当前位置:文档之家› 有限差分法地震波传播数值模拟

有限差分法地震波传播数值模拟

时域有限差分法的Matlab仿真

时域有限差分法的Matlab仿真 关键词: Matlab 矩形波导时域有限差分法 摘要:介绍了时域有限差分法的基本原理,并利用Matlab仿真,对矩形波导谐振腔中的电磁场作了模拟和分析。 关键词:时域有限差分法;Matlab;矩形波导;谐振腔 目前,电磁场的时域计算方法越来越引人注目。时域有限差分(Finite Difference Time Domain,FDTD)法[1]作为一种主要的电磁场时域计算方法,最早是在1966年由K. S. Yee提出的。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解,通过建立时间离散的递进序列,在相互交织的网格空间中交替计算电场和磁场。经过三十多年的发展,这种方法已经广泛应用到各种电磁问题的分析之中。 Matlab作为一种工程仿真工具得到了广泛应用[2]。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 下面将采用FDTD法,利用Matlab仿真来分析矩形波导谐振腔的电磁场,说明了将二者结合起来的优越性。 1FDTD法基本原理 时域有限差分法的主要思想是把Maxwell方程在空间、时间上离散化,用差分方程代替一阶偏微分方程,求解差分方程组,从而得出各网格单元的场值。FDTD 空间网格单元上电场和磁场各分量的分布如图1所示。 电场和磁场被交叉放置,电场分量位于网格单元每条棱的中心,磁场分量位于网格单元每个面的中心,每个磁场(电场)分量都有4个电场(磁场)分量环绕。这样不仅保证了介质分界面上切向场分量的连续性条件得到自然满足,而且

还允许旋度方程在空间上进行中心差分运算,同时也满足了法拉第电磁感应定律和安培环路积分定律,也可以很恰当地模拟电磁波的实际传播过程。 1.1Maxwell方程的差分形式 旋度方程为: 将其标量化,并将问题空间沿3个轴向分成若干网格单元,用Δx,Δy和Δz 分别表示每个网格单元沿3个轴向的长度,用Δt表示时间步长。网格单元顶点的坐标(x,y,z)可记为: 其中:i,j,k和n为整数。 同时利用二阶精度的中心有限差分式来表示函数对空间和时间的偏导数,即可得到如下FDTD基本差分式: 由于方程式里出现了半个网格和半个时间步,为了便于编程,将上面的差分式改写成如下形式:

时域有限差分法发展综述

时域有限差分法发展综述 潘忠 摘要:时域有限差分法(FDTD)是解决复杂电磁问题的有效方法之一,目前FDTD 法的许多重要问题得到了很好的解决,已经发展成为一种成熟的数值计算方法。随着计算机数据处理性能的快速提高和计算机价格的下降,使得FDTD法的应用范围越来越广,而FDTD法本身在应用中又有新的发展.本文介绍并分析了时域有限差分法,对各种条件的应用进行了比较和分析,给出了具有一定参考价值的结论。 关键词:时域有限差分法;研究与发展;比较;分析 A Summary of FDTD and Development at Home and Abroad Zhong Pan Abstract: The finite difference time-domain (FDTD) method is one of the most effective methods to solve electromagnetic problems. Many important questions of FDTD method have been solved well through many scientists’ effort. Now, FDTD method is a mature numerical method. Especially in few years, the range of using FDTD method is becoming wider and wider because of the faster data processing and processing and cheaper price of computer. FDTD method has also been developed during using. FDTD method is introduced and discussed in this paper. The applications of various conditions are compared and analyzed. Finally, some valuable conclusions are drawn. Key words: FDTD; Research and Development; Comparison; Analysis 1966年,K.S.Yee首次提出电磁场数值计算的新方法—时域有限差分法(Finite Difference- Time Domain,简称FDTD)。经历了二十年的发展FDTD法才逐渐走向成熟。上世纪80年代后期以来FDTD法进入了一个新的发展阶段,即由成熟转为被广泛接受和应用的阶段。FDTD法是解决复杂问题的有效方法之一,是一种直接基于时域电磁场微分方程的数值算法,它直接在时域将Maxwell旋度方程用二阶精度的中心差分近似,从而将时域微分方程的求解转换为差分方程的迭代求解。是电磁场和电磁波运动规律和运动过程的计算机模拟。原则上可以求解任意形式的电磁场和电磁波的技术和工程问题,并且对计算机内存容量要求较低、计算速度较快、尤其适用于并行算法。现在FDTD法己被广泛应用于天线的分析与设计、目标电磁散射、电磁兼容、微波电路和光路时域分析、生物电磁剂量学、瞬态电磁场研究等多个领域。

