艺流程

烧碱的制备工艺简介 烧碱的制备方法有两种:苛化法和电解法。现代工业主要通过电解饱和NaCl溶液来制备烧碱。电解法又分为水银法、隔膜法和离子膜法,我国目前主要采用的是隔膜法和离子膜法,这二者的主要区别在于隔膜法制碱的蒸发工序比离子膜法要复杂,而离子膜法多了淡盐水脱氯及盐水二次精制工序。 目前国内的烧碱生产主要采用的是离子膜电解法生产烧碱,我们主要针对离子膜电解法介绍烧碱的制作工艺,并简要讨论工艺中的能耗情况。原料为粗盐(含大量杂质的氯化钠),根据生产工艺中的耗能情况,将烧碱制法分为整流、盐水精制、盐水电解、液碱蒸发、氯氢处理、固碱生产和废气吸收工序等七个流程。 据测算,电解法烧碱生产吨碱综合能耗在各工序的分布如下: 整流2.0%;盐水精制3.9% ; 电解53.2%;氯氢处理1.2%;液碱蒸发25.1%;固碱生产14.6%。从上述可知,电解和液碱蒸发是主要耗能工序。电解工序中的电耗约为吨碱电耗的90%,碱蒸发中的蒸汽消耗占吨碱蒸汽消耗的74%以上。 1-整流2-盐水精制3-电解4-氯氢处理 5-液碱蒸发 6-固碱生产 图1 烧碱工艺总流程示意图 1整流: 整流是将电网输入的高压交流电转变成供给电解用的低压直流电的工序,其能耗主要是变压、整流时造成的电损,它以整流效率来衡量。整流效率主要取决于采用的整流装置,整流工序节能途径是提高整流效率。当然减少整流器输出到电解槽之间的电损也是不容忽略的。 2盐水精制: 将工业盐用水溶解饱和并精制(除去Ca2+、M g2+、S 02-4等有害离子和固体杂质)获得供电解用精制饱和盐水,是盐水精制工序的功能。 一次盐水精制: 采用膜过滤器(不预涂) Ca2++CO32-→CaCO3 Mg2++2OH-→MgOH2

硫铵工段操作规程(一)

硫铵工段操作规程(一) 一、工艺流程简述 煤气鼓风机送来的煤气进入喷淋式硫铵饱和器。煤气在饱和器上段分两股进入环形室,与循环母液逆流接触,其中的氨被母液中的硫酸吸收,生成硫酸铵。脱氨后的煤气在饱和器的后室合并成一股,经小母液循环泵连续喷洒洗涤后,沿切线方向进入饱和器内旋风式除酸器,分出煤气中所夹带的酸雾,再经气液分离器进一步除去酸雾后,送至终冷洗苯工段。 饱和器下段上部的母液经大母液循环泵连续抽出送至饱和器上段环形喷洒室循环喷洒,喷洒后的循环母液经中心降液管流至饱和器的下段。在饱和器的下段,晶核通过饱和介质向上运动,使晶体长大,并引起晶粒分级。当饱和器下段硫铵母液中晶比达到25%-40%(v%)时,用结晶泵将其底部的浆液抽送至室内结晶槽。饱和器满流口溢出的母液自流至满流槽,再用小母液循环泵连续抽送至饱和器的后室循环喷洒,以进一步脱出煤气中的氨。 饱和器定期加酸加水冲洗时,多余母液经满流槽满流到母液贮槽;加酸加水冲洗完毕后,再用小母液循环泵逐渐抽出,回补到饱和器系统。 设置母液加热器对母液进行加热,可以提高硫铵质量,当饱和器母液系统水不平衡(水分过剩)时,可通过母液加热器对母液进行加热,使多余的水分从煤气系统中带走,以维持系统的水平衡。 室内结晶槽中的硫铵结晶积累到一定程度时,将结晶槽底部的硫铵浆液经视镜控制排放到硫铵离心机,经离心机离心分离后,硫铵结晶从硫铵母液中分离出来。从离心机分出的硫铵结晶经溜槽排放到振动流化床干燥器,经干燥、冷却后进入硫铵贮斗。从硫铵贮斗出来的硫铵结晶经半自动称量、包装后送入成品库。 离心机滤出的母液与结晶槽满流出来的母液一同自流回饱和器的下段。干燥硫铵后的尾气经旋风分离器分离大量粉尘后,由引风机抽送至排气气洗净塔,用循环母液喷洒进一步除去残留粉尘,再经雾沫分离器除去夹带的液滴后排放至大气。 硫铵工段所需的93%浓硫酸定期由油库工段送至硫铵工段硫酸高置槽,再经流量控制仪表及视镜加到饱和器系统的满流槽。 在脱硫工段检修时,蒸氨工段的氨汽接入饱合器前煤气中。 艺流程图如下:

