当前位置:文档之家› 高中化学人教版选修3教案:杂化轨道理论简介+配合物理论简介 Word版含答案

高中化学人教版选修3教案:杂化轨道理论简介+配合物理论简介 Word版含答案

高中化学人教版选修3教案:杂化轨道理论简介+配合物理论简介 Word版含答案
高中化学人教版选修3教案:杂化轨道理论简介+配合物理论简介 Word版含答案

第2课时杂化轨道理论简介

配合物理论简介

1.了解杂化轨道理论的基本内容。

2.能根据有关理论判断简单分子或离子的立体构型。(重点)

3.了解配位键的特点及配合物理论,能说明简单配合物的成键情况。(难点)

杂化轨道理论简介

1.用杂化轨道理论解释甲烷分子的形成

在形成CH4分子时,碳原子的一个2s轨道和三个2p轨道发生混杂,形成四个能量相等的sp3杂化轨道。四个sp3杂化轨道分别与四个H原子的1s轨道重叠成键形成CH4分子,所以四个C—H键是等同的。

可表示为

2.杂化轨道的类型与分子立体构型的关系

杂化类型sp sp2sp3

参与杂化的原子轨道及数目n s111 n p123

杂化轨道数目234

杂化轨道间的夹角180°120°109°28′

杂化轨道示意图

立体构型直线形平面三角形正四面体形

实例BeCl2、CO2、

CS2

BCl3、BF3、BBr3CF4、SiCl4、SiH4

[思考探究]

在形成多原子分子时,中心原子价电子层上的某些能量相近的原子轨道发生混杂,重新组合成一组新的轨道的过程,叫做轨道的杂化。双原子分子中,不存在杂化过程。例如sp杂化、sp2杂化的过程如下:

问题思考:

(1)观察上述杂化过程,分析原子轨道杂化后,数量和能量有什么变化?

【提示】杂化轨道与参与杂化的原子轨道数目相同,但能量不同。s轨道与p轨道的能量不同,杂化后,形成的一组杂化轨道能量相同。

(2)2s轨道与3p轨道能否形成sp2杂化轨道?

【提示】不能。只有能量相近的原子轨道才能形成杂化轨道。2s与3p不在同一能级,能量相差较大。

(3)用杂化轨道理论解释NH3、H2O的立体构型?

【提示】NH3分子中N原子的价电子排布式为2s22p3。1个2s轨道和3个2p经杂化后形成4个sp3杂化轨道,其中3个杂化轨道中各有1个未成对电子,分别与H原子的1s轨道形成共价键,另1个杂化轨道中是成对电子,不与H原子形成共价键,sp3杂化轨道为正四面体形,但由于孤电子对的排斥作用,使3个N—H键的键角变小,成为三角锥形的立体构型。

H2O分子中O原子的价电子排布式为2s22p4。1个2s轨道和3个2p轨道经

杂化后形成4个sp3杂化轨道,其中2个杂化轨道中各有1个未成对电子,分别与H原子的1s轨道形成共价键,另2个杂化轨道是成对电子,不与H原子形成共价键,sp3杂化轨道为正四面体形,但由于2对孤电子对的排斥作用,使2个O—H键的键角变得更小,成为V形的立体构型。

(4)CH4、NH3、H2O中心原子的杂化类型都为sp3,键角为什么依次减小?从杂化轨道理论的角度比较键角大小时有什么方法?

【提示】CH4、NH3、H2O中心原子都采取sp3杂化,中心原子的孤电子对数依次为0个、1个、2个。由于孤电子对对共用电子对的排斥作用使键角变小,孤电子对数越多排斥作用越大,键角越小。比较键角时,先看中心原子杂化类型,杂化类型不同时:一般键角按sp、sp2、sp3顺序依次减小;杂化类型相同时,中心原子孤电子对数越多,键角越小。

[认知升华]

1.杂化轨道理论要点

(1)只有能量相近的原子轨道才能杂化。

(2)杂化轨道数目和参与杂化的原子轨道数目相等,杂化轨道能量相同。

(3)杂化改变原有轨道的形状和伸展方向,使原子形成的共价键更牢固。

(4)杂化轨道为使相互间的排斥力最小,故在空间取最大夹角分布,不同的杂化轨道伸展方向不同。

(5)杂化轨道只用于形成σ键或用于容纳未参与成键的孤电子对。

(6)未参与杂化的p轨道可用于形成π键。

2.中心原子轨道杂化类型的判断

方法1:根据价层电子对数判断

杂化轨道只能用于形成σ键或者用来容纳孤电子对,而两个原子之间只能形成一个σ键,故有下列关系:

杂化轨道数=价层电子对数=中心原子孤电子对数+中心原子结合的原子数。

方法2:根据共价键类型判断

由于杂化轨道形成σ键或容纳孤电子对,未参与杂化的轨道可用于形成π键,故有如下规律:

(1)中心原子形成1个三键,则其中有2个π键,是sp杂化,如CH≡CH。

(2)中心原子形成2个双键,则其中有2个π键,是sp杂化,如O===C===O。

(3)中心原子形成1个双键,则其中有1个π键,是sp2杂化,如:HCOH,CH2CH2。

(4)中心原子只形成单键,则按方法1判断。

方法3:根据等电子体原理判断

等电子体的结构相似、立体构型也相似,中心原子杂化类型相同。如:H2O 和H2S,CO2、CS2和N2O,BF3、SO3、NO-3和CO2-3,CCl4、SO2-4和PO3-4,NF3,PCl3和SO2-3等。

[题组·冲关]

题组1杂化轨道类型及其判断

1.下列分子中的中心原子采取sp2杂化的是()

①C6H6②C2H2③C2H4④C3H8⑤CO2

⑥BeCl2⑦SO3⑧BF3

A.①②⑥⑦B.③⑤⑦⑧

C.①③⑦⑧D.③⑤⑥⑦

【解析】苯分子的碳原子采取sp2杂化;乙炔分子中的碳原子采取sp杂化;乙烯分子中的碳原子采取sp2杂化;丙烷分子中的碳原子类似于甲烷中的碳原子,采取sp3杂化;CO2分子中碳原子采取sp杂化;氯化铍分子中铍原子采取sp杂化;三氧化硫分子中S原子采取sp2杂化;三氟化硼分子中的B原子采取sp2杂化。