碳酸盐岩储层地震波数值模拟影响因素分析

碳酸盐岩储层地震波数值模拟影响因素分析 通过对比分析已有井的钻测井资料,建立了基于单井的正演模型以及区域连井地质-地球物理模型,并且两者的储层正演响应特征规律性一致。分析讨论了模型建立过程中需考虑的影响因素:子波选择与旁瓣,围岩的尺度、位置、形状。揭示了发育不同厚度时的地震响应特征,进而正确认识了储层的地震相,在实际应用中取得了良好的效果。 标签:地震波数值模拟;有限差分法;碳酸盐岩储层;影响因素 1 概述 在地震勘探中,地震波数值模拟又称地震正演,可供正确认识储层的地震响应特征,为储层预测提供基础。通过分析不同厚度、岩性组合对地震响应的影响,建立储层和地震响应特征之间的联系,為应用地震资料进行储层预测提供一定的依据。地震波数值模拟方法主要分为射线追踪法和波动方程法两类,而其中波动方程法因其能够提供更丰富的波场信息而得到了更加广泛的应用。基于波动方程的数值模拟按照算法不同又分为有限差分法、伪谱法、有限元法及谱元法等,其中有限差分法是最为流行的方法之一[1]。文章采用地震波数值模拟的最常用的波动方程有限差分法正演模拟对下二叠统的储层特征进行了正演影响因素分析实验。 2 基本原理 3 储层正演影响因素分析 在研究区范围内,栖霞组以深灰色厚层状石灰岩为主,含泥质条带及薄层,具灰黑色生物碎屑灰岩、藻灰岩、藻团粒灰岩互层。栖霞组与下伏梁山组黑色含煤岩系及上覆茅口组浅灰色块状灰岩均为整合接触。结合区域地质认识、地震、钻井、测井资料及已有研究成果,建立如图1所示的正演模型。茅口组整体发育大套灰岩,在茅口组底部普遍性发育的一套泥灰岩,由于物性差异较大,对实验结果影响较大。模型仅在透镜体一侧设计了一定厚度的泥灰岩,从实验结果中可以得到效果对比。储层发育在栖霞组上部,储层厚度透镜状变化由中间70米向两侧逐渐减薄,直至储层不发育。在下伏地层中,梁山组黑色含煤系地层虽然很薄(十米左右),但地震波阻抗差异更大,同样不可忽视。 根据上述建立的地质-地球物理正演模型,选用接近实际地震资料的子波进行正演实验。实验选用了30Hz理论Puzirov子波和Riker子波两种不同子波,其中,Puzirov子波波形与Riker子波波形相似均为零相位子波,但旁瓣能量较弱并且能量延续时间较短,具有更高的分辨率。两种不同子波模型正演结果分别如图2所示,图2a是选用30Hz Puzirov子波的结果,图2b则是同一频率常用的Riker 子波的正演结果。总体而言,选用Puzirov子波的正演剖面中,波形信息更加丰富,具有更高的分辨率。在细节刻画方面,图2a中随着储层厚度增大,储层顶

