当前位置:文档之家› 晶体微观缺陷对材料性能的影响

晶体微观缺陷对材料性能的影响

晶体微观缺陷对材料性能的影响
晶体微观缺陷对材料性能的影响

晶体微观缺陷对材料性能的影响

一、什么是晶体缺陷?

大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。人们理解的“固体物理”主要是指晶体。在空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。空间点阵在晶体学理论的发展中起到了重要作用。可以说,它是晶体学理论的基础。现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。

在我们讨论晶体结构时,认为晶体的结构是三维空间内周期有序的,其内部质点按照一定的点阵结构排列。这是一种理想的完美晶体,它在现实中并不存在,只作为理论研究模型。相反,偏离理想状态的不完整晶体,即有某些缺陷的晶体,具有重要的理论研究意义和实际应用价值。在理想的晶体结构中,所有的原子、离子或分子都处于规则的点阵结构的位置上,也就是平衡位置上。1926 年Frenkel 首先指出,在任一温度下,实际晶体的原子排列都不会是完整的点阵,即晶体中一些区域的原子的正规排列遭到破坏而失去正常的相邻关系。我们把实际晶体中偏离理想完整点阵的部位或结构称为晶体缺陷。

二、晶体中有哪些常见的缺陷类型?

缺陷是一种局部原子排列的破坏。按照破坏区域的几何形状,缺陷可以分为四类点缺陷、缺陷、面缺陷和体缺陷。

点缺陷:又称零维缺陷,缺陷尺寸处于原子大小的数量级上,在三维方向上尺寸都很小(远小于晶体或晶粒的线度),典型代表有空位、间隙原子等。点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。

线缺陷:又称一维缺陷,指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短。包括螺型位错与刃型位错等各类位错,线缺陷的产生及运动与材料的韧性、脆性密切相关。

面缺陷:又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。包括晶界、相界、表面、堆积层错、镶嵌结构等。面缺陷的取向及分布与材料的断裂韧性有关。

体缺陷:又称为三维缺陷,指晶体中在三维方向上相对尺度比较大的缺陷,和基质晶体已经不属于同一物相,是异相缺陷。固体材料中最基本和最重要的晶体缺陷是点缺陷,包括本征缺陷和杂质缺陷等。

然而,按缺陷产生的原因分类,又可以分为:热缺陷、杂质缺陷、非化学计量缺陷、其它原因(如电荷缺陷,辐照缺陷等)。

热缺陷:又称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。弗仑克尔缺陷(Frenkel defect)和肖脱基缺陷(Schottky defect)

热缺陷浓度与温度的关系:温度升高时,热缺陷浓度增加

杂质缺陷:又称为组成缺陷,是由外加杂质的引入所产生的缺陷。

特征:如果杂质的含量在固溶体的溶解度范围内,则杂质缺陷的浓度与温度无关。

非化学计量缺陷:指组成上偏离化学中的定比定律所形成的缺陷。它是由基质晶体与介质中的某些组分发生交换而产生。其特点是:化学组成随周围气氛的性质及其分压大小而变化。

三、缺陷对材料的性能有何影响?

以下将按照破坏区域的几何形状对晶体缺陷的分类来具体介绍晶体的缺陷对材料性质的影响。

(1)点缺陷对材料性能的影响

晶体中点缺陷的不断无规则运动和空位与间隙原子不断产生与复合是晶体中许多物理过程如扩散、相变等过程的基础。空位是金属晶体结构中固有的点缺陷,空位会与原子交换位置造成原子的热激活运输,空位的迁移直接影响原子的热运输,从而影响材料的电、热、磁等工程性能。晶体中点缺陷的存在一方面造成点阵畸变,使晶体内能升高,增加了晶体热力学不稳定性,另一方面增大了原子排列的混乱程度,改变了周围原子的振动频率。使熵值增大使晶体稳定。矛盾因素使晶体点缺陷在一定温度下有一定平衡数目。在一般情形下,点缺陷主要影响晶体的物理性质,如比容、比热容、电阻率等。

1. 比容:为了在晶体内部产生一个空位,需将该处的原子移到晶体表面上的新原子位置,导致晶体体积增大

2.比热容:由于形成点缺陷需向晶体提供附加的能量(空位生成焓),因而引起附加比热容。

3.电阻率:金属的电阻来源于离子对传导电子的散射。在完整晶体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产生强烈散射,导致晶体的电阻率增大。

4. 密度的变化:对一般金属,辐照引起体积膨胀,但是效应不明显,一般变化很少超过0.1~0.2%,这种现象可以用弗仑克尔缺陷来描述

5. 电阻:增加电阻,晶体点阵的有序结构被破坏,使原子对自由电子的散射效果提升。一般可以通过电阻分析法莱追踪缺陷浓度的变化

6.晶体结构:辐照很显著地破坏了合金的有序度,而且一些高温才稳定的相结构可以保持到室温

7.力学性能:辐照引起金属的强化和变脆(注,空位使晶格畸变类似置换原子引起的)。此外,点缺陷还影响其他物理性质,如扩散系数,内耗,介电常数等,在碱金属的卤化物晶体中,由于杂质或过多的金属离子等点缺陷对可见光的选择性吸收,会使晶体呈现色彩,这种点缺陷称为色心。

(2)线缺陷对材料性能的影响

位错是一种及重要的晶体缺陷,他对金属的塑性变形,强度与断裂有很重要的作用,塑性变形就其原因就是位错的运动,而强化金属材料的基本途径之一就是阻碍位错的运动,另外,位错对金属的扩散、相变等过程也有重要影响。所以深入了解位错的基本性质与行为,对建立金属强化机制将具有重要的理论和实际意义。金属材料的强度与位错在材料受到外力的情况下如何运动有很大的关系。如果位错运动受到的阻碍较小,则材料强度就会较高。实

际材料在发生塑性变形时,位错的运动是比较复杂的,位错之间相互反应、位错受到阻碍不断塞积、材料中的溶质原子、第二相等都会阻碍位错运动,从而使材料出现加工硬化。因此,要想增加材料的强度就要通过诸如:细化晶粒(晶粒越细小晶界就越多,晶界对位错的运动具有很强的阻碍作用)、有序化合金、第二相强化、固溶强化等手段使金属的强度增加。以上增加金属强度的根本原理就是想办法阻碍位错的运动。

(3)面缺陷对材料性能的影响

1. 面缺陷的晶界处点阵畸变大,存在晶界能,晶粒长大与晶界平直化使晶界米面积减小,晶界总能量降低,这两过程通过原子扩散进行,随温度升高与保温时间增长,有利于这两过程的进行。