【答案】C

2.在BrCH=CHBr分子中,C—Br键采用的成键轨道是()

【导学号:90990044】A.sp-p B.sp2-s

C.sp2-p D.sp3-p

【解析】分子中的两个碳原子都是采用sp2杂化,溴原子的价电子排布式为4s24p5,4p轨道上有一个单电子,与碳原子的一个sp2杂化轨道成键。

【答案】C

3.下列分子中的中心原子杂化轨道的类型相同的是()

A.CO2与SO2B.CH4与NH3

C.BeCl2与BF3D.C2H4与C2H2

【解析】中心原子的杂化情况为:A选项CO2为sp杂化,SO2为sp2杂化,不合题意;B选项中CH4为sp3杂化,NH3也为sp3杂化,符合题意;C选项中BeCl2为sp杂化,BF3为sp2杂化,不合题意;D选项中C2H4为sp2杂化,C2H2为sp杂化,不合题意。

【答案】B

题组2杂化轨道类型与分子构型

4.甲烷分子(CH4)失去一个H+,形成甲基阴离子(CH-3),在这个过程中,下列描述不合理的是()

A.碳原子的杂化类型发生了改变

B.微粒的形状发生了改变

C.微粒的稳定性发生了改变

D.微粒中的键角发生了改变

【解析】CH4为正四面体结构,而CH-3为三角锥形结构,形状、键角、稳定性均发生改变,但杂化类型不变,仍是sp3杂化。

【答案】A

5.下列说法中正确的是() 【导学号:90990045】A.NCl3分子呈三角锥形,这是氮原子采取sp2杂化的结果

B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道

C.中心原子采取sp3杂化的分子,其立体构型可能是四面体形或三角锥形或V形

D.AB3型的分子立体构型必为平面三角形

【解析】NCl3分子中心氮原子上的价层电子对数=σ键电子对数+孤电子

对数=3+5-3×1

2=4,因此NCl3分子中氮原子以sp

3杂化,选项A错误;sp3杂

化轨道是原子最外电子层上的s轨道和3个p轨道“混杂”起来,形成能量相等、成分相同的4个轨道,选项B错误;一般中心原子采取sp3杂化的分子所得到的立体构型为四面体形,如甲烷分子,但如果有杂化轨道被中心原子上的孤电子对占据,则构型发生变化,如NH3、PCl3分子是三角锥形,选项D错误,选项

C正确。

【答案】C

6.根据杂化轨道理论可以判断分子的立体构型,试根据相关知识填空:

(1)AsCl3分子的立体构型为________,其中As的杂化轨道类型为________。

(2)CS2分子中C原子的杂化轨道类型是________。

(3)CH3COOH中C原子轨道杂化类型为________。

【解析】(1)AsCl3中As元素价电子对数为4,As的杂化方式为sp3杂化,AsCl3分子的立体构型为三角锥形。(2)CS2的结构式为S===C===S,C原子形成2个双键,无孤电子对,所以为sp杂化。(3)CH3COOH的结构式为

,分子中甲基上的碳原子采用sp3杂化,羧基中碳原子采用sp2杂化。

【答案】(1)三角锥形sp3(2)sp(3)sp3、sp2

配合物理论简介

[基础·初探]

1.“电子对给予-接受键”被称为配位键。一方提供孤电子对,一方有空轨道接受孤电子对。通常把金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物称为配位化合物,简称配合物。

2.Cu2++2NH3·H2O===Cu(OH)2↓+2NH+4;

Cu(OH)2+4NH3===[Cu(NH3)4]2++2OH-

在[Cu(NH3)4]2+中Cu2+称为中心离子,NH3称为配体,4称为配位数。颜色是深蓝色;[Fe(SCN)]2+的颜色是血红色。

[探究·升华]

[思考探究]

配位键实质是一种特殊的共价键,配位键的共用电子对由成键原子单方面提供,普通共价键的共用电子对则由成键原子双方共同提供,但实质是相同的。

问题思考:

(1)NH+4中的配位键与其他三个N—H键的键参数是否相同?

【提示】相同。NH+4可看成NH3分子结合1个H+后形成的,在NH3中中心原子氮采取sp3杂化,孤电子对占据一个轨道,3个未成键电子占据另3个杂化轨道,分别结合3个H原子形成3个σ键,由于孤电子对的排斥,所以立体构型为三角锥形,键角压缩至107°。但当有H+时,N原子的孤电子对会进入H +的空轨道,以配位健形成NH+4,这样N原子就不再存在孤电子对,键角恢复至109°28′,故NH+4为正四面体形,4个N—H键完全一致,配位键与普通共价键形成过程不同,但性质相同。

(2)配合物[Cu(NH3)4]SO4中含有的化学键类型有哪些?

【提示】[Cu(NH3)4]SO4中含有的化学键有离子键、共价键和配位键。

(3)NH3和BF3可以通过配位键形成NH3·BF3,试分析提供孤电子对、空轨道的分别是哪种原子?你能写出NH3·BF3的结构式吗?

【提示】N原子提供孤电子对,B原子提供空轨道,NH3·BF3的结构式可

表示为。

(4)配制银氨溶液时,向AgNO3溶液中滴加氨水,先生成白色沉淀,后沉淀逐渐溶解,为什么?