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

LED-FDTD LED时域有限差分方法

Efficiency enhancement of homoepitaxial InGaN/GaN light-emitting diodes on free-standing GaN substrate with double embedded SiO2 photonic crystals Tongbo Wei,* Ziqiang Huo, Yonghui Zhang, Haiyang Zheng, Yu Chen, Jiankun Yang, Qiang Hu, Ruifei Duan, Junxi Wang, Yiping Zeng, and Jinmin Li Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China *tbwei@https://www.doczj.com/doc/9e4118737.html, Abstract: Homoepitaxially grown InGaN/GaN light emitting diodes (LEDs) with SiO2 nanodisks embedded in n-GaN and p-GaN as photonic crystal (PhC) structures by nanospherical-lens photolithography are presented and investigated. The introduction of SiO2 nanodisks doesn’t produce the new dislocations and doesn’t also result in the electrical deterioration of PhC LEDs. The light output power of homoepitaxial LEDs with embedded PhC and double PhC at 350 mA current is increased by 29.9% and 47.2%, respectively, compared to that without PhC. The corresponding light radiation patterns in PhC LEDs on GaN substrate show a narrow beam shape due to strong guided light extraction, with a view angle reduction of about 30°. The PhC LEDs are also analyzed in detail by finite-difference time-domain simulation (FDTD) to further reveal the emission characteristics. ?2014 Optical Society of America OCIS codes: (230.0230) Optical devices; (230.3670) Light-emitting diodes; (160.5298) Photonic crystals; (220.4241) Nanostructure fabrication. References and links 1. B. Monemar and B. E. Sernelius, “Defect related issues in the “current roll-off” in InGaN based light emitting diodes,” Appl. Phys. Lett. 91(18), 181103 (2007). 2. G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies,” J. Appl. Phys. 114(7), 071101 (2013). 3. K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007). 4. Y. Yang, X. A. Cao, and C. H. Yan, “Rapid efficiency roll-off in high-quality green light-emitting diodes on freestanding GaN substrates,” Appl. Phys. Lett. 94(4), 041117 (2009). 5. C.-L. Chao, R. Xuan, H.-H. Yen, C.-H. Chiu, Y.-H. Fang, Z.-Y. Li, B.-C. Chen, C.-C. Lin, C.-H. Chiu, Y.-D. Guo, J.-F. Chen, and S.-J. Cheng, “Reduction of Efficiency Droop in InGaN Light-Emitting Diode Grown on Self-Separated Freestanding GaN Substrates,” IEEE Photon. Technol. Lett. 23(12), 798–800 (2011). 6. M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett. 101(22), 223509 (2012). 7. X. A. Cao, S. F. LeBoeuf, M. P. D’Evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang, “Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates,” Appl. Phys. Lett. 84(21), 4313 (2004). 8. Y. J. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue (1011) semipolar InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3, 102101 (2010). 9. Y.-K. Fu, B.-C. Chen, Y.-H. Fang, R.-H. Jiang, Y.-H. Lu, R. Xuan, K.-F. Huang, C.-F. Lin, Y.-K. Su, J.-F. Chen, and C.-Y. Chang, “Study of InGaN-based light-emitting diodes on a roughened backside GaN substrate by a chemical wet-etching process,” IEEE Photon. Technol. Lett. 23(19), 1373–1375 (2011). #209568 - $15.00 USD Received 4 Apr 2014; revised 23 May 2014; accepted 26 May 2014; published 2 Jun 2014 (C) 2014 OSA30 June 2014 | Vol. 22, No. S4 | DOI:10.1364/OE.22.0A1093 | OPTICS EXPRESS A1093

地震波数值模拟方法研究综述.

地震波数值模拟方法研究综述 在地学领域,对于许多地球物理问题,人们已经得到了它应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件,但能用解析方法求得精确解的只是少数方程性质比较简单,且几何形状相当规则的问题。对于大多数问题,由于方程的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析解。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但这种方法只是在有限的情况下是可行的,过多的简化可能导致很大的误差甚至错误的解答。因此人们多年来寻找和发展了另一种求解方法——数值模拟方法。 地震数值模拟(SeismicNumericalModeling)是地震勘探和地震学的基础,同时也是地震反演的基础。所谓地震数值模拟,就是在假定地下介质结构模型和相应的物理参数已知的情况下,模拟研究地震波在地下各种介质中的传播规律,并计算在地面或地下各观测点所观测到的数值地震记录的一种地震模拟方法。地震波场数值模拟是研究复杂地区地震资料采集、处理和解释的有效辅助手段,这种地震数值模拟方法已经在地震勘探和天然地震领域中得到广泛应用。 地震数值模拟的发展非常迅速,现在已经有各种各样的地震数值模拟方法在地震勘探和地震学中得到广泛而有效

的应用。这些地震波场数值模拟方法可以归纳为三大类,即几何射线法、积分方程法和波动方程法。波动方程数值模拟方法实质上是求解地震波动方程,因此模拟的地震波场包含了地震波传播的所有信息,但其计算速度相对于几何射线法要慢。几何射线法也就是射线追踪法,属于几何地震学方法,由于它将地震波波动理论简化为射线理论,主要考虑的是地震波传播的运动学特征,缺少地震波的动力学信息,因此该方法计算速度快。因为波动方程模拟包含了丰富的波动信息,为研究地震波的传播机理和复杂地层的解释提供了更多的佐证,所以波动方程数值模拟方法一直在地震模拟中占有重要地位。 1地震波数值模拟的理论基础 地震波数值模拟是在已知地下介质结构的情况下,研究地震波在地下各种介质中传播规律的一种地震模拟方法,其理论基础就是表征地震波在地下各种介质中传播的地震波传播理论。上述三类地震波数值模拟方法相应的地震波传播理论的数学物理表达方式不尽相同。射线追踪法是建立在以射线理论为基础的波动方程高频近似理论基础上的,其数学表形式为程函方程和传输方程。积分方程法是建立在以惠更斯原理为基础的波叠加原理基础上的,其数学表达形式为波动方程的格林函数域积分方程表达式和边界积分方程表达式。波

