当前位置:文档之家› 氧化铁纳米颗粒和多孔碳纳米纤维复合物的制备和显微结构表征

氧化铁纳米颗粒和多孔碳纳米纤维复合物的制备和显微结构表征

氧化铁纳米颗粒和多孔碳纳米纤维复合物的制备和显微结构表征
氧化铁纳米颗粒和多孔碳纳米纤维复合物的制备和显微结构表征

纳米碳纤维及其应用

功能材料论文:纳米碳纤维及其应用 学校:上海电力学院 班级:应用化学110103 姓名:赵立 学号:ys1110122026

纳米碳纤维及其应用 摘要:作为一种新型碳基纳米材料,纳米碳纤维由于具有优异物理化学性能和可控微结构受到越来越多研究者的重视。本文主要介绍了纳米碳纤维的现状与发展,包括纳米碳纤维的制备、性能与应用。并讨论了纳米碳纤维的市场和发展前景。 关键词:纳米碳纤维;性能;应用;发展前景 一、前言 作为高性能纤维的一种,碳纤维既有碳材料的固有本征。又兼备纺织纤维的柔软可加工性,是新一代军民两用新材料,已广泛用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等各领域。纳米碳纤维是当代纤维研究领域的前沿课题。也是一项多学科交叉、多技术集成的系统工程。 纳米碳纤维(Carbon Nanofibers 简称CNF)是化学气象生长碳纤维的一种形式,是由通过裂解气相碳氢化合物制备的非连续石墨纤维。纳米碳纤维的研究开始于1991年,日本科学家饭岛利用高分辨电子显微镜在石墨棒放电所形成的阴极沉积物中发现纳米碳纤维,自从发现了纳米碳纤维,它就引起了理论研究者以及工业应用者的兴趣。纳米碳纤维/聚合物基复合材料在世界范围内的研究工作刚刚起步,我国亦在进行跟踪研究。 从物理尺寸、性能和生产成本来看纳米碳纤维的构成是以碳黑、富勒烯、单壁和多壁纳米碳管为一端,以连续碳纤维为另一端链节中的一环。纳米碳纤维的直径在50~200nm之间,但目前不少研究工作者把直径在100nm以下的中空纤维称之为纳米碳管,亦即纳米碳纤维的直径介于纳米碳管和气相生长碳纤维之间[1]。与纳米碳管相比纳米碳纤维的制备更易于实现工业化生产。CNFs除了具有CVD法碳纤维低密度、高比模量、高比强度、高导电、热稳定性等特性外,还具有缺陷数量非常少、长径比大、比表面积大、结构致密等优点。由于纳米碳纤维具有许多优异的物理和化学性质,因此可应用于电子器件、聚合物添加剂、储能材料、催化剂载体、电磁屏蔽材料、防静电材料、电磁波吸收材料等诸多领域。 二、制备 制备纳米碳纤维的三种主要方法以及特性是: (1) 基体法在石墨或陶瓷基体上分散纳米级催化剂颗粒的“种粒”,并在高温下通人碳氢气体化合物,热解后在催化剂颗粒上析出纳米碳纤维[2]。利用基体法可制备出纯度较高的纳米碳纤维,但由于超细催化剂颗粒的制备较为困难,且受从板温度和热解气体浓度不均及催化剂粒子在基板上分布不均等因素的影响,纤维生长疏密不匀,也很难得到直径较细的制品。此外,纳米碳纤维仅在有催化剂的基体上生长,产量不高,难以连续生长,不易实现工业生产。 (2) 喷淋法在苯等液体有机化合物中掺人催化剂,并将含催化剂的混合溶液在外力作用下喷淋到高温反应室中,制备出纳米碳纤维[3]。喷淋法可实现催化剂连续喷入,为工业化连续生产提供了可能,但催化剂与烃类气体的比例难以优化,喷淋过程中催化剂颗粒分布不