2. 面缺陷原子排列不规则,常温下晶界对位错运动起阻碍作用,塑性变形抗力提高,晶界有较高的强度和硬度。晶粒越细,材料的强度越高,这就是细晶强化,而高温下刚好相反,高温下晶界又粘滞性,使相邻晶粒产生相对滑动。

3. 面缺陷处原子偏离平衡位置,具有较高的动能,晶界处也有较多缺陷,故晶界处原子的扩散速度比晶内快

4. 固态相变中,晶界能量较高,且原子活动能力较大,新相易于在晶界处优先形核,原始晶粒越细,晶界越多,新相形核率越大。

5.由于成分偏析和内吸附现象,晶界富集杂质原子情况下,晶界熔点低,加热过程中,温度过高引起晶界熔化与氧化,导致过热现象。

6. 晶界处能量较高,原子处于不稳定状态,及晶界富集杂质原子的缘故,晶界腐蚀速度较快。

(4)缺陷对半导体性能的影响

硅、锗等第4族元素的共价晶体绝对零度时为绝缘体,温度刀·高导电率增加但比金属的小得多,称这种晶体为半导体。晶体呈现半导体性能的根本原因是填满电子的最高能带与导带之间的禁带宽度很窄,温度升高部分电子可以从满带跃迁到导带成为传导电子。晶体的半导体性能决定于禁带宽度以及参与导电的载流子(电子或空穴)数目和它的迁移率。缺陷影响禁带宽度和载流子数目及迁移率,因而对晶体的半导体性能有严重影响。

1. 缺陷对半导体晶体能阶的影响

硅和锗本征半导体的晶体结构为金刚石型。每个原子与四个近邻原子共价结合。杂质原子的引入或空位的形成都改变了参与结合的共价电子数目,影响晶体的能价分布。

有时为了改善本征半导体的性能有意掺入一些三、五族元素形成掺杂半导体;而其他点缺陷如空位或除三,五族以外的别的杂质原子原则上也会形成附近能阶。位错对半导体性能影响很大,但目前只对金钢石结构的硅、锗中的位错了解得较多一点。

2. 缺陷对载流子数目的影响

点缺陷使能带的禁带区出现附加能阶,位错本身又会起悬浮键作用,它起着施主或受主的作用,另外位错俘获电子使载流子数目减少,所以半导体中实际载流子数目减少。

由于晶体缺陷对半导体材料的影响,故可以在半导体材料中有以下应用:1. 过量的Zn 原子可以溶解在ZnO 晶体中,进入晶格的间隙位置,形成间隙型离子缺陷,同时它把两个电子松弛地束缚在其周围,对外不表现出带电性。但这两个电子是亚稳定的,很容易被激发到导带中去,成为准自由电子,使材料具有半导性。2. Fe3O4 晶体中,全部的Fe2+离子和1/2 量的Fe3+离子统计地分布在由氧离子密堆所构成的八面体间隙中。因为在Fe2+ —Fe3+ —Fe2+ — Fe3+—……之间可以迁移,Fe3O4 是一种本征半导体。3. 常温下硅的导电性能主要由杂质决定。在硅中掺入VA 族元素杂质(如P、As、Sb 等)后,这些VA 族杂质替代了一部分

硅原子的位置,但由于它们的最外层有5个价电子,其中4 个与周围硅原子形成共价键,多余的一个价电子便成了可以导电的自由电子。这样一个VA 族杂质原子可以向半导体硅提供一个自由电子而本身成为带正电的离子,通常把这种杂质称为施主杂质。当硅中掺有施主杂质时,主要靠施主提供的电子导电,这种依靠电子导电的半导体被成为n 型半导体。4.在BaTiO3 陶瓷中,人们常常加入三价或五价杂质来取代Ba2+离子或Ti4+离子来形成n 型半导瓷。例如,从离子半径角度来考虑,一般使用的五价杂质元素的离子半径是与Ti4+离子半径(0.064nm)相近的,如Nb5+=0.069nm,Sb5+=0.062nm,它们容易替代Ti4+离子;或者使用三价元素,如La3+=0.122nmCe3+=0.118nm,Nd3+=0.115nm,它们接近于Ba2+离子的半径(0.143nm),因而易于替代Ba2+离子。由此可知,不管使用三价元素还是五价元素掺杂,结果大都形成高价离子取代,即形成n 型半导体。

(5)位错对铁磁性的影响

只有过渡族元素的一部分或其部分化合物是铁磁性材料。物质的铁磁性要经过外磁场的磁化作用表现出来。能量极小原理要求磁性物质是由磁矩取向各异的磁畴构成。一般说来加工硬化降低磁场H的磁化作用,磁畴不可逆移动开始的磁场Ho (起始点的磁场强度)升高,而加工则使物质的饱和磁化强度降低。

四、总结

最后,材料的微观晶体缺陷对材料的性能在材料的导热,电阻,光学,和机械性能,极大地影响材料的各种性能指标上影响很大,比如强度,塑性等。化学性能影响主要集中在材料表面性能上,比如杂质原子的缺陷会在大气环境下形成原电池模型,极大地加速材料的腐蚀,另外表面能量也会受到缺陷的极大影响,表面化学活性,化学能等等。不过其实正是有了缺陷金属材料才能有着我们需要的良好的使用性能,比如人工在半导体材料中进行掺杂,形成空穴,可以极大地提高半导体材料的性能。我们应该深入了解并且合理的利用缺陷,有效的提高材料某一方面的性能。

材料结构与性能历年真题

材料结构与性能历年真 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2009年试题 1.一外受张应力载荷力500MPa的无机材料薄板(长15cm,宽10cm,厚,其 中心部位有一裂纹(C=20μm)。该材料的弹性模量为300GPa,(1Pa=1N/m2)断裂能为15J/m2(1J=1Nm)。 a)计算该裂纹尖端应力强度因子K I (Y=) b)判断该材料是否安全 ,可知,即材料的裂纹尖端应力强度应子超过了材料的临界断裂应子,则材料不安全。 2.测定陶瓷材料的断裂韧性常用的方法有几种并说明它们的优缺点。 答: 方法优点缺点 单边切口梁法(SENB)简单、快捷①测试精度受切口宽度的影响,且过分要求窄的切口;②切口容易钝化而变宽,比较适合粗晶陶瓷,而对细晶体陶瓷测试值会偏大。 Vickers压痕弯曲梁法 (SEPB)测试精度高,结果较准 确,即比较接近真实值 预制裂纹的成功率低;控制裂纹的深度尺 寸较困难。 直接压痕法(IM)①无需特别制样;②可 利用很小的样品;③测 定H V的同时获得K IC, 简单易行。 ①试样表面要求高,无划痕和缺陷;②由 于压痕周围应力应变场较复杂,没有获得 断裂力学的精确解;③随材料性质不同会 产生较大误差;④四角裂纹长度由于压痕 周围残余应力的作用会发生变化;产生压 痕裂纹后若放置不同时间,裂纹长度也会 发生变化,影响测试精度。