midas数值模拟软件应用

某露天煤矿4-4剖面边坡稳定性分析与沿走向开采 的数值模拟 1概况 以实测4-4剖面为分析对象(如图1),根据钻孔资料确定上覆岩层属性,建立数值模拟分析模型,模型走向长300m、倾向234.17 m、高度为117.975m,模拟计算时需要考虑排土场附加荷载的影响。排土场高15.414m,其坡角35°,距离露天坡肩距离30m。具体各层参数如表1. 图1 实测4-4剖面分布图 表1岩体力学参数表 岩性 密度/ 103kg/m3 内摩擦角/° 凝聚力 /kPa 泊松比 弹性模量 /MPa 抗压强度/ MPa 表土 1.58 24 14 0.23 31.5 砂岩 2.537 33 111 0.25 5000 2.43 泥岩 2.314 34 52 0.35 1250 1.09 煤 1.45 32.7 201 0.30 1200

2二维数值模型 排土场高15m,其坡角35°,距离露天坡肩距离30m。二维模型共有1580个节点,1239个单元(如图2)。破坏判据采用莫尔-库仑准则。 2.1 二维网格划分 图2 4-4剖面二维数值模型 2.2 二维模型稳定性分析 2.2.1 稳定系数:1.3875 2.2.2 位移及应力云图如图2.2.2(a)、(b) 图2.2.2(a)4-4剖面Z方向位移变化色谱图

图2.2.2(b)4-4剖面Z方向应力变化色谱图 3三维模型 三维模型共有24692个节点,29736个单元(如图3)。破坏判据采用莫尔-库仑准则。模型参数取表1。沿走向开挖10步,前3步20m,中间4步10m,后3步20m,共开挖160m。 图3 4-4剖面三维数值模型 3.1第一步开挖 3.1.1位移云图

时域有限差分法(姚伟)介绍

伊犁师范学院硕士研究生 ————期末考核 科目:电磁波有限时域差分方法 姓名:姚伟 学号:1076411203009 学院:电子与信息工程学院 专业:无线电物理

时域有限差分法 1 选题背景 在多种可用的数值方法中,时域有限差分法(FDTD)是一种新近发展起来的可选方法。1966年,K.S.Yee 首次提出电磁场数值计算的新方法—时域有限差分法(Finite Difference- Time Domain ,简称FDTD)。经历了二十年的发展FDTD 法才逐渐走向成熟。上世纪80年代后期以来FDTD 法进入了一个新的发展阶段,即由成熟转为被广泛接受和应用的阶段。FDTD 法是解决复杂问题的有效方法之一,是一种直接基于时域电磁场微分方程的数值算法,它直接在时域将Maxwell 旋度方程用二阶精度的中心差分近似,从而将时域微分方程的求解转换为差分方程的迭代求解。是电磁场和电磁波运动规律和运动过程的计算机模拟。原则上可以求解任意形式的电磁场和电磁波的技术和工程问题,并且对计算机内存容量要求较低、计算速度较快、尤其适用于并行算法。现在FDTD 法己被广泛应用于天线的分析与设计、目标电磁散射、电磁兼容、微波电路和光路时域分析、生物电磁剂量学、瞬态电磁场研究等多个领域[1]。 2 原理分析 2.1 FDTD 的Yee 元胞 E,H 场分量取样节点在空间和时间上采取交替排布,利用电生磁,磁生电的原理 t t ??=??=??E D H ε t t ??-=??-=??H B E μ 图1 Yee 模型 如图1所示,Yee 单元有以下特点[2]: 1)E 与H 分量在空间交叉放置,相互垂直;每一坐标平面上的E 分量四周由H 分量环绕,H 分量的四周由E 分量环绕;场分量均与坐标轴方向一致。 2)每一个Yee 元胞有8个节点,12条棱边,6个面。棱边上电场分量近似相等,用棱边的中心节点表示,平面上的磁场分量近似相等,用面的中心节点表示。 3)每一场分量自身相距一个空间步长,E 和H 相距半个空间步长 4)每一场分量自身相距一个时间步长,E 和H 相距半个时间步长,电场取n 时刻的值,磁场取n+0.5时刻的值;即:电场n 时刻的值由n-1时刻的值得到,磁场n+0.5时刻的值由n-0.5时刻的值得到;电场n 时刻的旋度对应n+0.5时刻的磁场值,磁场n+0.5时刻的