纳米氧化铁

第一章综述 1.1 概述 1.1.1 氧化铁的性质 纳米科学技术是20世纪80年代末诞生并崛起的新科技,它的基本内涵是指在-9-7)范围内认识和改造自然,通过直接和安排原子,分子创造1010~纳米尺寸(新物质,以及改造原有物质使其具有新的性质[1]。纳米材料具有量子尺寸效应,小尺寸效应,表面效应及宏观量子隧道效应等基本特性[1]。这些基本特性使纳米材料具有不同与常规材料的潜在的物理,化学性质,因此引起人们的广泛兴趣。纳米氧化铁( nano- sized iron oxide) 具有良好的耐候性、耐光性、磁性 和对紫外线具有良好的吸收和屏蔽效应, 可广泛应用于闪光涂料、油墨、塑料、皮革、汽车面漆、电子、高磁记录材料、催化剂以及生物医学工程等方面, 且可望开发新的用途[2,3]。 通常,铁的氧化物及其羟基氧化物均归属于氧化铁系列化合物,按价态,晶型结构的不同可以分为(α-﹑β-﹑γ-)FeO ﹑FeO ﹑FeO 和(α-﹑β-﹑γ-) 4323FeOOH.按色泽又可以分为,红﹑黄﹑橙﹑棕﹑黑。较具实用价值的有,α- FeO32﹑β- FeO ﹑α- FeOOH﹑FeO等。43321.1.2 氧化铁的应用 1 纳米氧化铁在装饰材料中的应用 在颜料中, 纳米氧化铁又被称为透明氧化铁( 透铁) 。所谓透明, 并非特指粒子本身的宏观透明, 而是指将颜料粒子分散在有机相中制成一层漆膜( 或称油膜) , 当光线照射到该漆膜上时, 如果基本不改变原来的方向而透过漆膜, 就称该颜料粒子是透明的。透明氧化铁主要有5 个品种, 即透铁红、黄、黑、绿、棕。透明氧化铁颜料因其有0.01μm 的粒径, 因而具有高彩度、高着色力和高透明度, 经特殊的表面处理后具有良好的研磨分散性。透明氧化铁颜料可用于油化与醇酸、氨基醇酸、丙烯酸等漆料制成透明色漆, 有良好的装饰性。此种透明漆既可单独, 也可和其他有机彩色颜料的色浆相混, 如加入少量非浮性的铝粉浆则可制成有闪烁感的金属效应漆; 与不同颜色的底漆配套, 可用于汽车、自行车、仪器、仪表、木器等要求高的装饰性场合。透铁颜料强烈吸收紫外线的特性使其可作为塑料中紫外线屏蔽剂,而用于饮料、医药等包装塑料中。纳米FeO 在32 1 静电屏蔽涂料中也有广阔的应用前景, 日本松下公司已研制成功具有良好静电屏蔽的FeO 纳米涂料。这种具有半导体特性的纳米粒子在室温下具有比常规的23氧化物高的导电性, 因而能起到静电屏蔽作用。 2 纳米氧化铁在油墨材料中的应用 透铁黄可用于罐头外壁的涂装, 透铁红油墨为红金色, 特别适合罐头内壁用, 加之透铁红耐300 ℃的高温, 是油墨中难得的颜料珍品。为提高钞票的印制质量, 往往在印钞油墨中加入纳米氧化铁颜料来保证钞票的色度和彩度等指标。 3 纳米氧化铁在着色剂中的应用 随着人们生活水平的提高, 人们越来越重视医药、化妆品、食品中使用的着色剂, 无毒着色剂成了人们关注的焦点。纳米氧化铁在严格控制砷和重金属含量的情况