【提示】因为氨水呈弱碱性,滴入AgNO3溶液中,会形成AgOH白色沉淀,继续滴加氨水时,NH3分子与Ag+形成[Ag(NH3)2]+配合离子,配合离子很稳定,会使AgOH逐渐溶解,反应过程如下:

Ag++NH3·H2O===AgOH↓+NH+4,

AgOH+2NH3·H2O===[Ag(NH3)2]++OH-+2H2O。

[认知升华]

1.配合物的组成

配合物[Cu(NH3)4]SO4的组成如下图表示。

(1)中心原子:提供空轨道能接受孤电子对的原子或金属阳离子。配合物的中心原子一般是带正电荷的阳离子,最常见的是过渡金属的原子或离子。

(2)配体:含有孤电子对的原子、分子或阴离子。

①阴离子:如X-(卤素离子)、OH-、SCN-、CN-、RCOO-、PO3-4等。

②分子:如H2O、NH3、CO、醇、胺、醚等。

③原子:常为ⅤA、ⅥA、ⅦA族元素的原子。

(3)配位数:直接同中心原子配位的原子或离子的数目叫中心原子的配位数。如[Fe(CN)6]4-中Fe2+的配位数为6,[Cu(NH3)4]Cl2中Cu2+的配位数为4。

(4)配合物离子的电荷数:等于中心原子或离子与配位体总电荷数的代数和。如[Co(NH3)5Cl]n+中,中心离子为Co3+,n=2。

2.形成配合物的条件

(1)配体有孤电子对;(2)中心原子有空轨道。

3.配合物的稳定性

配合物具有一定的稳定性。配合物中的配位键越强,配合物越稳定。当作为中心原子的金属离子相同时,配合物的稳定性与配体的性质有关。

4.配合物形成时性质的改变

(1)颜色的改变,如Fe(SCN)3的形成;

(2)溶解度的改变,如AgCl―→[Ag(NH3)2]+。

[题组·冲关]

题组1配位键的形成与判断

1.下列不能形成配位键的组合是()

A.Ag+NH3B.H2O H+

C.Co3+CO D.Ag+H+

【解析】在A、B、C三项中,Ag+、H+、Co3+都能提供空轨道,而NH3、H2O、CO都能提供孤电子对,所以能形成配位键;D项中Ag+和H+都只能提供空轨道,无提供孤电子对的微粒,所以不能形成配位键。

【答案】D

2.下列分子或离子中,能提供孤电子对与某些金属离子形成配位键的是()

①H2O②NH3③F-④CN-⑤CO

A.①②B.①②③

C.①②④D.①②③④⑤

【解析】配体是含有孤电子对的阴离子或分子,这几种微粒的结构中都含有孤电子对。

【答案】D

3.在NH+4中存在4个N—H共价键,则下列说法正确的是()

A.4个共价键的键长完全相同

B.4个共价键的键长完全不同

C.原来的3个N—H的键长完全相同,但与通过配位键形成的N—H键不同

D.4个N—H键键长相同,但键能不同

【解析】NH+4可看成NH3分子结合1个H+后形成的,在NH3中中心原子氮采取sp3杂化,孤电子对占据一个轨道,3个未成键电子占据另3个杂化轨道,分别结合3个H原子形成3个σ键,由于孤电子对的排斥,所以立体构型为三角锥形,键角压缩至107°。但当有H+时,N原子的孤电子对会进入H+的空轨道,以配位键形成NH+4,这样N原子就不再存在孤电子对,键角恢复至109°28′,故NH+4为正四面体形,4个N—H键完全一致,配位键与普通共价键形成过程不同,但性质相同。

【答案】A

题组2配合物的组成与性质

4.下列关于配位化合物的叙述中,不正确的是()

A.配位化合物中必定存在配位键

B.配位化合物中只有配位键

C.[Cu(H2O)4]2+中的Cu2+提供空轨道,H2O中的氧原子提供孤电子对形成配位键

D.配位化合物在半导体等尖端技术、医学科学、催化反应和材料化学等领域都有着广泛的应用

【解析】含有配位键的化合物就是配位化合物,但配位化合物还会含有共价键、离子键等,B错误。

【答案】B

5.下列微粒中含配位键的是()

①N2H+5②CH4③OH-④NH+4

⑤Fe(CO)3⑥Fe(SCN)3⑦H3O+

⑧Ag(NH3)2OH

A.①②④⑦⑧B.③④⑤⑥⑦

C.①④⑤⑥⑦⑧D.全部

【解析】形成配位键的条件是一个原子(或离子)有孤电子对,另一个原子(或离子)有空轨道。在②CH4、③OH-中,中心原子碳和氧的价电子已完全成键,没有孤电子对。

【答案】C

6.(1)在[Ni(NH3)6]2+中Ni2+与NH3之间形成的化学键称为__________,提供孤电子对的成键原子是________。

(2)CaF2难溶于水,但可溶于含Al3+的溶液中,原因是_________________________________________________________________。

(用离子方程式表示,已知AlF3-6在溶液中可稳定存在)。

(3)配合物[Cr(H2O)6]3+中,与Cr3+形成配位键的原子是________(填元素符号)。

【解析】(1)Ni2+与NH3之间形成共价键时Ni2+提供空轨道,N提供孤电子对,形成配位键。(2)CaF2中存在沉淀溶解平衡:CaF2(s)Ca2+(aq)+2F-(aq),溶液中的F-与Al3+形成配位离子AlF3-6,使沉淀溶解平衡向右移动,导致氟化钙溶解。(3)H2O分子中的O原子有孤对电子,能与Cr3+形成配位键。

【答案】(1)配位键N(2)3CaF2+Al3+===3Ca2++AlF3-6(3)O

【规律总结】形成配合物后,物质的性质会发生一定的变化,主要有三个方面的变化:

(1)一些难溶于水的金属化合物形成配合物后,易溶解;

(2)当简单离子形成配合物时颜色会发生改变,利用此性质可检验离子的存在;

(3)形成配合物后,物质的稳定性增强。

高中化学选修3知识点总结

高中化学选修3知识点总结 二、复习要点 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。 2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。 (2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,n p能级各有3个原子轨道,相互垂直(用p x、p y、p z表示);n d能级各有5个原子轨道;n f能级各有7个原子轨道。 4、核外电子排布规律 (1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 (2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。 (3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。 (4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。 能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。 电子数 (5)(n-1)d能级上电子数等于10时,副族元素的族序数=n s能级电子数 (二)元素周期表和元素周期律 1、元素周期表的结构 元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。 (1)原子的电子层构型和周期的划分 周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。 (2)原子的电子构型和族的划分 族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。 (3)原子的电子构型和元素的分区 按电子排布可把周期表里的元素划分成5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。 2、元素周期律