数值模拟软件大全

数值模拟软件大全 GEO-SLOPE Offical WebSite: www. geo-slope. com SLOPE/W: 专业的边坡稳定性分析软件, 全球岩土工程界首 选的稳定性分析软件 SEEP/W: 专业的地下渗流分析软件, 第一款全面处理非饱和土体渗流问题的商业化软件 SIGMA/W: 专业的岩土工程应力应变分析软件, 完全基于土(岩)体本构关系建立的专业有限元软件 QUAKE/W: 专业的地震应力应变分析软件, 线性、非线性土体的水平向与竖向耦合动态响应分析软件 TEMP/W: 专业的温度场改变分析软件, 首款最具权威、涵盖范围广泛的地热分析软件 CTRAN/W: 专业的污染物扩散过程分析软件, 超值实用、最具性价比的地下水环境土工软件 AIR/W:专业的空气流动分析软件, 首款处理地下水-空气-热相互作用的专业岩土软件 VADOSE/W: 专业的模拟环境变化、蒸发、地表水、渗流及地下水对某个区或对象的影响分析软件, 设计理论相当完善和全面的环境土工设计软件 Seep3D(三维渗流分析软件)是GeoStudio2007专门针对工程结构中的真实三维渗流问题, 而开发的一个专业软件, Seep3D软件将强大的交互式三维设计引入饱和、非饱和地下水的建模中, 使用户可以迅速分析各种各样的地下水渗流问题. 特点:GeoStudio其实就是从鼎鼎大名的GEO-SLOPE发展起来的, 以边坡分析出名, 扩展到整个岩土工程范围, 基于. NET平台开发的新一代岩土工程仿真分析软件, 尤其是VADOSE/W模块是极具前瞻性的, 环境岩土工程分析的利器. 遗憾的是其模块几乎都只提供平面分析功能. Rocscience Offical WebSite: www. rocscience. com Rocscience 软件的二维和三维分析主要应用在岩土工程和 采矿领域, 该软件使岩土工程师可以对岩质和土质的地表 和地下结构进行快速、准确地分析, 提高了工程的安全性并 减少设计成本. Rocscience 软件对于岩土工程分 析和设计都很方便, 可以帮助工程师们得到快速、正确的解答. Rocscience 软件对于用户最新的项目都有高效的解算结果, 软件操作界面是基于WINDOWS 系统的交互式界面. Rocscience 软件自带了基于CAD 的绘图操作界面, 可以随意输入多种格式的数据进行建模, 用户可以快速定义模型的材料属性、边界条件等, 进行计算得到自己期望的结果. Rocscience 软件包括以下十三种专业分析模块: Slide 二维边坡稳定分析模块

时域有限差分法对平面TE波的MATLAB仿真

时域有限差分法对平面TE波的 MATLAB仿真 摘要 时域有限差分法是由有限差分法发展出来的数值计算方法。自1966年Yee 在其论文中首次提出时域有限差分以来,时域有限差分法在电磁研究领域得到了广泛的应用。主要有分析辐射条线、微波器件和导行波结构的研究、散射和雷达截面计算、分析周期结构、电子封装和电磁兼容的分析、核电磁脉冲的传播和散射以及在地面的反射及对电缆传输线的干扰、微光学元器件中光的传播和衍射特性等等。 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 文中主要谈到了关于高斯制下完全匹配层的差分公式的问题,通过MATLAB 程序对TE波进行了仿真,模拟了高斯制下完全匹配层中磁场分量瞬态分布。得到了相应的磁场幅值效果图。 关键词:时域有限差分完全匹配层MATLAB 磁场幅值效果图