纳米碳纤维及其应用

综 述 纳米碳纤维及其应用 赵稼祥 (航天材料及工艺研究所,100076) 摘 要 介绍世界纳米碳纤维的现状与发展,包括纳米碳纤维的制备、性能、与应用。讨论纳米碳纤维的市场和发展前景。 关键词 碳纤维,纳米,应用 Carbon Nanofiber and It ’s Applications Zhao Jiaxiang (Aerospace Research Institute of Materials and Processing T echnology ,100076) ABSTRACT In this paper the present status and development of carbon nanofiber in the w orld were briefly introduced ,including manu facturing of carbon nanofiber ,properties and application of carbon nanofiber.The market and perspective of development were als o discussed. KEY WORDS carbon ,carbon nanofiber ,application ,market 1 前 言 2002年10~11月在美国北卡罗来纳州首府洛 利(Raleigh ,NC )参加了2002年世界碳纤维会(G lobal Outlook for Carbon Fiber 2002),会后参观、访问了北 卡罗来纳大学国家纺织实验室(State T extile Laborato 2ry ,N orth Carolina State University )和土木工程系,阿 拉巴马大学材料工程系(Department of Materials Engi 2neering ,University of Alabama ),乔治亚理工大学复合 材料教育研究中心(C om posite Education and Research Center ,G eorge University of T echnology )、材料科学与 工程系和机械工程系等,与有关教授、专家和学者,讨论、交换对碳纤维、复合材料与先进材料技术现状、应用与发展的看法,有很大收获[1]。本文简要介绍纳米碳纤维的定义、制备技术、性能、应用、生产与市场及其发展前景。 纳米碳纤维(Carbon Nanofibers 简称C NF )是化学气象生长碳纤维的一种形式,是由通过裂解气相碳氢化合物制备的非连续石墨纤维。从物理尺寸、性能和生产成本来看它是构成以碳黑、富勒烯、单壁和多壁纳米碳管为一端,以连续碳纤维为另一端链节中的一环。 纳米碳纤维的直径在50~200nm 之间,但目前不少研究工作者把直径在100nm 以下的中空纤维称之为纳米碳管,亦即纳米碳纤维的直径介于纳米碳管和气相生长碳纤维之间。与纳米碳管相比纳米碳纤维的制备更易于实现工业化生产。 表1 纳米碳纤维的性能 性 能热处理前 热处理后 抗拉强度(G Pa ) 2.77.0抗拉模量(G Pa )400600断裂应变(%) 1.50.5密度(g/cm 3) 1.8 2.1电阻率(Ωμ-cm )100055热导率(W/m -K ) 20 1950 2 制 备 制备纳米碳纤维的三种主要方法以及特性是:(1)基体法 在陶瓷或石墨基体上散布纳米催 化剂颗粒,高温下通入烃类气体,热解后析出纳米碳纤维[2]。基体法可制备出高纯纳米碳纤维,但纳米级催化剂颗粒制备困难,一般颗粒直径较大,较难制 第4期48  纤维复合材料N o.42003年12月 FIBER COMPOSITES Dec.,2003

纳米氧化铁材料的制备与现代发展.

课题名称MITobj004 姓名 院系 专业班级 指导教师 2009 年10 月01 日

摘要纳米氧化铁的制备方法有沉淀法、固液气相法、水热法、凝胶—溶胶法、共混包埋法、单体聚合法等.。本文通过分析比较各种纳米氧化铁的制备方法, 水热法由于操作简单、粒子可控等优点广泛应用于自分散氧化物的制备研究中。 关键词水热法,沉淀法,固液气相法,比较 前言 定,催化活性高,具有良好的耐光性、耐候性和对紫外线的屏蔽性,在精细陶瓷、塑料制品、涂料、催化剂、磁性材料以及医学和生物工程等方面有着广泛的应用价值和前景,因此研究纳米氧化铁有着很重要的意义。由于纳米氧化铁具有如此多的优点及其广泛的应用前景,近年来国内外研究者对其制备和应用投入了大量的研究工作。本文综述了纳米氧化铁制备方法的一些研究进展,分析了当前急需解决的问题,并对今后发展做了展望。重点介绍了水热法制备纳米氧化铁材料,以及在铁离子浓度、PH值、水解时间分别不同的情况下的水解程度。【1】 文献综述 国内外研究现状: 我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,科院上海硅酸盐研究所、南京大学、科院固体物理所、科院金属所、物理所、国科技大学、清华大学和科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才做出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的坚力量。【2】 近年来美国纳米技术研究与产品开发发展迅速。如医学领域的纳米医药机器人、纳米定向药物载体、纳米在基因工程蛋白质合成中的应用,微电子及信息技术领域的导电聚合物在信息技术的应用、纳米电子元器件FET二极管、用于感应器的电子序列、纳米传感器,化工领域的利用纳米材料提高催化剂的效能等,都取得了很大进展。 日本科学家在2003年12月发现,当温度降到极端低时,非常接近于一维金属的碳纳米管的电阻急剧增大,变成绝缘体,与普通金属的导电性截然相反。从