3.写出断裂强度和断裂韧性的定义,二者的区别和联系。 答: 断裂强度δr断裂韧性K IC 定义材料单位截面承受应力而不发生断裂的能力材料抵抗裂纹失稳扩展或断裂能力 联系①都表征材料抵抗外力作用的能力;②都受到E、的影响,提高E、既可提高断裂强度,也可提高断裂韧性;③在一定的裂纹尺寸下,提高K IC也会提高δr,即增韧的同时也会增强。 区别除了与材料本身的性质有关外,还与 裂纹尺寸、形状、分布及缺陷等有关 是材料的固有属性,是材料的结构和显微 结构的函数,与外力、裂纹尺寸等无关 4.写出无机材料的增韧原理。 答:增韧原理:一是在裂纹扩展过程中使之产生有其他能量消耗机构,从而使外加负载的一部分或大部分能量消耗掉,而不致集中于裂纹扩展上;二是在陶瓷体中设置能阻碍裂纹扩展的物质场合,使裂纹不能再进一步扩展。 根据断裂力学,抗弯强度,断裂韧性,可以看出要提高陶瓷材料强度,必须提高断裂表面能和弹性模量以及减小裂纹尺寸;要提高断裂韧性,必须提高断裂表面能和弹性模量。 5.试比较以下材料的热导率,并按大小顺序排列,说明理由。氮化硅(Si3N4)陶 瓷、氧化镁(MgO)陶瓷、镁橄榄石(2MgO·SiO2)、纯银(Ag)、镍铬合金 (NiCr)。 答:热导率大小顺序:纯银>镍铬合金>氮化硅>氧化镁>镁橄榄石 理由:1)一般金属的热导率比非金属的热导率高,这是由于金属中存在大量的自由电子,电子质量轻,平均自由程很大,故可以快速的实现热传导;而非金属主要是通过声子来进行热传导的,声子的平均自由程要比自由电子的小很多,自由电子的热传导速率是声子的20倍,故纯银和镍铬合金的热导率高。2)单质的热导率要比混合物质的热导率高,故纯银大于镍铬合金。3)固溶体的热导率要比纯物质的小,故镁橄榄石的热导率小于氮化硅和氧化镁。4)共价键强的晶体热导率高,故氮化硅的热导率强于氧化镁。 6.对于组成范围为0-50%K2O,100-50%SiO2的玻璃,推断其膨胀系数的变 化,试通过玻璃的结构来解释所得的结果。

材料缺陷对材料性能的影响

材料缺陷对材料性能的影响 女神维纳斯因为她的“无臂”之美而广为人知,但是在日常的生产生活中,人们更追求的是无误差的完美。那么究竟缺陷能够在材料中造成什么影响呢,在此我将进行简单的概述。 材料具有多种性能,大致分为两类,一是使用性能,包括力学性能、物理性能和化学性能等;二是工艺性能,例如铸造性、可锻性、可焊性、切削加工性以及热处理性等等。在我们生产中经常用到的材料,其性能常常因为微观上小小的差异而变得迥然不同。我们就理想型的完整晶体进行对于材料缺陷对材料性能的影响的研究与探索。 晶体缺陷:在理想完整晶体中,原子按一定的次序严格地处在空间有规则的、周期性的格点上。但在实际的晶体中,由于晶体形成条件、原子的热运动及其它条件的影响,原子的排列不可能那样完整和规则,往往存在偏离了理想晶体结构的区域。这些与完整周期性点阵结构的偏离就是晶体中的缺陷,它破坏了晶体的对称性。 晶体中存在的缺陷种类很多,根据几何形状和涉及的范围常可分为点缺陷、面缺陷、线缺陷几种主要类型。 点缺陷:是指三维尺寸都很小,不超过几个原子直径的缺陷。主要有空位和间隙原子 在一般情形下,点缺陷主要影响晶体的物理性质,如比容、比热容、电阻率等 比容的定义:为了在晶体内部产生一个空位,需将该处的原子移到晶体表面上的新原子位置,这就导致晶体体积增加。 比热容的定义:由于形成点缺陷需向晶体提供附加的能量(空位生成焓),因而引起附加比热容。 电阻率:金属的电阻来源于离子对传导电子的散射。在完整晶体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产生强烈散射,导致晶体的电阻率增大。 此外,点缺陷还影响其它物理性质:如扩散系数、内耗、介电常数等。”在碱金属的卤化物晶体中,由于杂质或过多的金属离子等点缺陷对可见光的选择性吸收,会使晶体呈现色彩。这种点缺陷便称为色心。

晶体中的缺陷

§4-2 热缺陷的数目统计 1、肖脱基缺陷数目统计 热缺陷数目与晶体的原子数目相比是一个很小的数,但其绝对数目也是很大的。对于讨论数目巨大的热力学系统,热力学统计方法是一个简单明了的方法。 热力学系统的自由能为: F =U -T S ……………………………………………………………………………………………(4-2-1) 其中U 为晶体的内能,S 代表熵,S=k B lnW ,这里W 是微观状态数。热力学系统中任一因素的变化,都将引起自由能的变化。但是,不论变化如何,当系统达到平衡时,其自由能为最小。 因此,可由平衡时系统的自由能取最小值的方法来可求出热缺陷的数目,即: 0T F n ???= ????……………………………………………………………………………………(4-2-2) 对于肖脱基缺陷的数目统计,我们以由一种原子组成的晶体为例来分析。设晶体有N 个原子,平衡时晶体中存在n 个空位,令w 是将晶格内部一个格点上的原子跳到晶体表面上去所需要的能量,即形成一个空位所需的能量,则晶体中含n 个空位时,内能将增加 U nw ?=…………………………………………………………………………………………(4-2-3) 晶格中N 个原子形成n 个空位的方式数,即此时的微观状态数为W : ()! !! n N N W C N n n == -…………………………………………………………………………(4-2-4) 所以,由热力学理论可知,熵增加: ! ln ()!! B N S k N n n ?=-………………………………………………………………………(4-2-5) 结合(4-2-1)(4-2-3)和(4-2-5)得到,存在n 个空位时,自由能函数将改变: ()! ln !! B N n F U T S nw k T N n +?=?-?=-…………………………………………………(4-2-6) 应用平衡条件(4-2-2),考虑到只有ΔF 与n 有关,以及斯特令公式: ln !ln N N N N ≈- 则可得到, ![ln ]ln 0()!!B B F N N n w k T w k T n n N n n n ???-?? =-=-= ???-?? ……………………………(4-2-7) 由于实际上一般只有少数格点为空位,n<