目录 摘要 (1) 目录 (3) 第一章绪论 (4) 1.1 课题背景与意义 (4) 1.2 时域有限差分法的发展与应用 (4) 2.1 Maxwell方程和Yee氏算法 (7) 2.2 FDTD的基本差分方程 (9) 2.3 时域有限差分法相关技术 (11) 2.3.1 数值稳定性问题 (11) 2.3.2 数值色散 (12) 2.3.3 离散网格的确定 (13) 2.4 吸收边界条件 (13) 2.4.1 一阶和二阶近似吸收边界条件 (14) 2.4.2 二维棱边及角顶点的处理 (17) 2.4.3 完全匹配层 (19) 2.5 FDTD计算所需时间步的估计 (23) 第三章MATLAB的仿真的程序及模拟 (25) 3.1 MATLAB程序及相应说明 (25) 3.2 出图及结果 (28) 3.2.1程序部分 (28) 3.2.2 所出的效果图 (29) 第四章结论 (31) 参考文献 (32)

地下水数值模拟任务、步骤及常用软件

地下水数值模拟任务、步骤及常用软件1地下水模拟任务 大多数地下水模拟主要用于预测,其模拟任务主要有4种: 1)水流模拟 主要模拟地下水的流向及地下水水头与时间的关系。 2)地下水运移模拟 主要模拟地下水、热和溶质组分的运移速率。这种模拟要特别考虑到“优先流”。所谓“优先流”就是局部具有高和连通性的渗透性,使得水、热、溶质组分在该处的运移速率快于周围地区,即水、热、溶质组分优先在该处流动。 3)反应模拟 模拟水中、气-水界面、水-岩界面所发生的物理、化学、生物反应。 4)反应运移模拟 模拟地下水运移过程中所发生的各种反应,如溶解与沉淀、吸附与解吸、氧化与还原、配合、中和、生物降解等。这种模拟将地球化学模拟(包括动力学模拟)和溶质运移模拟(包括非饱和介质二维、三维流)有机结合,是地下水模拟的发展趋势。要成功地进行这种模拟,还需要研究许多水-岩相互作用的化学机制和动力学模型。 2模拟步骤 对于某一模拟目标而言,模拟一般分为以下步骤: 1)建立概念模型 根据详细的地形地貌、地质、水文地质、构造地质、水文地球化学、岩石矿物、水文、气象、工农业利用情况等,确定所模拟的区域大小,含水层层数,维数(一维、二维、三维),水流状态(稳定流和非稳定流、饱和流和非饱和流),介质状况(均质和非均质、各向同性和各向异性、孔隙、裂隙和双重介质、

流体的密度差),边界条件和初始条件等。必要时需进行一系列的室内试验与野外试验,以获取有关参数,如渗透系数、弥散系数、分配系数、反应速率常数等。 2)选择数学模型 根据概念模型进行选择。如一维、二维、三维数学模型,水流模型,溶质运移模型,反应模型,水动力-水质耦合模型,水动力-反应耦合模型,水动力-弥散-反应耦合模型。 3)将数学模型进行数值化 绝大部分数学模型是无法用解析法求解的。数值化就是将数学模型转化为可解的数值模型。常用数值化有有限单元法和有限差分法。 4)模型校正 将模拟结果与实测结果比较,进行参数调整,使模拟结果在给定的误差范围内与实测结果吻合。调参过程是一个复杂而辛苦的工作,所调整的参数必须符合模拟区的具体情况。所幸的是,最近国外已花费巨力开发研究了自动调参程序(如PEST),大大提高了模拟者的工作效率。 5)校正灵敏度分析 校正后的模型受参数值的时空分布、边界条件、水流状态等不确定度的影响。 灵敏度分析就是为了确定不确定度对校正模型的影响程度。 6)模型验证 模型验证是在模型校正的基础上,进一步调整参数,使模拟结果与第二次实测结果吻合,以进一步提高模型的置信度。 7)预测 用校正的参数值进行预测,预测时需估算未来的水流状态。

