当前位置:文档之家› 不同信号的小波变换去噪方法

不同信号的小波变换去噪方法

不同信号的小波变换去噪方法
不同信号的小波变换去噪方法

小波分析在信号去噪中的应用(最新整理)

小波分析在信号去噪中的应用 摘要:利用小波方法去噪,是小波分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对几种去噪方法不同阀值的选取比对分析和基于MATLAB 信号去噪的仿真试验,比较各种阀值选取队去噪效果的影响。 关键词:小波去噪;阀值;MATLAB 工具 1、 小波去噪模型的建立 如果一个信号被噪声污染后为,那么基本的噪声模型就可以表示为()f n ()s n ()()() s n f n e n σ=+式中:为噪声;为噪声强度。最简单的情况下为高斯白噪声,且=1。()e n σ()e n σ小波变换就是要抑制以恢复,从而达到去除噪声的目的。从统计学的()e n ()f n 观点看,这个模型是一个随时间推移的回归模型,也可以看作是在正交基上对函数无参估计。小波去噪通常通过以下3个步骤予以实现: ()f n a)小波分解; b)设定各层细节的阈值,对得到的小波系数进行阈值处理; c)小波逆变换重构信号。 小波去噪的结果取决于以下2点: a)去噪后的信号应该和原信号有同等的光滑性; b)信号经处理后与原信号的均方根误差越小,信噪比越大,效果越好。 如何选择阈值和如何利用阈值来量化小波系数,将直接影响到小波去噪结果。 2、小波系数的阈值处理 2.1由原始信号确定阈值 小波变换中,对各层系数降噪所需的阈值一般是根据原信号的信噪比来决定的。在模型里用这个量来表示,可以使用MATLAB 中的wnoisest 函数计算得到σσ值,得到信号的噪声强度后,根据下式来确定各层的阈值。 thr =式中n 为信号的长度。 2.2基于样本估计的阈值选取 1)无偏似然估计(rigrsure):是一种基于Stein 无偏似然估计原理的自适应阈值选择。对于给定的阈值T ,得到它的似然估计,再将似然T 最小化,就得到了所选的阈值,这是一种软件阈值估计。 2)阈值原则(sqtwlolg):固定阈值T 的计算公式为。 3)启发式阈值原则(heursure):是无偏似然估计和固定阈值估计原则的折

基于小波变换的语音信号去噪(详细)

测试信号处理作业 题目:基于小波变换的语音信号去噪 年级:级 班级:仪器科学与技术 学号: 姓名: 日期:2015年6月

基于小波变换的语音信号去噪 对于信号去噪方法的研究是信号处理领域一个永恒的话题。经典的信号去噪方法,如时域、频域、加窗傅立叶变换、维纳分布等各有其局限性,因此限制了它们的应用范围。小波变换是八十年代末发展起来的一种新时-频分析方法,它在时-频两域都具有良好的局部化特性;并且在信号去噪领域获得了广泛的应用。 目前已经提出的小波去噪方法主要有三种:模极大值去噪、空域相关滤波去噪以及小波阈值去噪法。阈值法具有计算量小、去噪效果好的特点,取得了广泛的应用。然而在阈值法中,阈值的选取直接关系到去噪效果的优劣。如果阈值选取过小,那么一部分噪声小波系数将不能被置零,从而在去噪后的信号中保留了部分噪声信息;如果阈值选的偏大,则会将一部分有用信号去掉,使得去噪后的信号丢失信息。 1、语音信号特性 由于语音的生成过程与发音器宫的运动过程密切相关,而且人类发音系统在产生不同语音时的生理结构并不相同,因此使得产生的语音信号是一种非平稳的随机过程(信号)。但由于人类发生器官变化速度具有一定的限度而且远小于语音信号的变化速度,可以认为人的声带、声道等特征在一定的时间内(10- 30ms)基本不变,因此假定语音信号是短时平稳的,即语音信号的某些物理特性和频谱特性在10-30ms的时间段内近似是不变的,具有相对的稳定性,这样可以运用分析平稳随机过程的方法来分析和处理语音信号。在语音增强中就是利用了语音信号短时谱的平稳性。 语音信号基本上可以分为清音和浊音两大类。清音和浊音在特性上有明显的区别,清音没有明显的时域和频域特性,看上去类似于白噪声,并具有较弱的振幅;而浊音在时域上有明显的周期性和较强的振幅,其能量大部分集中在低频段内,而且在频谱上表现出共振峰结构。在语音增强中可以利用浊音所具有的明显的周期性来区别和抑制非语音噪声,而清音由于类似于白噪声的特性,使其与宽带平稳噪声很难区分。 由于语音信号是一种非平稳、非遍历的随机过程,因此长时间时域统计特性对语音信号没有多大的意义,而短时谱的统计特性对语音信号和语音增强有着十分重要的作用。语音信号短时谱幅度统计特性的时变性,使得语音信号的分析帧在趋于无穷大时,根据中心极限定理,其短时谱的统计特性服从高斯(Gauss)分布,而在实际应用时只能在有限帧长下进行处理,因此,在有限帧时这种高斯分布的统计特性是一种近似的描述,这样就可以作为分析宽带噪声污染的带噪语音信号增强应用时的前提和假设。