烧碱在工业上的制造流程及其由来

烧碱在工业上的制造流程及其由来 烧碱是氢氧化钠的俗称,又可命名为火碱、苛性钠,是一种具有很强腐蚀性的强碱,一般为片状或颗粒形态,易溶于水(溶于水时放热)并形成碱性溶液,另有潮解性,易吸取空气中的水蒸气和二氧化碳。工业品含有少量的氯化钠和碳酸钠,是白色不透明的晶体。有块状,片状,粒状和棒状等,可与酸类起中和作用而生成盐和水。 工业上生产烧碱的方法有苛化法和电解法两种。苛化法按原料不同分为纯碱苛化法和天然碱苛化法;电解法可分为隔膜电解法和离子交换膜法。 1、纯碱苛化法 将纯碱、石灰分别经化碱制成纯碱溶液、化灰制成石灰乳,于99~101℃进行苛化反应,苛化液经澄清、蒸发浓缩至40%以上,制得液体烧碱。将浓缩液进一步熬浓固化,制得固体烧碱成品。苛化泥用水洗涤,洗水用于化碱。 2、天然碱苛化法 天然碱经粉碎、溶解(或者碱卤)、澄清后加入石灰乳在95~100℃进行苛化,苛化液经澄清、蒸发浓缩至NaOH浓度46%左右、清液冷却、析盐后进一步熬浓。制得固体烧碱成品。苛化泥用水洗涤,洗水用于溶解天然碱。 3、隔膜电解法 将原盐化盐后加入纯碱、烧碱、氯化钡精制剂除去钙、镁、硫酸根离子等杂质,再于澄清槽中加入聚丙烯酸钠或苛化麸皮以加速沉淀,砂滤后加入盐酸中和,盐水经预热后送去电解,电解液经预热、蒸发、分盐、冷却,制得液体烧碱,进一步熬浓即得固体烧碱成品。盐泥洗水用于化盐。 4、离子交换膜法

将原盐化盐后按传统的办法进行盐水精制,把一次精盐水经微孔烧结碳素管式过滤器进行过滤后,再经螫合离子交换树脂塔进行二次精制,将二次精制盐水电解,于阳极室生成氯气,阳极室盐水中的Na+通过离子膜进入阴极室与阴极室的OH生成氢氧化钠,H+直接在阴极上放电生成氢气。电解过程中向阳极室加入适量的高纯度盐酸以中和返迁的OH-,阴极室中应加入所需纯水。在阴极室生成的高浓度纯烧碱,可以直接作为液碱产品,也可以进一步熬浓,制得周体烧碱成品。 枣庄金灶沐商贸有限公司产品品质严格按照 ISO9000质量管理体系运行,使产品品质不断得到提升,功能不断改进,使得企业90%以上的产品已进入精细化工领域。在新产品开发方面,研制成功的粉状硅酸钠、偏硅酸钠和透明液体硅酸钠等产品已相继进入国际市场,其中,偏硅酸钠已经成为企业新的经济增长点,去年前五个月出口为280吨,而今年同期增加到560吨,增长了86%。目前,公司的新产品不仅畅销国际市场,而且已经取代了进口产品。 详情可查:https://www.doczj.com/doc/9317124205.html,