高中化学《配合物理论简介》教案

第二节分子的立体结构 第三课时 教学目标 1.配位键、配位化合物的概念 2.配位键、配位化合物的表示方法 教学重点 配位键、配位化合物的概念 教学难点 配位键、配位化合物的概念 教学方法 1.通过图片模型演示,让学生对增强配合物感性认识。 2.通过随堂实验、观察思考、查阅资料等手段获取信息,学习科学研究的方法。教学具备 1. 多媒体教学投影平台,试管、胶头滴管 2. ①CuSO4②CuCl2·2H2O ③CuBr2④NaCl ⑤K2SO4 ⑥KBr ⑦氨水⑧乙醇 ⑨FeCl3⑩KSCN 教学过程

提出问题:什么是配位键。 放影配位键的形成过程。 归纳配位键的形成条件: 四、配合物理论简介 1.配位键 共享电子对由一个原子单方面提供而跟另一个原子共享的共价键叫 做配位键。(是一类特殊的共价键) 如NH+ 4 的形成:NH3+H+ ====== NH+ 4 氨分子的电子式是,氮原子上有对孤对电子。当氨分子跟氢 离子相作用时,氨分子中氮原子提供一对电子与氢原子共享,形成了配 位键。配位键也可以用A→B来表示,其中A是提供孤对电子的原子, 叫做给予体;B是接受电子的原子,叫做接受体。 可见,配位键的成键条件是:给予体有孤对电子;接受体有空轨道。 把抽象的 理论直观 化 给予学生 探索实践 机会,增 强感性认 识。 对上述现象,请给予合理解释 图片展示,视觉感受,直观理解。 阅读了解配位化合物的定义学生阅读课本第43页,归纳:(学生代表回答) 实验证明,上述实验中呈天蓝色的物质是水合铜离子,可表示为 [Cu(H2O)4]2+,叫做四水合铜离子。在四水合铜离子中,铜离子与水分子 之间的化学键是由水分子提供孤对电子对给予-铜离子,铜离子接受水 分子的孤对电子形成的,这类“电子对给予-接受键”就是配位键。如 图2-28: 其结构简式可表示为:(见上右图) 2. 配位化合物 (1)定义: (2)配合物的形成{以[Cu(NH3)4]2+的形成为例}: 加强学 生的自 学能力 和组织、 推断能 力。 培养阅 读能力

高中参考资料化学人教版选修3 第二章 训练4 杂化轨道理论

训练4杂化轨道理论 [基础过关] 一、原子轨道杂化与杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.下列关于杂化轨道的叙述正确的是() A.杂化轨道可用于形成σ键,也可用于形成π键 B.杂化轨道可用来容纳未参与成键的孤电子对 C.NH3中N原子的sp3杂化轨道是由N原子的3个p轨道与H原子的s轨道杂化而成的 D.在乙烯分子中1个碳原子的3个sp2杂化轨道与3个氢原子的s轨道重叠形成3个C—H σ键二、杂化轨道类型及其判断 3.根据价层电子对互斥理论及原子的杂化轨道理论判断NF3分子的立体构型和中心原子的杂化方式为 () A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 4.在BrCH===CHBr分子中,C—Br键采用的成键轨道是() A.sp—p B.sp2—s C.sp2—p D.sp3—p 5.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2和SO2B.CH4和NH3 C.BeCl2和BF3D.C2H2与C2H4 三、杂化轨道类型与分子构型 6.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取s p3杂化的分子,其立体构型可能是四面体形或三角锥形或V形 D.AB3型的分子立体构型必为平面三角形 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为[H··N H , H · · H]+,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s-p σ键D.甲醛分子为平面三角形,有一个π键垂直于三角形平面 8.甲烷分子(CH4)失去一个H+,形成甲基阴离子(CH-3),在这个过程中,下列描述不合理的是

杂化轨道理论(图解)

杂化轨道理论(图解)一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数101246含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特和美国的马利肯两位化学家提出分子轨道理论,简称MO理论。马利肯由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

2015-2016学年《配合物理论简介》导学案

第3课时配合物理论简介 1.了解配位键、配位化合物。 2.能说明简单配合物的结构 1.配位键 (1)Cu2+的电子排布式为①1s2s2p3s3p3d。 (2)[Cu(H2O)4]2+的名称为②四水合铜离子,呈③天蓝色。在此离子中铜离子与水分子之间的化学键是由水分子提供孤电子对给铜离子,铜离子接受水分子提供的孤电子对形成的,这类“电子对给予接受键”被称为配位键。 (3)配位键的形成条件是一方④有孤电子对,另一方⑤有空轨道。 2.配位化合物 (1)配位化合物:通常把金属离子(或原子)与某些分子或离子(称为配体)以⑥配位键结合形成的化合物称为配位化合物。 (2)[Cu(H2O)4]2+中Cu2+称为⑦中心离子,H2O称为⑧配体,4称为⑨配位数。 3.与配位键有关的几个重要反应 (1)完成下列反应: ①Cu2++2NH3·H2O⑩Cu(OH)↓+2N H4+。 ②Cu(OH)2+4NH3·H2O[Cu(NH3)4]+2OH+4H2O。

(2)向氯化铁溶液中加入一滴硫氰化钾溶液,现象为溶液呈血红色。离子方程式为 。 (3)氨气与盐酸反应的离子方程式为,铵根离子中的化学键类型是三个σ键一个配位键,空间构型是正四面体形。氮原子的杂化方式是sp。 (4)AgCl+2NH3·H2O[Ag(NH3)2]+Cl+2H2O。 (5)AgNO3+NH3·H2O AgOH↓+NH NO,AgOH+2NH3·H2O Ag(NH)OH+2H O。 1.配位键与一般共价键有什么区别? 2.氯化铵是否属于配位化合物? 3.配位键是电子云重叠形成的吗? 4.为什么过渡金属容易形成配位键? 5.已知配合物的品种超过数百万,是一个庞大的化合物家族。它们的共同特点是什么?