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

图像去噪方法

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声(一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在),但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差(在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。)最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。

小波变换去噪论文

摘要 小波变换归属于数学领域的调和函数的范畴,是调和分析几十年来的一个突破性进展,并且在很多科技领域内得到了广泛应用。本文旨在探讨小波变换理论,并结合专业中的地震信号去噪展开研究。 论文以小波变换为核心,首先介绍了论文研究的目的、意义及主要研究内容,由此引出了小波变换理论,并对其原理做了详细阐述。这不仅包括连续小波,离散小波,多分辨率分析方法还包括与传统傅氏变换等的对比,从而在理论上明确其性能特点的优越性。本文选定了小波阈值去噪方法。由此结合给定的信号应用matlab 进行处理,并通过对比处理结果为本文后面的处理工作选定合适的参数。从所做例子来看,小波阈值处理达到了很好的去噪效果。论文应用matlab 模拟微地震信号,结合小波阈值去噪方法对微地震信号进行了处理。在文中给出了信号的原始模拟信号,加噪信号及处理后的效果图,从图中可以看出,小波阈值去噪完成了模拟微地震信号的去噪处理。另外,对实际的微地震资料进行了试处理,达到了去噪的目的。 关键词:小波变换;去噪;微地震;分解;重构

ABSTRACT The wavelet transform attributables to the mathematical field of harmonic function areas, it’s a breakthrough progress, and in many areas of science and technology has been widely used. This study aims to explore wavelet transform theory, and the combination of professional study of seismic signal de-noising. Papers to wavelet transform at the core, first of all, on paper the purpose of thestudy, the significance and major research content, which leads to the wavelettransform theory, and its principles expounded in detail.This includes not only thecontinuous wavelet, wavelet, multire solution analysis methods include traditional Fourier transform contrast, in theory, clear the superiority of its performance characteristics. The paper selected through comparative study of wavelet de-noising threshold method.This combination of a given signal processing applications matlab,and by comparing the results of this paper to the back of the appropriate handling of the selected parameters. From doing example, wavelet thresholding to deal with a very good de-noising effect. Papers matlab simulated micro-seismic signal applications, wavelet de-noising threshold with this method micro-seismic signal processing. In this paper the original analog signal, the signal plus noise and the effects of treatment plans, as can be seen from Fig, wavelet de-noising threshold completed micro-seismic signal de-noising analog processing. Key words: wavelet;de-noising;micro-seismic;decompose;compose