硫铵工段工艺技术操作规程

硫铵工段工艺技术操作规程 一.工艺简介 来自冷鼓工段的粗煤气经煤气预热器,用~0.5MPa蒸汽加热至60℃-70℃进入硫铵饱和器上段的喷淋室,在此煤气分成两股沿饱和器内壁与除酸器外壁的环形空间流动,循环母液逆向喷洒,使煤气与母液充分接触,煤气中的氨被母液中的硫酸吸收,生成硫酸铵结晶。然后煤气沿切断方向进入硫铵饱和器内的除酸器,分离煤气中夹带的酸雾滴,再经旋流板除酸器进一步除酸后送往洗脱苯工段。煤气进入除酸器前,用来自喷洒泵的母液进行二次喷洒,以进一步除去煤气中的氨。 在硫铵饱和器内发生的主要反应如下: H2SO4+NH3→NH4HSO4 (1) H2SO4+2NH3→(NH4)2SO4 (2) NH4HSO4+NH3→(NH4)2SO4 (3) 在硫铵饱和器下段结晶室上部的母液,用母液循环泵连续抽送至上段喷淋室进行喷洒,吸收煤气中的氨,并循环搅动母液改善硫铵的结晶过程。 硫铵饱和器母液中不断有硫铵结晶生成,且沿饱和器的中心管进入下段的结晶室,用结晶泵将其连同一部分母液送至结晶槽,在此分离的硫铵结晶及少量母液排放到离心机内进行离心分离,滤除母液,并用热水洗涤结晶降低成品酸度,保证成品质量。 离心机分离的母液与结晶槽溢流出来的母液一同自流回硫铵饱和

器。 从离心机卸出硫铵结晶,由螺旋输送机运至振动流化床干燥器,经热空气干燥,冷空气冷却后,进入硫铵贮斗,然后经重力式包装磅秤称量包装,用手推车运入成品库。 振动流化床干燥器用的热空气是由送风机从室外吸入空气经热风器用蒸汽加热至130℃-140℃后送入,开车时器内温度应高于正常操作温度10℃左右,在加料前15min往器内送入适量热风加热升温。冷空气由冷风机从室外吸入后送入干燥器,将热的硫铵颗粒降温冷却,以防结块。振动流化床干燥器排出的热空气经旋风除尘器捕集夹带的细粒硫铵结晶后,由排风机抽至水浴除尘器洗涤后排入大气。旋风除尘器捕集的细粒硫铵定期排入硫铵贮斗,尾气由排风机送至水浴除尘器,进行湿法再除尘,最后排入大气。 外购的92.5%的硫铵先卸入卸酸槽中后经卸酸槽液下泵送至硫铵贮槽中贮存,再由硫酸泵送至硫酸高位槽,经控制阀自流入满流槽,调节饱和器酸度。 硫铵饱和器是周期性的连续操作设备,当定期大加酸、补水并用水冲洗硫铵饱和器时,所形成的大量母液从硫铵饱和器满流口溢出,通过插入液封内的满流管流入满流槽,再经满流槽满流至母液贮槽暂时贮存。满流槽及母液贮槽液面上的酸焦油可用人捞出。而在两次大加酸的正常生产过程中,又将所贮存的母液用母液喷洒泵送回硫铵饱和器使用。此外,母液贮槽还可供饱和器检修,停工时贮存饱和器内的母液之用。

烧碱生产实用实用工艺及流程

学习资料注意保存 烧碱(学名氢氧化钠)是可溶性的强碱。纯碱(学名碳酸钠)实际上是个盐,由于它在水中发生水解作用而使溶液呈碱性,再由于它和烧碱有某些相似的性质,所以它与烧碱并列,在工业上叫做“两碱”。 烧碱和纯碱都易溶于水,呈强碱性,都能提供Na+离子。这些性质使它们被广泛地用于制肥皂、纺织、印染、漂白、造纸、精制石油、冶金及其他化学工业等各部门中。 普通肥皂是高级脂肪酸的钠盐,一般是用油脂在略为过量的烧碱作用下进行皂化而制得的。 如果直接用脂肪酸作原料,也可以用纯碱来代替烧碱制肥皂。 印染、纺织工业上,也要用大量碱液去除棉纱、羊毛等上面的油脂。生产人造纤维也需要烧碱或纯碱。例如,制粘胶纤维首先要用18~20%烧碱溶液(或纯碱溶液)去浸渍纤维素,使它成为碱纤维素,然后将碱纤维素干燥、粉碎,再加 最后用稀碱液把磺酸盐溶解,便得到粘胶液。再经过滤、抽真空(去气泡),就可用以抽丝了。