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz 2 dx 2-y 2 dxy dxz dyz 二、共价键理论与分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)与1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。她们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总就是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k ?u`veilent]bond[b ?nd])。用黑点代表价电子(即最外层s,p 轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l ?un ]pair[pε?]electron[i`lektr ?n])。Lewis 结构式的书写规则又称八隅规则(即8电子结构)。 评价 贡献:Lewis 共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与 PCl 5 SF 6 BeCl 2 BF 3 NO,NO 2 … 中心原子周围价电子数 10 12 4 6 含奇数价电子的分子 … ③、不能解释某些分子的性质。含有未成对电子的分子通常就是顺磁性的(即它们在磁场中表现出磁性)例如O 2。 2、1927年德国的海特勒Heitler 与美籍德国人的伦敦London 两位化学家建立了现代价键理论,简称VB 理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F 、Hund)与美国的马利肯(R 、S 、Mulliken)两位化学家提出分子轨道理论,简称MO 理论。马利肯(R 、S 、Mulliken)由于建立与发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO 法与VB 法就是两种根本不同的物理方法;都就是电子运动状态的近似描述;在一定条

配合物理论简介化学选修三

实验:展示①CuSO4、②CuCl2·2H2O、③NaCl、④K2SO4固体的颜色,将它们溶于水,观察水溶液的颜色。 现象:CuSO4、CuCl2的溶液呈天蓝色,NaCl、K2SO4的溶液为无色。 思考:1)固态时,Cu2+、SO42-、Cl-呈什么颜色? 2)水溶液中,Cu2+、SO42-、Cl-呈什么颜色? 3)为什么Cu2+在固态时和水溶液中的颜色不同? 1、配位键: (1)概念:共用电子对由一个原子单方向提供给另一原子共用所形成的共价键。 (2)表示: A → B 电子对给予体电子对接受体 (3)条件:其中一个原子必须提供孤对电子,另一原子必须有能接受孤对的原子轨道。 举例:H3O+ () NH4+() 2、配位化合物 (1)概念:金属离子或原子与某些分子或离子以配位键结合而形成的化合物称为配位化合物,简称配合物。 作为电子对接受体的金属离子或原子称为中心离子(原子),又称配合物的形成体,作为电子对给予体的分子或离子称为配体。

[Cu(H2O)4]2+的空间结构为平面正方形。 (2)配合物的结构 [Cu(NH3)4]SO4为例说明。 注意:离子型配合物是由内界和外界组成,内界由中心离子和配体组成。 (3)配合物的命名 例如:[Cu(NH3)4]SO4硫酸四氨合铜 练习:对下列配合物进行命名 [Cu(NH3)4]Cl2K3[Fe(SCN)6] Na3[AlF6] 3、几种常见的配合物 实验:硫酸四氨合铜的制备。 现象:向CuSO4溶液中加入氨水,生成蓝色沉淀,继续加入氨水,沉淀溶解,得到深蓝色溶液。再加入乙醇,析出深蓝色的晶体。 有关反应的离子方程式为:

化学选修三知识点

第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。 说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,

一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3的轨道式 为或 ,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K :[Ar]4s1。 (2)电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 二.原子结构与元素周期表 1.原子的电子构型与周期的关系 (1)每周期第一种元素的最外层电子的排布式为ns1。每周期结尾元素的最外层电子排布式除He 为1s2外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的电子排布跟其他周期不同。 (2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量相同的能级,而是能量相近的能级。 2.元素周期表的分区 (1)根据核外电子排布 ①分区 ②各区元素化学性质及原子最外层电子排布特点 ↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

人教版高中数学选修三分子的立体构型练习题

高中化学学习材料 (精心收集**整理制作) 第二节分子的立体结构(第一课时) 【案例练习】 1、下列物质中,分子的立体结构与水分子相似的是() A、CO2 B、H2S C、PCl3 D、SiCl4 2、下列分子的立体结构,其中属于直线型分子的是() A、H2O B、CO2 C、C2H2 D、P4 3、写出你所知道的分子具有以下形状的物质的化学式,并指出它们分子中的键角分别是多少?(1)直线形 (2)平面三角形 (3)三角锥形 (4)正四面体 4、下列分子中,各原子均处于同一平面上的是() A、NH3 B、CCl4 C、H2O D、CH2O 参考答案: 第二节分子的立体结构(第二课时) 【案例练习】 1、下列分子中心原子是sp2杂化的是() A、PBr3 B、CH4 C、BF3 D、H2O 2、氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是因为 A.两种分子的中心原子的杂化轨道类型不同,NH3为sp2型杂化,而CH4是sp3型杂化 B.NH3分子中N原子形成三个杂化轨道,CH4分子中C原子形成4个杂化轨道 C.NH3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强 D.氨气分子是极性分子而甲烷是非极性分子 3、用Pauling的杂化轨道理论解释甲烷分子的四面体结构,下列说法不正确的是() A、C原子的四个杂化轨道的能量一样 B、C原子的sp3杂化轨道之间夹角一样 C、C原子的4个价电子分别占据4个sp3杂化轨道 D、C原子有1个sp3杂化轨道由孤对电子占据 4、用VSEPR 理论判断 物质成键电子对数孤电子对数分子或离子的形状 H2O NH4+ BF3

H3O+ 参考答案: 第二节分子的立体结构(第三课时) 【案例练习】 1、在[Cu(NH3)4]2+配离子中NH3与中心离子Cu2+结合的化学键是 A.离子键 B.非极性键 C.极性键 D.配位键 2、与人体血液中血红蛋白以配位键结合的一种有毒气体是 A.氯气 B.氮气 C.一氧化碳 D.甲烷 3、向盛有硫酸铜水溶液的试管里加入氨水,首先形成难溶物,继续添加氨水,难溶物 溶解得到深蓝色的透明溶液。下列对此现象说法正确的是 A.反应后溶液中不存在任何沉淀,所以反应前后Cu2+的浓度不变。 B.沉淀溶解后,将生成深蓝色的配合离子[Cu(NH3)4] 2+。 C.向反应后的溶液加入乙醇,溶液将会没有发生变化,因为[Cu(NH3)4] 2+不会与乙醇发生反应。 D.在[Cu(NH3)4] 2+离子中,Cu2+给出孤对电子,NH3提供空轨道。 4、下列属于配合物的是() A、NH4Cl B、Na2CO3﹒10H2O C、CuSO4﹒5H2O D、Co(NH3)6Cl3 参考答案:1D 2C 3B 4D 5B