晶体中的缺陷

第三章晶体中的缺陷 第一节概述 一、缺陷的概念 大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。因此目前(至少在80年代以前>人们理解的“固体物理”主要是指晶体。当然这也是因为客观上晶体的理论相对成熟。在晶体理论发展中,空间点阵的概念非常重要。 空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。空间点阵在晶体学理论的发展中起到了重要作用。可以说,它是晶体学理论的基础。现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。 严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,对它的描述不属本课程内容。但是,从另一个角度来理解晶体的平移对称性对我们今后的课程是有益的。 所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。考虑二维实例,如图3-1所示。 图3-1 平移对称性的示意图 在上面的例子中,以一个基元在二维方向上平移完全能复制所有的点,无一遗漏。这种情况,我们说具有平移对称性。这样的晶体称为“理想晶体”或“完整晶体”。

图3-2 平移对称性的破坏 如果我们对上述的格点进行稍微局部破坏,那么情况如何?请注意以下的复制过程,如图3-2所示。从图中我们看出:因为局部地方格点的破坏导致平移操作无法完整地复制全部的二维点阵。这样的晶体,我们就称之为含缺陷的晶体,对称性破坏的局部区域称为晶体缺陷。 晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。 幸运的是,缺陷的存在只是晶体中局部的破坏。作为一种统计,一种近似,一种几何模型,我们仍然继承这种学说。因为缺陷存在的比例毕竟只是一个很小的量(这指的是通常的情况)。例如20℃时,Cu的空位浓度为3.8×10-17,充分退火后Fe 中的位错密度为1012m-2<空位、位错都是以后要介绍的缺陷形态)。现在你对这些数量级的概念可能难以接受,那没关系,你只须知道这样的事实:从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。 因此,整体上看,可以认为一般晶体是近乎完整的。因而对于实际晶体中存在的缺陷可以用确切的几何图形来描述,这一点非常重要。它是我们今后讨论缺陷形态的基本出发点。事实上,把晶体看成近乎完整的并不是一种凭空的假设,大量的实验事实

材料缺陷对材料性能的影响讲课讲稿

材料缺陷对材料性能 的影响

材料缺陷对材料性能的影响 女神维纳斯因为她的“无臂”之美而广为人知,但是在日常的生产生活中,人们更追求的是无误差的完美。那么究竟缺陷能够在材料中造成什么影响呢,在此我将进行简单的概述。 材料具有多种性能,大致分为两类,一是使用性能,包括力学性能、物理性能和化学性能等;二是工艺性能,例如铸造性、可锻性、可焊性、切削加工性以及热处理性等等。在我们生产中经常用到的材料,其性能常常因为微观上小小的差异而变得迥然不同。我们就理想型的完整晶体进行对于材料缺陷对材料性能的影响的研究与探索。 晶体缺陷:在理想完整晶体中,原子按一定的次序严格地处在空间有规则的、周期性的格点上。但在实际的晶体中,由于晶体形成条件、原子的热运动及其它条件的影响,原子的排列不可能那样完整和规则,往往存在偏离了理想晶体结构的区域。这些与完整周期性点阵结构的偏离就是晶体中的缺陷,它破坏了晶体的对称性。 晶体中存在的缺陷种类很多,根据几何形状和涉及的范围常可分为点缺陷、面缺陷、线缺陷几种主要类型。 点缺陷:是指三维尺寸都很小,不超过几个原子直径的缺陷。主要有空位和间隙原子 在一般情形下,点缺陷主要影响晶体的物理性质,如比容、比热容、电阻率等 比容的定义:为了在晶体内部产生一个空位,需将该处的原子移到晶体表面上的新原子位置,这就导致晶体体积增加。 比热容的定义:由于形成点缺陷需向晶体提供附加的能量(空位生成焓),因而引起附加比热容。 电阻率:金属的电阻来源于离子对传导电子的散射。在完整晶体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产生强烈散射,导致晶体的电阻率增大。 此外,点缺陷还影响其它物理性质:如扩散系数、内耗、介电常数等。”在碱金属的卤化物晶体中,由于杂质或过多的金属离子等点缺陷对可见光的选择性吸收,会使晶体呈现色彩。这种点缺陷便称为色心。

第二章晶体结构与晶体中的缺陷

第二章晶体结构与晶体中的缺陷 内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

材料结构与性能试题及答案

《材料结构与性能》试题2011级硕士研究生适用 一、名词解释(20分) 原子半径,电负性,相变增韧、Suzuki气团 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径(r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。 电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。 二、简述位错与溶质原子间有哪些交互作用。(15分) 答:从交互做作用的性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类。 弹性交互作用:位错与溶质原子的交互作用主要来源于溶质原子与基体原子间由于体积不同引起的弹性畸变与位错间的弹性交互作用。形成Cottrell气团,甚至Snoek气团对晶体起到强化作用。弹性交互作用的另一种情况是溶质原子核基体的弹性模量不同而产生的交互作用。 化学交互作用:基体晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别,具有阻碍位错运动的作用。 静电交互作用:晶体中的位错使其周围原子偏离平衡位置,晶格体积发生弹性畸变,晶格畸变将导致自由电子的费米能改变,对于刃型位错来讲,滑移面上下部分晶格畸变量相反,导致滑移面两侧部分的费米能不相等,导致位错周围电子需重新分布,以抵消这种不平衡,从而形成电偶极,位错线如同一条电偶极线,在它周围存在附加电场,可与溶质原子发生静电交互作用。 三、简述点缺陷的特点和种类,与合金的性能有什么关系(15分) 答:点缺陷对晶体结构的干扰作用仅波及几个原子间距范围的缺陷。它的尺寸在所有方向上均很小。其中最基本的点缺陷是点阵空位和间隙原子。此外,还有杂质原子、离子晶体中的非化学计量缺陷和半导体材料中的电子缺陷等。 在较低温度下,点缺陷密度越大,对合金电阻率影响越大。另外,点缺陷与合金力学性能之间的关系主要表现为间隙原子的固溶强化作用。