精制石油也要用烧碱。为了除去石油馏分中的胶质,一般在石油馏分中加浓硫酸以使胶质成为酸渣而析出。经过酸洗后,石油里还含有酚、环烷酸等酸性杂质以及多余的硫酸,必须用烧碱溶液洗涤,再经水洗,才能得到精制的石油产品。 在造纸工业中,首先要用化学方法处理,将含有纤维素的原料(如木材)与化学药剂蒸煮制成纸浆。所谓碱法制浆就是用烧碱或纯碱溶液作为蒸煮液来除去原料中的木质素、碳水化合物和树脂等,并中和其中的有机酸,这样就把纤维素分离出来。 在冶金工业中,往往要把矿石中的有效成分转变成可溶性的钠盐,以便除去其中不溶性的杂质,因此,常需要加入纯碱(它又是助熔剂),有时也用烧碱。例如,在铝的冶炼过程中,所用的冰晶石的制备和铝土矿的处理,都要用到纯碱和烧碱。又如冶炼钨时,也是首先将精矿和纯碱焙烧成可溶的钨酸钠后,再经酸析、脱水、还原等过程而制得粉末状钨的。 在化学工业中,制金属钠、电解水都要用烧碱。许多无机盐的生产,特别是制备一些钠盐(如硼砂、硅酸钠、磷酸钠、重铬酸钠、亚硫酸钠等等)都要用到烧碱或纯碱。合成染料、药物以及有机中间体等也要用到烧碱或纯碱。 烧碱生产工艺

煤气净化工艺工艺流程

煤气净化工艺工艺流程及主要设备煤气净化设施 1概述 煤气净化车间生产规模按2×65 孔5.5m 捣固焦炉焦炉年产130万t干全焦配套设计。焦炉煤气处理量为75300m3/h(标况)。 煤气净化车间由冷凝鼓风工段、脱硫工段、硫铵工段(含蒸氨系统)、终冷洗涤及粗苯蒸馏工段、油库及其相关的生产辅助设施组成。 2设计原则 对煤气净化车间本着经济、实用、可靠的原则,在满足国家环保、 职业卫生与安全、能源等法规要求的前提下,尽量简化工艺流程,并 合理配备工艺装备,以节省投资和工厂用地。 3设计基础数据 a)煤气量基础数据 焦炉装煤量(干基):206.98t/h 煤气产量:340Nm3/t(干煤) b) 煤气净化指标 表1 煤气净化指标表 4原材料及产品指标

4.2硫酸铵—符合GB535-1995一级品 4.4洗油指标

4.6氢氧化钠指标(符合GB/T11199-2006)

煤气净化车间对荒煤气的初步冷却采用三段冷却工艺,并在煤气鼓风机前设置蜂窝式电捕焦油器脱除煤气中的焦油雾;随后煤气脱硫采用以PDS为催化剂的湿式催化氧化法脱硫工艺;煤气脱氨采用喷淋式饱和器法生产硫铵工艺;煤气脱苯采用焦油洗油洗苯工艺,富油脱苯采用管式炉加热及带萘油侧线的单塔生产粗苯工艺。 其煤气净化主要生产工艺如下: 焦炉来荒煤气→初冷器→电捕焦油器→煤气鼓风机→预冷塔→ 脱硫塔→煤气预热器→喷淋式饱和器→终冷塔→洗苯塔→净煤气供 焦化厂自用及外送。 煤气净化工艺流程说明 1.冷凝鼓风工段 ①工艺流程 来自焦炉82℃的荒煤气,与焦油和氨水沿吸煤气管道至气液分离器,气液分离后荒煤气由上部出来,进入3台并联操作的横管初冷器(2开1备)。在此分三段段冷却,初冷器上段为余热采暖段,用于冬季厂前区余热采暖。采暖水供水温度为65℃,回水温度为50℃。中段用32℃循环水,下段用16℃低温水将煤气冷却至22℃。由横管初冷器下部排出的煤气,经过折流板捕雾器后进入电捕焦油器,除掉煤气中夹带的焦油,再由鼓风机压送至脱硫工段。 为保证横管初冷器的冷却效果,在其上、下段连续喷洒焦油、氨水混合液,并在其顶部用热氨水定期冲洗,以清除煤气初冷器内部横管外壁上的焦油、积萘等杂质。 初冷器上段排出的冷凝液经上段冷凝液水封槽自流入上段冷凝液循环槽,并经上段冷凝液循环泵进行循环喷洒,多余部分送至机械化氨水澄清槽。初冷器下段排出的冷凝液经下段冷凝液水封槽自流入下段冷凝液循环槽,并经下段冷凝液循环泵进行循环喷洒,多余部分冷凝液满流至上段冷凝液槽。