化学 选修3课后习题

化学(选修3)课后习题 第一章原子结构与性质 1、原子结构 1.以下能级符号正确的是() A.6s B.2d C.3f D.7p 2.以下各能层中不包含p能级的是() A.N B.M C.L D.K 3、以下能级中轨道数为3的是() A.s能级B.p能级C.d能级D.f能级 4.下列各原子或离子的电子排布式错误的是() A.K+1s22s22p63s23p6B.F 1s22s22p5 C.S2-1s22s22p63s23p4D.Ar 1s22s22p63s23p6 5.下列各图中哪一个是氧原子最外层的电子排布图?() 6.以下电子排布式是不是基态原子的电子排布? A.1s12s1 ()B.1s22s12p1() C.1s22s22p63s2()D. 1s22s22p63p1 () 7.按构造原理写出第9、17、35号元素原子的电子排布式。它们核外电子分别有几层?最外层电子数分别为多少? 8.在元素周期表中找出钠和硫,按构造原理写出它们的电子排布式和电子排布图,并预言它们的最高价化合价和最低化合价。 2、原子结构与元素的性质 1.从原子结构的观点看,元素周期表中同一横行的短周期元素,其相同,不同;同一纵行的主族元素,其相同,不同。 2.除第一和第七周期外,每一周期的元素都是从元素开始,以结束。 3

4.甲元素原子核电荷数为17,乙元素的正二价离子跟氩原子的电子层结构相同: (1)甲元素在周期表中位于第周期,第主族,电子排布式是,元素符号是,它的最高价氧化物对应的水化物的化学式是 (2)乙元素在周期表中位于第周期,第主族,电子排布式是,元素符号是,它的最高价氧化物对应的水化物的化学式是 5.主族元素和副族元素的电子排布有什么不同的特征?主族元素的价电子层和副族元素的价电子层有何不同? 6.有人把氢在周期表中的位置从ⅠA移至ⅦA,怎样从电子排布和化合价理解这种做法? 7.元素的金属性与非金属性随核电荷数递增呈现周期性变化,给出具体例子对这种变化进行陈述。 8.怎样理解电负性可以度量金属性与非金属性的强弱? 9.元素的化合价为什么会随原子的核电荷数递增呈现周期性的变化? *10.假设元素周期系可以发展到第八周期,而且电子仍按构造原理填入能级,第八周期总共 应为多少种元素? 复习题 1.下列说法正确的是() A.处于最低能量的原子叫做基态原子 B.3p2表示3p能级有两个轨道 C.同一原子中,1s、2s、3s电子的能量逐渐减小 D.同一原子中,2p、3p、4p能级的轨道数依次增多 2.X、Y、Z三种元素的原子,其最外层电子排布分别为ns1、3s23p1和2s22p4,由这三种元素组成的化合物的化学式可能是() A.XYZ2B.X2YZ3C.X2YZ2D.XYZ3 3、下列说法中,不符合ⅦA族元素性质特征的是() A.从上到下原子半径逐渐减小

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数10 12 4 6 含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

同步练习 2.2.2 杂化轨道理论(人教版选修3) (2)

2.2 分子的立体构型第2课时杂化轨道理论 练基础落实 知识点1杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.关于原子轨道的说法正确的是() A.凡是中心原子采取sp3杂化方式成键的分子其几何构型都是正四面体 B.CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混合起来而形成的 C.sp3杂化轨道是由同一个原子中能量相近的s轨道和p轨道混合起来形成的一组能量相近的新轨道 D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化方式成键 3.根据价层电子对互斥理论及原子的杂化理论判断NF3分子的空间构型和中心原子的杂化方式为() A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 知识点2利用杂化轨道判断分子的空间构型 4.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2与SO2B.CH4与NH3 C.BeCl2与BF3D.C2H2与C2H4 5.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取sp3杂化的分子,其几何构型可能是四面体形或三角锥形或V形 D.AB3型的分子空间构型必为平面三角形 6.下列分子的空间构型可用sp2杂化轨道来解释的是() ①BF3②CH2===CH2③④CH≡CH ⑤NH3⑥CH4 A.①②③B.①⑤⑥C.②③④D.③⑤⑥ 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s—p σ键 D.CH4分子中的碳原子以4个sp3杂化轨道分别与4个氢原子的1s轨道重叠,形成C—H σ键

人教版高中化学选修3知识点总结:第二章分子结构与性质

第二章分子结构与性质 课标要求 1.了解共价键的主要类型键和键,能用键长、键能和键角等说明简单分子的某些性质 2.了解杂化轨道理论及常见的杂化轨道类型(sp、sp2、sp3),能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的空间结构。 3.了解简单配合物的成键情况。 4.了解化学键合分子间作用力的区别。 5.了解氢键的存在对物质性质的影响,能列举含氢键的物质。 要点精讲 一.共价键 1.共价键的本质及特征 共价键的本质是在原子之间形成共用电子对,其特征是具有饱和性和方向性。 2.共价键的类型 ①按成键原子间共用电子对的数目分为单键、双键、三键。 ②按共用电子对是否偏移分为极性键、非极性键。 ③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性。 3.键参数 ①键能:气态基态原子形成1 mol化学键释放的最低能量,键能越大,化学键越稳定。 ②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。 ③键角:在原子数超过2的分子中,两个共价键之间的夹角。 ④键参数对分子性质的影响 键长越短,键能越大,分子越稳定. 4.等电子原理[来源:学§科§网] 原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。 二.分子的立体构型 1.分子构型与杂化轨道理论 杂化轨道的要点 当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同。 2分子构型与价层电子对互斥模型 价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。 (1)当中心原子无孤对电子时,两者的构型一致; (2)当中心原子有孤对电子时,两者的构型不一致。 3.配位化合物 (1)配位键与极性键、非极性键的比较 (2)配位化合物 ①定义:金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物。 ②组成:如[Ag(NH3)2]OH,中心离子为Ag+,配体为NH3,配位数为2。 三.分子的性质 1.分子间作用力的比较