晶界对性能的影响

晶界对合金性能的影响机理 晶界是固体材料中的一种面缺陷,根据晶界角度的大小可以分为小角晶界(θ<10°)和大角晶界,亚晶界均属小角度晶界,一般小于2°,多晶体中90%以上的晶界属于大角度晶界。根据晶界上原子匹配优劣程度可以分为重位晶界和混乱晶界。在晶界处存在一些特殊的性质:(1)晶界处点阵畸变大,存在晶界能。晶粒的长大和晶界的平直化都能减少晶界面积,从而降低晶界的总能量,这是一个自发过程。晶粒的长大和晶界的平直化均需通过原子的扩散来实现,因此,温度升高和保温时间的增长,均有利于这两过程的进行;(2)晶界处原子排列不规则,在常温下晶界的存在会对位错的运动起阻碍作用,致使塑性变形抗力提高,宏观表现为晶界较晶内具有较高的强度和硬度。晶粒越细,材料的强度越高,这就是细晶强化;高温下则由于晶界存在一定的粘滞性,易使相邻晶粒产生相对滑动;(3)晶界处原子偏离平衡位置,具有较高的动能,并且晶界处存在较多的缺陷如空穴、杂质原子和位错等,故晶界处原子的扩散速度比在晶内快得多;(4)在固态相变过程中,由于晶界能量较高且原子活动能力较大,所以新相易于在晶界处优先形核。原始晶粒越细,晶界越多,则新相形核率也相应越高;(5)由于成分偏析和内吸附现象,特别是晶界富集杂质原子的情况下,往往晶界熔点较低,故在加热过程中,因温度过高将引起晶界熔化和氧化,导致“过热”现象产生;(6)由于晶界能量较高、原子处于不稳定状态,以及晶界富集杂质原子的缘故,与晶内相比晶界的腐蚀速度一般较快。这就是用腐蚀剂显示金相样品组织的依据,也是某些金属材料在使用中发生晶间腐蚀破坏的原因;(7)低温下晶界强度比晶粒内高,高温下晶界强度比晶内低,表现为低温弱化。 基于上述几点晶界的特殊性质,使得多晶材料的塑性变形、强度、断裂、脆性、疲劳和蠕变等性能与单晶材料相比存在很大差异,即晶界不同的特殊性质具体体现在了合金的不同性能。但合金性能与晶界特性间绝不是一一对应的关系,而是几种甚至是所有特性的共同作用而表现出来,不同成分的合金在性能上也表现出各异。 1 晶界与塑性变形 晶界对多晶体的塑性变形的影响起因于下述原因:①晶界对滑移的阻碍作用;②晶界引起多滑移;③晶界滑动;④晶界迁移;⑤晶界偏聚。

材料微观缺陷对材料性能的影响

材料微观缺陷对材料性能的影响 随着社会的发展、时代的进步,人们的生活水平不断提高,生活品质也进一步提升,这对于材料的要求也不断地提高。这促使人们不断的深入研究材料的微观晶体结构,通过各种手段改善材料的各个方面的性能。晶体的生长、性能以及加工等无一不与缺陷紧密相关。因为正是这千分之一、万分之一的缺陷,对晶体的性能产生了不容小视的作用。这种影响无论在微观或宏观上都具有相当的重要性。 研究人员希望材料的晶体是理想的完整晶体,但是所有的自然和人工晶体不是理想晶体完整的,他们的许多特性并非由规则的原子排列决定,而是由不规则排列的晶体缺陷而决定。金属物理学家在研究金属的加工变形时就发现了晶体缺陷与金属的变形行为及力学性质有密切的关系。后来,材料科学家发现这类缺陷不仅控制着材料的力学性状,而且对材料的若干物理性质(如导电性、导热性等)有直接的影响,材料科学领域里逐渐发展了晶体缺陷理论,近10多年来人们开始认识到晶体的塑性变形完全取决于晶体缺陷。这些都是重要的生产、研究内容。那么材料的微观结构缺陷究竟对于材料的性能有哪些影响呢?本文将围绕此问题进行阐述。 一、什么是晶体缺陷? 大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。人们理解的“固体物理”主要是指晶体。在空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。空间点阵在晶体学理论的发展中起到了重要作用。可以说,它是晶体学理论的基础。现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。 在我们讨论晶体结构时,认为晶体的结构是三维空间内周期有序的,其内部质点按照一定的点阵结构排列。这是一种理想的完美晶体,它在现实中并不存在,只作为理论研究模型。相反,偏离理想状态的不完整晶体,即有某些缺陷的晶体,具有重要的理论研究意义和实际应用价值。在理想的晶体结构中,所有的原子、离子或分子都处于规则的点阵结构的位置上,也就是平衡位置上。1926 年Frenkel 首先指出,在任一温度下,实际晶体的原子排列都不会是完整的点阵,即晶体中一些区域的原子的正规排列遭到破坏而失去正常的相邻关系。我们把实际晶体中偏离理想完整点阵的部位或结构称为晶体缺陷。 二、晶体中有哪些常见的缺陷类型? 缺陷是一种局部原子排列的破坏。按照破坏区域的几何形状,缺陷可以分为四类点缺陷、缺陷、面缺陷和体缺陷。 点缺陷:又称零维缺陷,缺陷尺寸处于原子大小的数量级上,在三维方向上尺寸都很小(远小于晶体或晶粒的线度),典型代表有空位、间隙原子等。点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。 线缺陷:又称一维缺陷,指在一维方向上偏离理想晶体中的周期性、规则性排列所产生