氯碱生产工艺流程

氯碱生产工艺流程 氯碱系统是由电解,盐水,氯氢,液氯,冷冻,盐酸,漂液,蒸发,循环水组成的系统。其主要流程是盐水生产的精盐水经电解生成主要成分是氢氧化钠,NaCl的电解液和Cl2,H2三种物质。电解液由蒸发经浓缩,并分离其中的NaCl,加水溶解后供盐水工序生产精盐水用。氢氧化钠经冷却沉降后,送成品桶作为成品销售。Cl2在氯氢工序通过洗涤冷却,干燥,压缩输送到液氯,盐酸,PVC,三氯氢硅。氯碱片区主要是送液氯和盐酸。Cl2在液氯经冷冻送来的-35℃冷冻盐水液化为液氯,液氯尾气送盐酸和漂液生产盐酸和漂液用。H2是经氯氢工序洗涤冷却,压缩输送到PVC,三氯氢硅,盐酸。氯碱片区送盐酸,在合成炉与Cl2燃烧生成氯化H2体,经水吸收后生成成品盐酸供销售出售。液氯尾气在漂液生产池中与石灰水生成漂液供销售出售。 氯碱车间工艺流程简述 一.氯碱车间基本概况 电解工艺流程简图: 直流电 H2 2.氯处理工序工艺流程简述: 电解生产70-85℃的湿Cl2,经Cl2洗涤塔用工业水洗涤后,进入Ⅰ段钛冷却器用工业水冷却,再进入Ⅱ段钛冷 却器用+5℃盐水进一步冷却到12-15℃ ,然后进入泡沫干燥塔、泡罩塔用硫酸干燥,干燥后的Cl2经过酸雾捕集器后用Cl2压缩机压缩输送到各用氯岗位。 Cl2处理工艺流程简图: 电解来湿Cl2

处理工艺流程简述: 电解生产80℃的湿H2经Ⅰ段、Ⅱ段H2洗涤塔用工业水洗涤后,送H2压缩机加压后经过Ⅰ段H2冷却器用工业水对其进行冷却,再进入Ⅱ段H2冷却器用+5℃盐水进行冷却到12℃,经过水捕雾器进入H2分配台至各用氢单位。 H2处理工艺流程简图: 膜过滤盐水工艺流程简述: 蒸发离心机岗位按比例用冷凝水加入卤水化得过饱和的低芒盐水直接输送到化盐池,加入除硝盐水制得饱和粗盐水。(温度约55±2℃,NaCl>L)粗盐水由化盐池自流至折流槽,加入Na2CO3进入前反应槽,充分反应后的粗盐水用加压泵送至气水混合器中与空气混合后进入加压溶气罐,再进入预处理器,并在预处理器进口加入三氯化铁溶液,经过预处理除去盐水中的氢氧化镁和有机物。处理后的粗盐水自流进入后反应槽A,并加入精制剂Na2CO3进行反应。反应后的盐水溢流至后反应槽B,充分反应后的盐水流入到中间槽,用泵输送到HVM膜过滤器自动过滤,过滤后的精盐水流流入3#折流槽由盐酸高位槽加入31%的盐酸中和过剩的氢氧化钠使PH值达到要求后流入精盐水贮槽,用精

相关主题
文本预览
相关文档 最新文档