FDTD(时域有限差分法)算法的Matlab源程序

% 3-D FDTD code with PEC boundaries %*********************************************************************** % % Program author: Susan C. Hagness % Department of Electrical and Computer Engineering % University of Wisconsin-Madison % 1415 Engineering Drive % Madison, WI 53706-1691 % 608-265-5739 % hagness@https://www.doczj.com/doc/9e4118737.html, % % Date of this version: February 2000 % % This MATLAB M-file implements the finite-difference time-domain % solution of Maxwell's curl equations over a three-dimensional % Cartesian space lattice comprised of uniform cubic grid cells. % % To illustrate the algorithm, an air-filled rectangular cavity % resonator is modeled. The length, width, and height of the % cavity are 10.0 cm (x-direction), 4.8 cm (y-direction), and % 2.0 cm (z-direction), respectively. % % The computational domain is truncated using PEC boundary % conditions: % ex(i,j,k)=0 on the j=1, j=jb, k=1, and k=kb planes % ey(i,j,k)=0 on the i=1, i=ib, k=1, and k=kb planes % ez(i,j,k)=0 on the i=1, i=ib, j=1, and j=jb planes % These PEC boundaries form the outer lossless walls of the cavity. % % The cavity is excited by an additive current source oriented % along the z-direction. The source waveform is a differentiated % Gaussian pulse given by % J(t)=-J0*(t-t0)*exp(-(t-t0)^2/tau^2), % where tau=50 ps. The FWHM spectral bandwidth of this zero-dc- % content pulse is approximately 7 GHz. The grid resolution % (dx = 2 mm) was chosen to provide at least 10 samples per % wavelength up through 15 GHz. % % To execute this M-file, type "fdtd3D" at the MATLAB prompt. % This M-file displays the FDTD-computed Ez fields at every other % time step, and records those frames in a movie matrix, M, which % is played at the end of the simulation using the "movie" command. %

复杂介质下地震波数值模拟方法研究及其应用

北京航空航天大学计算机学院 硕士学位论文开题报告 论文题目:复杂介质下地震波数值模拟方法研究及应用专业:计算机科学与技术 研究方向:计算机图形学 研究生:梁堰波 学号:SY0906430 指导教师:杨钦(教授) 北京航空航天大学计算机学院 2010年11月19日

目录 1 选题依据 (2) 1.1 选题意义 (2) 1.2 国内外研究现状分析 (3) 2 论文研究方案 (4) 2.1 研究目标 (4) 2.2 研究内容与方法 (5) 2.3 技术路线 (5) 2.4 关键技术与难点 (6) 3 预期目标与研究成果 (6) 4 工作计划 (7) 5 参考文献 (7)

复杂介质下地震波数值 模拟方法研究及其应用 1 选题依据 1.1 选题意义 本课题来源于实验室课题。 地震数值模拟(Seismic Numerical Simulation)是地震勘探方法研究的前提和基础,对地震数据处理及解释起着重要的作用。地震数值模拟是首先给出地下介质结构模型,并已知相应的物理参数,进而通过给定的物理方程模拟地震波在地下各种介质中传播时的规律,并计算出各个观测点所观测到的数值而形成地震记录的地震模拟方法。地震数值模拟在地震勘探和地震学的各项研究及生产工作中都扮演着重要的角色。在野外地震观测系统的设计和评估以及地震观测系统的优化中,地震数值模拟都得到广泛应用;此外地震数值模拟还可以用来检验地震数据处理中的各种反演方法的正确性,并且可以对地震解释结果的正确性进行检验。目前,这种地震数值模拟方法不但在石油、天然气、煤、金属和非金属等矿产资源及工程和环境地球物理中得到普遍的应用,而且在地震灾害预测、地震区带划分以及地壳构造和地球内部结构研究中,也得到相当广泛的应用。地震勘探的目的则是根据各观测点所观测的地震记录来描绘地下介质结构模型,并且描述其状态或岩性;虽然说这是一个反演过程,但是它是建立在地震正演模拟的基础上的。通过地震正演模拟研究,充分了解和掌握地震波传播规律是指导地震反演的基础。随着现代计算机技术的飞速发展,地震数值模拟研究也随之得到了更深入的研究和广泛应用。到目前为止,已经发展出了许多种的地震数值模拟方法,并且都在地震勘探和地震学中得到广泛而有效的应用,地震数值模拟方法主要可以归纳为地震波方程数值解法、积分方程法和射线追踪法三大类。 地震偏移是反射地震学的一个核心内容。地震偏移就是在波动方程的基础上,通过将同相轴归位到其正确空间位置并聚焦绕射能量到其散射点来消除反射记录中的失真现象。无论是过去、现在和将来,地震偏移技术都是地震勘探的最