如何学习数字信号处理

如何学好数字信号处理课程 《数字信号处理》是相关专业本科生培养中,继《信号与系统》、《通信原理》、《数字逻辑》等课程之后的一门专业技术课。数字信号处理的英文缩写是DSP ,包括两重含义:数字信号处理技术(Digital Signal Processing )和数字信号处理器(Digital Signal Processor )。目前我们对本科生开设的数字信号处理课程大多侧重在处理技术方面,由于课时安排和其他一些原因,通常的特点是注重理论推导而忽略具体实现技术的介绍。最后导致的结果就是学生在学习了数字信号处理课程之后并不能把所学的理论知识与实际的工程应用联系起来,表现在他们做毕业设计时即使是对学过的相关内容也无法用具体的手段来实现,或者由于无法与具体实际相挂钩理解而根本就忘记了。我相信,我们开设本课程的根本目的应该是让学生在熟练掌握数字信号处理的基本原理基础上,能结合工程实际学习更多的DSP 实现技术及其在通信、无线电技术中的应用技能,这也是符合DSP 本身的二重定义的,学生通过本课程的学习,将应该能从事数字信号处理方面的研究开发、产品维护等方面的技术工作。其实很多学生在大学四年学习过后都有这种反思:到底我在大学学到了什么呢?难道就是一些理论知识吗?他们将如何面对竞争日益激烈的社会呢? 因此,大家在应用MATLAB学习并努力掌握数字信号处理的原理,基本理论的同时,应该始终意识到该课程在工程应用中的重要性,并在课后自学一些有关DSP技术及FPGA技术方面的知识。这样,学习本课程学习的三部曲是:一,学习数字信号处理的基本理论;二,掌握如何用MATLAB 实现一些基本的算法,如FFT ,FIR 和IIR 滤波器设计等;三,选择一种数字信号处理器作为实现平台进行实践学习,比如TI 公司的TMS320C54x 系列芯片,包括该处理器的硬件和软件系统,如Code Composer Studio及像MATLAB Link for Code Composer Studio这样的工具。 在学习数字信号处理的过程中,要注重培养自己的工程思维方法。数字信号处理的理论含有许多研究问题和解决问题的科学方法,例如频率域的分析方法、傅里叶变换的离散做法、离散傅里叶变换的快速计算方法等, 这些方法很好。虽然它们出现在信号处理的专业领域, 但是, 其基本精神是利用事物的特点和规律解决实际问题, 这在各个领域中是相同的。还有, 数字信号处理的理论的产生是有原因的, 这些原因并不难懂, 就是理论为应用服务, 提高使用效率。 例如: 为什么要使用频率域的分析方法?原因是从时间看问题, 往往看到事物的表面, 就像 我们用眼睛看水只能看到水的颜色, 看不到水的基本成分, 同样, 从时间看信号只能看到信号变化的大小和快慢,看不到信号的基本成分; 若采用分解物质的方法, 从成分的角度去看, 用化学分析则能看到水的各种成分, 同样, 用分解信号的方法则能看到信号里的基本成分, 至于基本成分的选择则视哪种基本类型最适合实际信号处理, 这就是频率域的分析方法。 又如: 为什么要采用离散的傅里叶变换?原因很简单, 因为要利用计算机计算傅里叶变换, 而计算机只能计算数据, 不能计算连续变量, 所以必须分离连续的傅里叶变换, 使它成为离散的傅里叶变换。 再如: 为什么要采用离散傅里叶变换的快速计算方法?原因是, 理论上离散傅里叶变换能让计算机分析频谱, 但是, 直接按照离散傅里叶变换的定义计算它, 计算量太大, 实用价值不大; 只有采用巧妙的方法降低计算量, 则离散傅里叶变换才有实用价值,这种巧妙的方法就 是离散傅里叶变换的快速计算方法。降低计算量的巧妙之处在, 离散傅里叶变换的计算量与信号的长度成正比, 科学家想办法将信号分解成为短信号, 分解成为短信号的方法有多种, 只要开动脑筋,我们也是一样可以想出来的。 最后,感谢同学们对我的支持,我会尽我所能,与大家共同探索"数字信号处理"领域的奇妙世界。

基于小波分析的信号去噪技术

基于小波分析的信号去噪技术 [摘要] 介绍了小波变换的基本思想和优点及多分辨率分析的过程, 并在MA TLAB 下利用小波变换工具箱, 编写程序实现信号去噪处理。充分显示了小波变换在处理非平稳信号中的优势。 [关键词] 小波变换 信号去噪 模极大值 李普西兹指数 在通信及计算机过程控制系统中,对信号进行实时采样是很重要的环节。但由于信号在激励、传输和检测过程中,可能不同程度地受到随机噪声的污染,特别在小信号采集和测量中,噪声干扰显得尤其严重。因此,如何消除实际信号中的噪声,从混有噪声的信号中提取有用信息一直是信息学科研究的焦点之一。傅里叶变换是一种经典方法,适用于诸多场合。但由于傅里叶变换是一种全局变换,无法表述信号的时域局部性质,而这种性质恰恰是非平稳信号最根本和最关键的性质。为了更有效地处理非平稳信号,人们提出了小波变换这种新的信号分析理论。小波变换是一种信号的时频分析,它具有多分辨率的特点,可以方便地从混有强噪声的信号中提取原始信号,被誉为分析信号的显微镜。本文主要讨论应用小波变换的理论,利用Matlab 软件在计算机上实现了信号的噪声消除,从混有噪声的实际信号中提取了原始信号,具有非常实用的意义。 1.小波变换与多分辨率分析 设ψ是定义在(-,+)∞∞上能量有限的函数,Ψ构成平方可积信号空间,记为Ψ∈L2(R),则生成函数族{ ab ψ }: 1/2()||()ab t b t a a --ψ=ψ ,0b a -∞<<+∞> (1) Ψ(t)称为小波函数,()ab t ψ由Ψ(t)伸缩和平移生成,为小波基函数。a 为伸缩因子,b 为平移因子。对任一信号()f i ∈L2(R)的连续小波变换可定义为信号与小波基函数的内积: 1/ 2 (();,),||()ab R t b WT f t a b f a dt a --=<ψ>=ψ? (2)