第二章晶体结构与晶体中的缺陷

内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

点缺陷对材料加工的影响

点缺陷对材料加工的影响 摘要:随着航天航空、能源、汽车、电子和国防等领域尖端科学技术的持续发展,材料的服役环境也正变得越来越复杂,在它们的使用过程中很可能会出现大量的微裂纹、微孔洞等微缺陷。这些缺陷不论是出现在材料的生产制备阶段还是在材料的服役过程中,都对材料的动态响应以及层裂损伤过程有着重要的影响。点缺陷不仅在材料中普遍存在,而且又是最简单的一种缺陷形式,在实验中相对较易控制。 1.晶体缺陷筒介 1.1缺陷的含义 通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。在理想晶体结构中,所有的质点严格按照空间点阵排列,处于平衡位置上。然而,在任一温度下,实际晶体的原子排列都不会是完整的点阵,即晶体中一些区域的原子的正规排列遭到破坏而失去正常的相邻关系,这样便会产生晶体结构缺陷。 1.2缺陷的分类 按缺陷的几何形状和涉及的范围,可以把晶体缺陷分为点缺陷、线缺陷、面缺陷和体缺陷,其中点缺陷为最基本形式,其他的晶体缺陷都可以看成是由点缺陷构成的。点缺陷又称零维缺陷,指缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。点缺陷包括空位、间隙质点、杂质质点三类。正常结点位没有被原子或离子所占据,形成空结点,称为空位;原子或离子进入到晶体中正常结点之间的间隙位置,称为间隙质点;外来原子或离子进入晶格成为晶体中的杂质,这些杂质原子或离子可以取代原来晶格中的原子或离子而进入正常结点的位置,称为取代原子或离子,也可以进入本来就没有原子的间隙位置生成间隙式杂质质点。 1.3点缺陷产生的方式 一般有两种方式:平衡点缺陷和过饱和点缺陷。前者点缺陷浓度与温度密切相关,点缺陷属于热力学平衡的缺陷,后者通常有外来作用参与,如猝火和辖照等。 根据产生缺陷的原因,晶体缺陷也可分为三类:热缺陷、杂质缺陷和非化学计量结构缺陷。热缺陷:当晶体的温度高于绝对零度时,由于晶格内原子的热运动会使一部分能量较大的原子离开平衡位置而造成缺陷,这类缺陷称为热缺陷。 热缺陷有两种基本形式:杂质缺陷和非化学计量缺陷; 杂质缺陷是指由于外来原子进入晶体而产生的缺陷,分为间隙杂质原子和置换杂质原子,杂质缺陷的浓度与温度无关;非化学计量结构缺陷是指化学组成会明显的随着周围环境气氛的性质和压力大小的变化而发生组成偏离化学计量的现象,由此产生的晶体缺陷称为非化学计量缺陷,它是产生型半导体和型半导体的重要基础。 研宄表明,在绝对零度以上,任何物质晶体中均存在点缺陷。当点缺陷的浓度(原子分数)较小时,点缺陷彼此分立存在;当点缺陷浓度增加时,点缺陷将发生相互作用形成复杂的缺陷团簇。晶体中这类呈热力学平衡态且不被任何热处理或退火过程所消除的缺陷叫做本征点缺陷。 杂质点缺陷是由外来杂质进入晶体之中而产生的缺陷。任何物质晶体都不可能达到纯净,总会掺杂其他成分,因此杂质缺陷也是材料中不可避免的一种重要缺陷形式。 2.点缺陷对材料加工的影响 谷万里等对304不锈钢精密铸件进行研究,发现其内部出现的不规则截面点缺陷数量较少, 截面形状不规则, 尺寸在 0.01~0.1 mm 之间, 主要成分为碳、氧、铬、铁和镍, 其中碳元素含量较高。该类缺陷的形成主要由于在脱蜡过程中蜡料有剩余, 燃烧后生成碳化物, 其防止措施是在脱蜡过程中注意死角部位的完全脱蜡。对于圆形截面点缺陷, 数量较多, 截面呈

材料结构与性能历年真题

2009年试题 1.一外受张应力载荷力500MPa的无机材料薄板(长15cm,宽10cm,厚0.1mm), 其中心部位有一裂纹(C=20μm)。该材料的弹性模量为300GPa,(1Pa=1N/m2)断裂能为15J/m2(1J=1Nm)。 (Y=π) a)计算该裂纹尖端应力强度因子K I K I=yδC=π×500×106×20×10?6=3.96Mpa·m b)判断该材料是否安全? K IC=2Eγf=2×300×109×15=3Mpa?m ,可知K I>K IC,即材料的裂纹尖端应力强度应子超过了材料的临界断裂应子,则材料不安全。 2.测定陶瓷材料的断裂韧性常用的方法有几种?并说明它们的优缺点。 答:

3.写出断裂强度和断裂韧性的定义,二者的区别和联系。 答: 4.写出无机材料的增韧原理。 答:增韧原理:一是在裂纹扩展过程中使之产生有其他能量消耗机构,从而使外加负载的一部分或大部分能量消耗掉,而不致集中于裂纹扩展上;二是在陶瓷体中设置能阻碍裂纹扩展的物质场合,使裂纹不能再进一步扩展。 根据断裂力学,抗弯强度δf=2Eγf ,断裂韧性K IC=2Eγf,可以看出要 C 提高陶瓷材料强度,必须提高断裂表面能和弹性模量以及减小裂纹尺寸;要提高断裂韧性,必须提高断裂表面能和弹性模量。 5.试比较以下材料的热导率,并按大小顺序排列,说明理由。氮化硅(Si3N4) 陶瓷、氧化镁(MgO)陶瓷、镁橄榄石(2MgO·SiO2)、纯银(Ag)、镍铬合金(NiCr)。答:热导率大小顺序:纯银>镍铬合金>氮化硅>氧化镁>镁橄榄石 理由:1)一般金属的热导率比非金属的热导率高,这是由于金属中存在大量的自由电子,电子质量轻,平均自由程很大,故可以快速的实现热传导;而非金属主要是通过声子来进行热传导的,声子的平均自由程要比自由电子的小很多,自由电子的热传导速率是声子的20倍,故纯银和镍铬合金的热导率高。2)单质的热导率要比混合物质的热导率高,故纯银大于镍铬合金。3)固溶体的热导率要比纯物质的小,故镁橄榄石的热导率小于氮化硅和氧化镁。4)共价键强的晶体热导率高,故氮化硅的热导率强于氧化镁。 6.对于组成范围为0-50%K2O,100-50%SiO2的玻璃,推断其膨胀系数的变化, 试通过玻璃的结构来解释所得的结果。 答:石英玻璃是硅氧四面体为结构单元的三维空间网络所组成,Si-O键的键强较

缺陷对材料性能的影响

缺陷对材料性能的影响 技术探讨 2009-09-11 22:27:34 阅读35 评论0 字号:大中小订阅 在一般情形下,点缺陷主要影响晶体的物理性质,如比容、比热容、电阻率等 比容的定义:为了在晶体内部产生一个空位,需将该处的原子移到晶体表面上的新原子位置,这就导致晶体体积增加。 比热容的定义:由于形成点缺陷需向晶体提供附加的能量(空位生成焓),因而引起附加比热容。 电阻率:金属的电阻来源于离子对传导电子的散射。在完整晶体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产生强烈散射,导致晶体的电阻率增大。 此外,点缺陷还影响其它物理性质:如扩散系数、内耗、介电常数等。”在碱金属的卤化物晶体中,由于杂质或过多的金属离子等点缺陷对可见光的选择性吸收,会使晶体呈现色彩。这种点缺陷便称为色心。 在一般情形下,点缺陷对金属力学性能的影响较小,它只是通过和位错交互作用,阻碍位错运动而使晶体强化。但在高能粒子辐照的情形下,由于形成大量的点缺陷和挤塞子,会引起晶体显著硬化和脆化。这种现象称为辐照硬化。 缺陷对物理性能的影响很大,可以极大的影响材料的导热,电阻,光学,和机械性能,极大地影响材料的各种性能指标,比如强度,塑性等。 化学性能影响主要集中在材料表面性能上,比如杂质原子的缺陷会在大气环境下形成原电池模型,极大地加速材料的腐蚀,另外表面能量也会受到缺陷的极大影响,表面化学活性,化学能等等。 总之影响非常大,但是如果合理的利用缺陷,可以提高材料某一方面的性能,比如人工在半导体材料中进行掺杂,形成空穴,可以极大地提高半导体材料的性能。 首先,金属材料的强度与位错在材料受到外力的情况下如何运动有很大的关系。如果位错运动受到的阻碍较小,则材料强度就会较高。实际材料在发生塑性变形时,位错的运动是比较复杂的,位错之间相互反应、位错受到阻碍不断塞积、材料中的溶质原子、第二相等都会阻碍位错运动,从而使材料出现加工硬化。因此,要想增加材料的强度就要通过诸如:细化晶粒(晶粒越细小晶界就越多,晶界对