金融工程期末复习题知识讲解

金融工程期末复习题

一、简述题(30分) 1.金融工程包括哪些主要内容? 答:产品与解决方案设计,准确定价与风险管理是金融工程的主要内容 P3 2.金融工程的工具都有哪些? 答:基础证券(主要包括股票和债券)和金融衍生产品(远期,期货,互换和期权)P4 3.无套利定价方法有哪些主要特征? 答:a.套利活动在无风险的状态下进行 b.无套利的关键技术是“复制”技术 c.无风险的套利活动从初始现金流看是零投资组合,即开始时套利者不需要 任何资金的投入,在投资期间也不需要任何的维持成本。P16 4.衍生证券定价的基本假设为何? 答:(1)市场不存在摩擦 (2)市场参与者不承担对手风险 (3)市场是完全竞争的 (4)市场参与者厌恶风险,且希望财富越多越好 (5)市场不存在无风险套利机会 P20 5.请解释远期与期货的基本区别。 答:a.交易场所不同 b.标准化程度不同 c.违约风险不同 d.合约双方关系不同 e.价格确定方式不同 f.结算方式不同 g.结清方式不同 P44 6.金融互换的主要有哪些种类? 答:利率互换与货币互换和其它互换(交叉货币利率互换、基点互换、零息互换、后期确定互换、差额互换、远期互换、股票互换等等)P104 7.二叉树定价方法的基本原理是什么? 答:二叉树图方法用离散的模型模拟资产价格的连续运动,利用均值和方差匹配来确定相关参数,然后从二叉树图的末端开始倒推可以计算出期权价格。P214 8.简要说明股票期权与权证的差别。 答:股本权证与备兑权证的差别主要在于: (1)有无发行环节; (2)有无数量限制; (3)是否影响总股本。 股票期权与股本权证的区别主要在于: (1)有无发行环节 (2)有无数量限制。P162 9.影响期权价格的因素主要有哪些?它们对欧式看涨期权有何影响? 答: 1)标的资产的市场价格(+) 2)期权的协议价格(—) 3)期权的有效期(?) 4)标的资产价格的波动率(+) 5)无风险利率(+) 6)标的资产收益(—)

时域有限差分法论文

时域有限差分法 1 选题背景 在多种可用的数值方法中,时域有限差分法(FDTD)是一种新近发展起来的可选方法。1966年,K.S.Yee 首次提出电磁场数值计算的新方法—时域有限差分法(Finite Difference- Time Domain ,简称FDTD)。经历了二十年的发展FDTD 法才逐渐走向成熟。上世纪80年代后期以来FDTD 法进入了一个新的发展阶段,即由成熟转为被广泛接受和应用的阶段。FDTD 法是解决复杂问题的有效方法之一,是一种直接基于时域电磁场微分方程的数值算法,它直接在时域将Maxwell 旋度方程用二阶精度的中心差分近似,从而将时域微分方程的求解转换为差分方程的迭代求解。是电磁场和电磁波运动规律和运动过程的计算机模拟。原则上可以求解任意形式的电磁场和电磁波的技术和工程问题,并且对计算机内存容量要求较低、计算速度较快、尤其适用于并行算法。现在FDTD 法己被广泛应用于天线的分析与设计、目标电磁散射、电磁兼容、微波电路和光路时域分析、生物电磁剂量学、瞬态电磁场研究等多个领域[1]。 2 原理分析 2.1 FDTD 的Yee 元胞 E,H 场分量取样节点在空间和时间上采取交替排布,利用电生磁,磁生电的原理 t t ??=??=??E D H ε t t ??-=??-=??H B E μ 图1 Yee 模型 如图1所示,Yee 单元有以下特点[2]: 1)E 与H 分量在空间交叉放置,相互垂直;每一坐标平面上的E 分量四周由H 分量环绕,H 分量的四周由E 分量环绕;场分量均与坐标轴方向一致。 2)每一个Yee 元胞有8个节点,12条棱边,6个面。棱边上电场分量近似相等,用棱边的中心节点表示,平面上的磁场分量近似相等,用面的中心节点表示。 3)每一场分量自身相距一个空间步长,E 和H 相距半个空间步长 4)每一场分量自身相距一个时间步长,E 和H 相距半个时间步长,电场取n 时刻的值,磁场取n+0.5时刻的值;即:电场n 时刻的值由n-1时刻的值得到,磁场n+0.5时刻的值由n-0.5时刻的值得到;电场n 时刻的旋度对应n+0.5时刻的磁场值,磁场n+0.5时刻的旋度对应(n+0.5)+0.5时刻的电场值,逐步外推。 5)3个空间方向上的时间步长相等,

相关主题
文本预览
相关文档 最新文档