基于小波变换的去噪方法

文章编号:1006-7043(2000)04-0021-03 基于小波变换的去噪方法 林克正 李殿璞 (哈尔滨工程大学自动化学院,黑龙江哈尔滨150001) 摘 要:分析了信号与噪声在小波变换下的不同特点,提出了基于小波变换的去噪方法,且将该去噪算法 用算子加以描述,给出了具体实例.小波变换硬阈值去噪法和软阈值去噪法的性能比较及仿真实验,表明基于小波变换的去噪方法是非常有效的.!关 键 词:小波变换;去噪;奇异性检测;多尺度分析 中图分类号:TN911.7 文献标识码:A Denoising Method Based on Wavelet Transform Lin Ke-zheng Li Dian-pu (Automation Coiiege ,Harbin Engineering University ,Harbin 150001,China ) Abstract :This paper anaiyzes the different characteristics of noise and signai under waveiet transform and proposes the denoising method based on waveiet transform.The denoising aigorithm based on waveiet transform are described with some operators.Some exampies are demonstrated.The performance of denoising with hard and soft threshoid method based on waveiet transform are compared in computer simuiation.The simuiation shows that the denoising method based on waveiet transform is very effective. Key words :waveiet transform ;denoising ;singuiarity detection ;muitiresoiution anaiysis 提取掩没在噪声中的信号是信号处理的一项重要课题.实际的信号总是含有噪声的,当待检测信号的输入信噪比很低,各种噪声幅值大、分布广,而干扰信号又与真实信号比较接近时,用传统的时域或频域滤波往往不能取得预期效果.D.L.Donoho 提出的非线性小波方法从噪声中提取信号 效果最明显[2-5] ,并且在概念上也有别于其它方 法,其主要思想有局部极大值阈值法、全局单一阈 值法[3]和局部SURE 多阈值法[4] .在此基础上,本文首先分析了信号和噪声在小波变换下的不同特 性,据此可有效地从噪声信号检出有用的信号,用算子的形式对基于小波变换的去噪方法进行了统一的描述,并提出了一种可浮动的自适应阈值选取方法. 1 小波分析基础 1.1 信号的小波变换 [1] 设母波函数是!(t ),伸缩和平移因子分别为a 和6,小波基函数!a ,6(t ) 定义为!a , 6(t )=1! a !(t -6 a )(1)式中,6"R ,a "R -{0}. 函数f (t )" 2 (R ) 的小波变换W a ,6(f )定义为 W a ,6(f )==1!a # - f (t )!(t -6 a )d t (2)小波变换W a ,6(f )就是函数f (t )" 2 (R ) 在对应函数族!a ,6(t )上的分解.这一分解成立的前提是母波函数!(t )满足如下容许性条件 !=# 0I ^!(")I 2" d "< (3)式中^!(")是!(t )的傅立叶变换.由小波变换W a ,6(f ) 重构f (t )的小波逆变换# 收稿日期:1999-10-22;修订日期:2000-7-20;作者简介:林克正(1962-),男,山东蓬莱人,哈尔滨工程大学博士研究生,哈尔滨理工大学副教授,主要研究方向:小波分析理论及图像处理. 第21卷第4期哈尔滨工程大学学报Voi.21,N.42000年8月Journai of Harbin Engineering University Aug.,2000

小波去噪matlab程序

小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3');%[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw);

图像去噪方法

图像去噪方法 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声(一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在),但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差(在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。)最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。