粘度对泵的性能有显著影响及泵的各自优缺点

粘度对泵的性能有显著影响及泵的各自优缺点

————————————————————————————————作者:————————————————————————————————日期:

粘度对泵的性能有显著影响,粘度取值范围应按照制造厂商的建议。离心泵性能取决于叶轮设计,粘度对泵的设计性能的影响,在变容泵中较离心泵影响更大,因此不允许粘度有大的变化。粘度增大对泵的影响见表1。 表1 粘度SUS1002505007501000 流量降低率%38141923 扬程降低率%25111418 功率增加率%1020305065 各种泵的优点见表2。 表2 离心泵1.在较高速度下运转能增加流量,因此规格较小且成本较低 2.输送液体不受压力波动的影响 3.在最小流量下运行而不会超过系统压力 4.在最大流量下运行而电机不会过载 5.各种类型可与各种系统要求相匹配 6.由于没有振动,可用简单的基础 7.适用于输送各种稀浆 8.能直接驱动 往复泵1.运行效率高 2.在恒速下传递变化的压力 3.产生瞬间压力峰值可消除输送管线的阻塞 4.启动时不用灌水,免去了夹杂空气的麻烦 转子泵1.连续输送,压力波动较小 2.输送液体粘度变化范围较宽 3.启动时不用灌水 离心泵、往复泵和转子泵常见故障及排除方法分别见表3、表4和表5。 表3 离心泵常见故障及排除方法 故障原因排除方法 泵不运行电机不转 连接键被切断 传动带打滑 联轴器失效 检查保险丝和断路器 更换 检查并调整 检查是否打滑或损坏,必要时更换 检查,必要时更换

轴或齿轮切断 泵不能启动 进口阀关闭 进口阻塞或受阻 吸入侧漏气 液体排空或系统 有虹吸 叶轮磨损 打开阀门 检查并清理干净 更换密封件;检查管路泄漏处 安装挡水阀或底阀以防止排空 检查和更换;提高泵速;安装底阀 无排量 没有加水启动,见 上条 吸上高度过高 出口压头过高 速度太低 泵运转受阻 旋转方向错误 气阻 打开排气开关排出空气,并用液体完全充满泵和 吸入管 检查泵入口阻塞情况,检查吸入压头 检查有关的阀是否打开;检查管路是否堵塞;检 查总压头 检查泵转速 检查叶轮是否阻塞 纠正旋转方向 抽吸吸入管以清洁气闸;检查吸入管浸没深度是 否适当 无排量溢流阀调节不当 漏气 检查调节;清除阀体污物 检查密封件;检查管线漏气之处 流量不足 漏气检查吸入管路和泵漏气之处;检查泵填料 气阻 检查NPSH(泵的净吸压头)和液体温度,使吸入管 路中液体没有自蒸发 净压头低或损耗同上,并检查吸入管和底阀 过滤器阻塞检查并清洁 进气口阻力过大 检查吸入管路是否过小或接头太多而增加了液体 阻力 溢流阀调整不正 确或阻塞 检查和调整 系统背压过大降低系统阻力 叶轮磨损检修和更换 耐磨环磨损检修和更换 旋转方向错误检查旋转方向 吸入管有堵塞物检查底阀是否满足要求;消除堵塞物 泵的型号不对检查泵型号规格 吸入不足检查吸入管浸没深度和位置是否适当 表4 往复泵常见故障及排除方法

全文翻译《材料科学与工程基础》 第5章固体中的缺陷

第5章固体中的缺陷 为什么要学习固体中的缺陷 某些材料的性质受到存在于材料中的缺陷的极大影响。因此、知道存在于材料中缺 陷的类型,以及它们在影响材料性质中的作用是很重要的。例如、纯金属的力学性 质经过合金化以后(即加入杂质原子)会发生很大变化——例如、标准银合金(含 银92.5%,含铜7.5%)比纯银更硬更强(8.10节)。 而且,在我们的计算机、计算器和家用功能的集成微电子设备是通过在半导体材料上引入高度可控的杂质浓度和定域化掺杂获得的(12.11节)。 学过这一章后,你应当掌握以下内容: ?描述空位和自间隙晶体缺陷。 ?已知相关常数,计算某特定温度下材料中的平衡空位数。 ?两种类型的固溶体的书面定义和图示表达。 ?陶瓷化合物中几种不同的点缺陷。 ?已知合金中组元的质量和原子量,计算每种元素的质量百分浓度和原子百分浓度。 ?对于刃型、螺型和混合型位错中的每一种: ?描述和画出位错; ?注意位错线的位置; ?指出位错线延伸的方向。 ?描述(a)晶界和(b)孪生晶界附近的原子结构 5.1 引言 对于晶体固体材料,我们默认在材料内部原子级水平上排列完全有序。然而这 种理想固体是不存在的;所有固体都存在大量的各种缺陷。事实上材料的许多性质 都很深地受到材料中缺陷程度的影响;这种影响不总是有害的,人们常常通过有意 识的引入缺陷和控制缺陷的量来获得特殊性质的材料,详细情况在下面的章节中要 介绍。 “晶体缺陷”意味着在原子大小范围晶格不规则。晶体缺陷的分类通常按照缺陷区的 几何形状和大小。这一章要讨论几种不同的缺陷,包括点缺陷(尺寸与一两个原子 大小相近),线缺陷(一维缺陷),以及面缺陷,即界面,是二维缺陷。也要讨论 如果在某一方向上缺陷区的尺寸可以与晶体或晶粒的线度相比拟,而在其它方向上 的尺寸相对于晶体或晶粒线度可以忽略不计,那么这种缺陷就称为线缺陷或位错, 这是本章要着重讨论的缺陷… (3)面缺陷如果在共面的各方向上缺陷区的尺寸可与晶体或晶粒的线度相比固 体中的杂质,因为杂质原子也可能以点缺陷的形式存在。{最后,简要叙述显微测量 缺陷的技术和材料的结构。} 点缺陷 5.2 金属中的点缺陷 最简单的点缺陷是空位,即空的晶格位。通常在一个原子原来占据的地方变成了 空位(图5.1)。所有晶体固体都含有空位,事实上,不可能阻止材料中没有空位这 种缺陷。空位存在的必然性可以用热力学原理来解释;实质上、空位的存在增加了 晶体中的熵(无序性)。