2018-2019学年高中化学选修3练习:第二章第二节第2课时杂化轨道理论与配合物理论简介

第二章第二节第2课时杂化轨道理论与配合物理论简介知识点一杂化轨道理论的考查 1.下列关于杂化轨道的说法错误的是() A.并不是所有的原子轨道都参与杂化 B.同一原子中能量相近的原子轨道参与杂化 C.杂化轨道能量集中,有利于牢固成键 D.杂化轨道中一定有电子 2.下列描述正确的是() A.CS2为V形极性分子 B.SiF4与S的中心原子均为sp3杂化 C.C2H2中σ键与π键的数目比为1∶1 D.水加热到很高温度都难分解是因水分子间存在氢键 3.下列分子中画横线的原子采取的杂化方式为sp杂化的是() A.CH4 B.C2H4 C.C2H2 D.NH3 知识点二配合物理论的考查 4.以下微粒含配位键的是() ①N2②CH4③OH-④N⑤Fe(CO)5⑥Fe(SCN)3⑦H3O+⑧[Ag(NH3)2]OH A.①②④⑦⑧ B.③④⑤⑥⑦ C.①④⑤⑥⑦⑧ D.全部

5.化合物NH3与BF3可以通过配位键形成NH3·BF3。 (1)配位键的形成条件是。 (2)在NH3·BF3中,原子提供孤电子对,原子提供空轨道。 (3)写出NH3·BF3的结构式并用“→”标出配位键:。 6.[2019·福建华安一中开学考试]下列说法中正确的是() A.SO2、CO2、SiO2中的S、C、Si均为sp3杂化 B.H3O+、N、[Cu(NH3)4]2+均含有配位键 C.S、C、Si均为平面三角形 D.NH3、CH4中的N、C分别为sp2、sp3杂化,因此分子空间构型不同 7.下列描述中正确的是() A.Cl的空间构型为平面三角形 B.SiF4和S的中心原子均为sp3杂化 C.在所有的元素中,氟的第一电离能最大 D.C2H5OH分子中共含有8个极性键,1个π键 8.分析原子的杂化方式,并根据等电子体原理判断下列各组分子中的所有原子处于同一平面,或者在一条直线上的是() A.C2H2、HClO、C2H6 B.CO2、N2O、HC≡C—NH2 C.C6H5CH3、C3H4、CH4 D.C6H6、C2H4、HCN 9.甲醛分子的结构式为,下列描述正确的是() A.甲醛分子中有4个σ键 B.甲醛分子中的C原子为sp3杂化

高中化学第2章微型专题三分子离子空间构型与杂化轨道类型的判断教案鲁科版选修3

微型专题(三) 分子(离子)空间构型与杂化轨道类型的判断 [学习目标定位] 1.能利用价电子对互斥理论和杂化轨道理论判断和解释分子或离子的空间构型。2.能利用共价键类型及杂化轨道理论判断中心原子的杂化类型。 一、杂化轨道类型的判断 例1 下列分子中的中心原子杂化轨道的类型相同的是( ) A.BeCl2与BF3B.CO2与SO2 C.CCl4与NH3D.C2H2与C2H4 【考点】杂化轨道理论的应用 【题点】中心原子杂化类型的判断 答案 C 解析BeCl2分子、BF3分子中杂化轨道数分别为2、3,中心原子杂化轨道类型分别为sp1、sp2;CO2分子中杂化轨道数为2,SO2分子中杂化轨道数为3,中心原子杂化轨道类型分别为sp1、sp2;C项中中心原子杂化轨道类型均为sp3;D项中中心原子杂化轨道类型分别为sp1、sp2。 方法点拨 含双键或叁键的分子的中心原子的杂化轨道类型还可以根据π键数目判断,如1个CO2、C2H2、C2H4分子中π键数目分别为2、2、1,碳原子杂化轨道类型分别为sp1、sp1、sp2。 相关链接 杂化轨道类型判断方法小结 (1)由杂化轨道数目判断 杂化轨道数=中心原子孤电子对数+中心原子结合的原子数。 即: (2)根据杂化轨道的空间分布判断中心原子杂化轨道类型:①若杂化轨道在空间的分布为正四面体形或三角锥形,则分子的中心原子采取sp3杂化;②若杂化轨道在空间的分布为平面三角形,则分子的中心原子采取sp2杂化;③若杂化轨道在空间的分布为直线形,则分子的中心原子采取sp1杂化。 (3)根据杂化轨道之间的夹角判断中心原子杂化轨道类型:若杂化轨道之间的夹角为

高中化学选修3练习:第二章第二节第2课时杂化轨道理论与配合物理论简介

第二章第二节第2课时杂化轨道理论与配 合物理论简介 知识点一杂化n加油轨道理论的考查 1.下列关于杂化轨道的说法错误的是() A.并不是所有的原子轨道都参与杂化 B.同一原子中能量相近的原子轨道参与杂化 C.杂化轨道能量集中,有利于牢固成键 D.杂化轨道中一定有电子 2.下列描述正确的是() A.CS2为V形极性分子 B.SiF4与S的中心原子均为sp3杂化 C.C2H2中σ键与π键的数目比为1∶1 D.水加热到很高温度都难分解是因水分子间存在氢键 3.下列分子中画横线的原子采取的杂化方式为sp杂化的是() A.CH4 B.C2H4 C.C2H2 D.NH3 知识点二配合物理论的考查 4.以下微粒含配位键的是() ①N2②CH4③OH-④N⑤Fe(CO)5⑥Fe(SCN)3⑦H3O+⑧[Ag(NH3)2]OH A.①②④⑦⑧ B.③④⑤⑥⑦