小波分析在心电信号去噪中的应用程序

%应用db5作为小波函数进行3层分解 %利用无偏似然估计阈值 %对100.dat from MIT-BIH-DB的单导联数据进行去噪处理clear;clc load('D:/matlab/matlab7.2/work/M.mat'); E=M(:,2); E=E'; n=size(E); s=E(1:2000); %小波分解 [C L]=wavedec(E,3,'db5'); % 从c中提取尺度3下的近似小波系数 cA3=appcoef(C,L,'db5',3); %从信号c中提取尺度1,2,3下的细节小波系数 cD1=detcoef(C,L,1); cD2=detcoef(C,L,2); cD3=detcoef(C,L,3); %使用stein的无偏似然估计原理进行选择各层的阈值 %cD1,cD2,cD3为各层小波系数, %'rigrsure’为无偏似然估计阈值类型 thr1=thselect(cD1,'rigrsure'); thr2=thselect(cD2,'rigrsure'); thr3=thselect(cD3,'rigrsure'); %各层的阈值 TR=[thr1,thr2,thr3]; %'s'为软阈值;'h'硬阈值。 SORH='s'; %---------去噪---------------- %XC为去噪后信号 %[CXC,LXC]为的小波分解结构 %PERF0和PERF2是恢复和压缩的范数百分比。 %'lvd'为允许设置各层的阈值, %'gbl'为固定阈值。 %3为阈值的长度 [XC,CXC,LXC,PERF0,PERF2]=wdencmp('lvd',E, ...'db5',3,TR,SORH); %---------去噪效果衡量(SNR越大效果越好, %MSE越小越好)------------------------ %选取信号的长度。 N=n(2); x=E; y=XC; F=0; M=0; for ii=1:N m(ii)=(x(ii)-y(ii))^2; t(ii)=y(ii)^2; f(ii)=t(ii)/m(ii); F=F+f(ii);

基于MATLAB的小波消噪仿真实现 (1)

收稿日期:2007-12-10 作者简介:史振江(1979-),男,汉,河北唐山人,学士,讲师,研究方向智能检测与控制技术。 基金项目:河北省教育厅自然科学项目(Z2006442) 基于MATLAB 的小波消噪仿真实现 史振江1) 安建龙 2) 赵玉菊1) (石家庄铁路职业技术学院1) 河北石家庄 050041 衡水学院2) 河北衡水 053000)  摘要:小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的小波系数限定阈值来消除噪声的方法。分析小波消噪的算法和实现步骤,并基于MATLAB 软件平台编写仿真程序。进行光纤光栅反射信号的小波消噪仿真实验,消噪效果良好。  关键词:小波消噪 阈值 分解 重构 光纤光栅  中图分类号:TP272 文献标识码:A 文章编号:1673-1816(2008)01-0063-04 1 引言  微弱信号检测[1]是关于如何提取和测量强噪声背景下微弱信号的方法,有效的去除信号中的噪声是实现微弱信号检测的关键。小波变换[2]是一种信号的时间、频率分析方法,具有多分辨分析的特点,是时间窗和频率窗都可以改变的时频局部化分析方法,已经广泛应用于信号消噪、信号处理、图像处理、语音识别与合成等领域。小波消噪[3~5]的方法可以分为三类:模极大值法、相关法以及阈值方法。其中,小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的各层系数限定阈值来消除噪声的方法,因其实现简单、计算量小,取得了广泛应用。 MATLAB 即矩阵实验室,是一种建立在向量、数组和矩阵基础上,面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络、图像处理于一体,具有极高的编程效率[6]。其中的小波处理工具箱可以方便实现小波消噪算法,对含噪信号进行消噪处理和研究。 本文详细分析了小波消噪算法,利用MATLAB 软件编写了程序,并对光纤光栅反射谱信号进行了小波消噪仿真实验。 2 小波变换与Mallat 算法  小波变换是指,把某一被称为基本小波的函数()t ψ平移位移b 后, 在不同尺度a 下作伸缩变换,得到连续小波序列,()a b t ψ,再与待分析信号()f t 作内积: 1/2(,)()()f R t b W a b a f t dt a ψ??=∫ (1) 在实际应用中,经常将,()a b t ψ作离散化处理,令2j a =,2j b k =g ,Z k j ∈,则得到相应的离散