晶体缺陷及其材料性能的影响

晶体缺陷及其对材料性能的影响 摘要:所有的天然和人工晶体都不是理想的完整晶体,它们的许多性质往往并 不决定于原子的规则排列,而决定于不规则排列的晶体缺陷。晶体缺陷对晶体生长、晶体的力学性能、电学性能、磁学性能和光学性能等均有着极大影响,在生产上和科研中都非常重要,是固体物理、固体化学、材料科学等领域的重要基础内容。研究晶体缺陷因此具有了尤其重要的意义。本文着重对晶体缺陷及其对晶体的影响和应用进行阐述,以适应人们不同的实际需要和时代的发展需求。 关键词:晶体缺陷 ; 性能 Crystal defect and it’s influence on the material properties Abstract All of the natural and artificial crystal is not ideal complete crystal, many of their properties are not always decide to the rules of at oms to arrange, but decide to the irregular arrangement in the crystal de fect. Crystal defect have an enormous influence to crystal growth, mecha nical properties of crystal, electrical properties, magnetic properties and o ptical properties, etc, they are very important in the production and resea rch, It is important content. to a basis research in the field of crystal def ect,such as solid physics, chemistry, material science,and so on. it so ha s been particularly important significance to solid. In order to adapt to th e different actual needs and the development o f The demand of Times.o f people.This paper focuses on expoundin g the influence and the applica tion of the crystal defect and its impact on the crystal. Keyword crystal defect property 1. 引言 很早以前, 金属物理学家在研究金属的加工变形时就发现了晶体缺陷与金属的变形行为及力学性质有密切的关系。后来, 材料科学家发现这类缺陷不仅控制着材料的力学性状, 而且对材料的若干物理性质(如导电性、导热性等) 有直接的影响, 故在冶金物理学和材料科学领域里逐渐发展了晶体缺陷理论。在地学界, 近10多年来人们开始认识到晶体的塑性变形完全取决于晶体缺陷, 即矿物岩石在塑性流动过程中晶体缺陷起着控制性的作用。70年代随着离子减薄技术的应用, 为电子显微镜作为倍数极高的矿物岩相学观察工具提供了先决条件, 也为天然变形矿物晶体缺陷和塑性流动的研究开辟了新的途径。然而, 目前晶体缺陷在地质科学中的应用研究成果还很少, 主要以金属中的为主。众所周知, 晶体是由离子、原子或分子有规律地排列而构成的, 这种晶体称为完整晶体。但是, 在实际晶体中, 晶体质点的规律排列或多或少会在某些微区遭到破坏, 称为晶体缺陷。根据缺陷在晶体中分布的几何特点, 可将其分为3大类, 即点缺陷、线缺陷和面缺陷。如果这些缺陷是在晶体生长过程中产生

材料结构与性能思考题

《材料结构与性能》思考题 第一章金属及合金的晶体结构 1.重要名词晶体非晶体单晶体多晶体晶粒晶界各向异性假等向性(伪各向同性)空间点阵阵点(结点)晶胞简单晶胞(初级晶胞)布拉菲点阵晶系晶面晶面指数晶向晶向指数密勒指数晶面族晶向族晶带晶带轴面间距配位数致密度点阵常数面心立方(A1)体心立方(A2) 密排六方(A3) 同素异构现象四面体间隙八面体间隙多晶型性(同素异构转变) 原子半径合金相固溶体间隙固溶体置换固溶体有限固溶体无限固溶体电子浓度无序分布偏聚短程有序短程有序参数维伽定律中间相金属间化合物正常价化合物电子化合物(Hume-Rothery相) 间隙相间隙化合物拓扑密堆相(TCP相) PHACOMP方法超结构(有序固溶体,超点阵)长程有序度参数反相畴(有序畴) 2.试述晶体的主要特征。 3.画出立方晶系中的下列晶面和晶向:(100), (111), (110), (123), (130)), (121), (225), [112], [312], 2]。画出六方晶系中的下列晶面:(0001), (1120), (1011)。 [11 4.画出立方晶系(110)面上的[111]方向,(112)上的[111]方向。在其(111)面上有几个<110>方向?5.计算面心立方、体心立方、密排六方点阵晶胞的晶胞内原子数、致密度。其中原子的配位数是多少?6.面心立方和密排六方点阵的原子都是最密排的,为什么它们形成了两种点阵? 7.画图计算面心立方和体心立方点阵的四面体、八面体间隙的半径r B与原子半径r A之比。 8.铜的面心立方点阵常数为3.608?,计算其(122)晶面间距。 9.立方晶系中晶面指数和晶向指数有什么关系? 10.写出立方晶系{112}晶面组的全部晶面和<123>晶向族的全部晶向。 11.已知点阵常数a=2 ?,b=6 ?, c=3 ?, 并已知晶面与三坐标轴的截距都是6 ?,求该晶面的指数。12.若γ-Fe晶胞中的八面体间隙都被C原子填满,试计算C原子的原子百分数和重量百分数。另外,这样的事情能否发生,为什么? 13.试画出面心立方点阵中(001), (011) 和(111)晶面的原子排列,并标出原子间距。 14.判断下列晶向是否属于相应的晶面或平行于该晶面:[112]与(111);[110]与(121);[210]与(101)。15.下列晶向是否是两个晶面的交线?(1)[112]与(111)及(110);(2)[101]与(111)及(111);(3)[101]与(111)及(111)。 16.银属面心立方点阵,若其原子半径为1.44 ?,求其晶格常数,并根据其原子量求其密度。 17.α-Fe→γ-Fe转变发生在910℃,该温度下其点阵常数分别为2.892 ?和3.633 ?,试求转变前后的体积变化。若转变前后原子半径未变化,体积变化又有多大? 18. Al和Ag均属面心立方点阵,已知r Ag= 1.441?, r Al=1.428?, 它们在固态下是否可能无限互溶,为什么?19.固溶体的溶解度主要取决于哪些因素? 20.碳原子在γ-Fe晶胞中存在于什么位置?碳原子溶入后其点阵常数如何变化?为什么?碳原子溶入α-Fe 中又如何? 21.计算含1-wt%C的γ-Fe中多少个晶胞中溶入一个碳原子? 22.中间相一般具有什么特点? 23.以黄铜为例说明什么是电子化合物及电子化合物的类型。 24.电子化合物为什么可以具有一定的成分范围?25.试述间隙固溶体、间隙相、间隙化合物的异同。26.试述短程有序和长程有序的关系。27.影响有序化的因素有哪些? 28.有序化对合金的性能有何影响?

相关主题
文本预览
相关文档 最新文档