C.①④⑤⑥⑦⑧ D.全部 5.化合物NH3与BF3可以通过配位键形成NH3·BF3。 (1)配位键的形成条件是。 (2)在NH3·BF3中,原子提供孤电子对,原子提供空轨道。 (3)写出NH3·BF3的结构式并用“→”标出配位键:。 6.[2019·福建华安一中开学考试]下列说法中正确的是() A.SO2、CO2、SiO2中的S、C、Si均为sp3杂化 B.H3O+、N、[Cu(NH3)4]2+均含有配位键 C.S、C、Si均为平面三角形 D.NH3、CH4中的N、C分别为sp2、sp3杂化,因此分子空间构型不同 7.下列描述中正确的是() A.Cl的空间构型为平面三角形 B.SiF4和S的中心原子均为sp3杂化 C.在所有的元素中,氟的第一电离能最大 D.C2H5OH分子中共含有8个极性键,1个π键 8.分析原子的杂化方式,并根据等电子体原理判断下列各组分子中的所有原子处于同一平面,或者在一条直线上的是() A.C2H2、HClO、C2H6 B.CO2、N2O、HC≡C—NH2 C.C6H5CH3、C3H4、CH4

新课标高中化学选修3第二节杂化轨道理论配合物理论

第2课时 杂化轨道理论配合物理论 学业要求素养对接 1.能运用杂化轨道理论解释和预测简单分子的立体构型。 2.知道配位键的特点,认识简单的配位化合物的成键特征,了解配位化合物的存在与应用。微观探析:运用杂化轨道理论、配合物理论。 模型认知:根据杂化轨道理论确定简单分子的立体构型、根据配合物理论模型解释配合物的某些典型性质。 [知识梳理] 一、杂化轨道理论简介 1.用杂化轨道理论解释甲烷分子的形成 在形成CH4分子时,碳原子的一个2s轨道和三个2p轨道发生混杂,形成四个能量相等的sp3杂化轨道。四个sp3杂化轨道分别与四个H原子的1s轨道重叠成键形成CH4分子,所以四个C—H键是等同的。可表示为 C原子的杂化轨道 2.杂化轨道的类型与分子立体构型的关系 杂化类型sp sp2sp3 参与杂化的原子轨道及数目n s 1 1 1 n p 1 2 3 杂化轨道数目 2 3 4 杂化轨道 间的夹角 180°120°109°28′

杂化轨道示意图 立体构型直线形 平面 三角形 正四面 体形 实例BeCl2、 CO2、 CS2 BCl3、 BF3、 BBr3 CF4、 SiCl4、 SiH4 【自主思考】 1.用杂化轨道理论分析CH4的杂化类型和呈正四面体形的原因? 提示在形成CH4分子时,碳原子的一个2s轨道与三个2p轨道混杂,形成4个能量相等的sp3杂化轨道,分别与四个氢原子的1s轨道重叠成键形成CH4分子,4个σ键之间作用力相等,键角相等形成正四面体形。 二、配合物理论简介 1.配位键 (1)概念:共用电子对由一个原子单方面提供而跟另一个原子共用的共价键,即“电子对给予-接受键”,是一类特殊的共价键。 (2)实例:在四水合铜离子中,铜离子与水分子之间的化学键是由水分子提供孤电子对给予铜离子,铜离子接受水分子的孤电子对形成的。 (3)表示:配位键可以用A→B来表示,其中A是提供孤电子对的原子,叫做配体;B是接受电子对的原子。例如: ①NH+4中的配位键表示为。 ②[Cu(NH3)4]2+中的配位键表示为。

高中化学 2.2.2 杂化轨道理论课时作业 新人教版选修3

一、杂化轨道 1.碳原子的电子排布式为________________,当2s ________键;未参与杂化的p轨道可用于形成________ 1.以下关于杂化轨道的说法中,错误的是( ) A.ⅠA族元素成键时不可能有杂化轨道 B.杂化轨道既可能形成σ键,也可能形成π键

B.中心原子都采取sp杂化 C.S原子和C原子上都没有孤对电子 D.SO2为V形结构,CO2为直线形结构 -2-3-4 5.ClO-、ClO、ClO、ClO中,Cl都是以sp3杂化轨道方式与O原子成键,则 -2-3 ClO-的立体构型是________;ClO的立体构型是________;ClO的立体构型是 -4 ________;ClO的立体构型是____________。 练基础落实 知识点1 杂化轨道 1.下列有关杂化轨道的说法不正确的是( ) A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.关于原子轨道的说法正确的是( ) A.凡是中心原子采取sp3杂化方式成键的分子其几何构型都是正四面体 B.CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混合起来而形成的 C.sp3杂化轨道是由同一个原子中能量相近的s轨道和p轨道混合起来形成的一组能量相近的新轨道 D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化方式成键 3.根据价层电子对互斥理论及原子的杂化理论判断NF3分子的空间构型和中心原子的杂化方式为( ) A.直线形 sp杂化 B.三角形 sp2杂化 C.三角锥形 sp2杂化 D.三角锥形 sp3杂化 知识点2 利用杂化轨道判断分子的空间构型 4.下列分子中的中心原子杂化轨道的类型相同的是( ) A.CO2与SO2 B.CH4与NH3 C.BeCl2与BF3 D.C2H2与C2H4 5.下列说法中正确的是( ) A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道C.中心原子采取sp3杂化的分子,其几何构型可能是四面体形或三角锥形或V形 D.AB3型的分子空间构型必为平面三角形 6.下列分子的空间构型可用sp2杂化轨道来解释的是( ) ①BF3 ②CH2===CH2 ③ ④CH≡CH ⑤NH3 ⑥CH4 A.①②③ B.①⑤⑥ C.②③④ D.③⑤⑥ 7.下列推断正确的是( ) A.BF3为三角锥形分子 +4 B.NH的电子式为,离子呈平面正方形结构

相关主题
文本预览
相关文档 最新文档