什么是数字信号处理

什么是数字信号处理?有哪些应用? 利用数字计算机或专用数字硬件、对数字信号所进行的一切变换或按预定规则所进行的一切加工处理运算。 例如:滤波、检测、参数提取、频谱分析等。 对于DSP:狭义理解可为Digital Signal Processor 数字信号处理器。广义理解可为Digital Signal Processing 译为数字信号处理技术。在此我们讨论的DSP的概念是指广义的理解。 数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 信号处理的实质是对信号进行变换。 信号处理的目的是获取信号中包含的有用信息,并用更直观的方式进行表达。 DSP的应用几乎遍及电子学每一个领域。 ▲通用数字信号处理器:自适应滤波,卷积,相关,数字滤波,FFT, 希尔伯特变换,波形生成,窗函数等等。 ▲语音信号处理:语音增强、识别、合成、编码、信箱等,文字/语音转换 ▲图形/图像处理:三维动画,图象鉴别/增强/压缩/传输,机器人视觉等等图 ▲特殊应用数字信号处理:振动和噪声分析与处理,声纳和雷达信号处理, 通信信号处理, 地震信号分析与处理,汽车安全及全球定位,生物医学工程等等。 在医疗、军事、汽车等行业,以及通信市场、消费类电子产品等中具有广阔的市场前景。 数字信号处理系统的基本组成:前置预滤波器(PrF)、a/d变换器(ADC)、数字信号处理器(DSP)、d/a变换器(DAC)、模拟滤波器(PoF) 数字信号处理特点: 1.大量的实时计算(FIR IIR FFT), 2.数据具有高度重复(乘积和操作在滤波、卷积和FFT中等常见) 数字信号处理技术的意义、内容 数字信号处理技术是指数字信号处理理论的应用实现技术,它以数字信号处理理论、硬件技术、软件技术为基础和组成,研究数字信号处理算法及其实现方法。 意义: 在21世纪,数字信号处理是影响科学和工程最强大的技术之一 它是科研人员和工程师必须掌握的一门技巧 DSP芯片及其特点 ▲采用哈佛结构体系:独立的程序和数据总线,一个机器周期可同时进行程序读出和数据存取。对应的:冯·诺依曼结构。 ▲采用流水线技术: ▲硬件乘法器:具有硬件连线的高速“与或”运算器 ▲多处理单元:DSP内部包含多个处理单元。 ▲特殊的DSP指令:指令具有多功能,一条指令完成多个动作;如:倒位序指令等 ▲丰富的外设▲功耗低:一般DSP芯片功耗为0.5~4W。采用低功耗技术的DSP芯片只有0.1W/3.3V、1.6V (电池供电) DSP芯片的类别和使用选择 ▲按特性分:以工作时钟和指令类型为指标分类▲按用途分:通用型、专用型DSP芯片 ▲按数据格式分:定点、浮点各厂家还根据DSP芯片的CPU结构和性能将产品分成若干系列。 TI公司的TMS320系列DSP芯片是目前最有影响、最为成功的数字信号处理器,其产品销量一直处于领先地位,公认为世界DSP霸主。 ?目前市场上的DSP芯片有: ?美国德州仪器公司(TI):TMS320CX系列占有90%

基于小波去噪matlab程序示例

clear all clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8 output1(i)=0; elseif corr<=0.1

基于小波分析的脑电信号去噪方法研究

基于小波分析的脑电信号去噪方法研究 摘要 小波变换[1]是20世纪 80 年代后期迅速发展起来的新兴学科。它是在傅里叶分析[2]的基础上发展起来的,但小波分析与傅里叶变换有很大的不同。总体来说,傅里叶分析是整体域分析,用单独的时域[3]或频域表示信号的特征;而小波分析是整体域分析,它用时域和频域的联合来表示信号的特征。小波分析的理论和方法在信号处理[4]、图像处理、语音处理、模式识别、量子物理等领域得到越来越广泛的应用,它被认为是近年来在工具及方法上的重大突破。信号的采集与传输过程中,不可避免会受到大量噪声信号的干扰,对信号进行去噪,提取出原始信号是一个重要的课题。 本文根据目前的研究课题基于脑电信号的机械外骨骼[5]系统研究与应用,在此研究小波变换在脑电信号去噪中的应用。 关键词小波变换、信号处理、脑电信号、机械外骨骼、小波包分析[6] Abstract Wavelet transform is a new subject in the late twentieth Century 80 developed rapidly. It is developed based on the analysis on Fourier transformation ,but wavelet and Fourier transformation are very different. Overall, Fourier transformation analysis is the whole domain analysis[7], said signal characteristics[8] with single time domain or frequency domain; wavelet analysis is the whole domain analysis, it combined with the time domain and frequency domain to represent the signal features. The theory and method of wavelet analysis has been applied more and more widely in signal processing, image processing, speech processing, pattern recognition, quantum physics and other fields, it is considered a major breakthrough in the tools and methods in recent years. Collection and the process of signal transmission, will inevitably receive a lot of noise signal interference, the signal denoising, extract the original signal is an important topic.

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

相关主题
文本预览
相关文档 最新文档