纳米碳纤维的批量制备和应用

前言 纳米碳纤维()的研究是从年CNFs 1991 发现碳的另一种纳米级材料-碳纳米管Iijima () CNTs [1] 以后开始的。早期的研究主要在制备、表征方法以及潜在应用方面,而随着对其性能深入了解,制备大量低成本的以适应商 CNFs 业化应用将成为未来研究的关键。目前,适合低成本和大批量制备的方法主要为化学气相 CNFs 沉积法()和静电纺丝法CVD [2] 。 从形态上来看,制备的多为空心CVD CNFs 结构,也存在实心结构 ~[34] ;而静电纺丝制备的 为实心结构。从直径分布上来看,的CNFs CNFs 直径一般在~之间,介于碳纳米管与 10500 nm 法碳纤维()之间CVD CF [5] 。除了具有普CNFs 通法低密度、高比模量、高比强度、高 CVD CF 导电、热稳定性等特性外,还具有缺陷数量非常少、长径比大、比表面积大、结构致密等优点(见表),故在催化剂和催化剂载体、锂离子 1二次电池阳极材料、双电层电容器电极、高效吸附剂、结构增强材料、场电子发射材料等领域极具应用价值,是航天航空、国防军工尖端技术领域必需的新材料,也是体育用品等民用工业更新换代的新材料 ~[56] 。因此,大批量制备及应用 成为世界各国重点研究的项目,期望能占CNFs 领该技术领域的制高点。 世界上生产和的企业有日本的 CNFs CNTs 和公Mitsubushi Chemical Toray Showa Denko 司;美国的公司 Hyperion Catalysis Internation (,)、公司Cambridge MA Applied Sciences Inc (,) Cedavile OH ~[78] 等,随着市场的扩展,生 产企业将逐步增多。我国目前还没有批量生产的公司,仅有少数企业如深圳纳米港有限CNFs 公司和南风集团等能批量生产碳纳米管。在未来 ~,的市场会有很大的发展。大规模510 a CNFs 生产线的出现将会使市场价格降至美元左 11 /g 右,届时的市场会扩大到,它将成 CNFs 45 000 t 为结构复合材料的一种主要的增强材料[6] 。 1 CNFs 的批量制备方法 1.1 CVD 法 一般而言,在催化剂表面气相生长可 CNFs 以分为以下几个过程:⑴碳源气体化合物在催化 剂表面的吸附和裂解并析出碳;⑵碳溶解并在催 化剂颗粒中的扩散;⑶碳在催化剂颗粒另一侧析 出,纤维开始连续生长;⑷催化剂颗粒表面覆盖 碳使其失去活性,纤维停止生长。法根据使 CVD 纳米碳纤维的批量制备和应用 张勇,唐元洪,裴立宅,郭池 (湖南大学材料科学与工程学院,湖南长沙) 410082摘要 : 纳米碳纤维具有优异的物理和化学特性,在复合材料、电子器件、储氢等领域极具应用价值,批量制 备低成本的纳米碳纤维是应用的关键。介绍了纳米碳纤维批量制备的方法,并对纳米碳纤维的应用和市场前景进行了评述。 关键词: 纳米碳纤维;静电纺丝法;批量制备;应用中图分类号: TB 383 文献标识码: A 文章编号: ()1007-9815200502-0020-06

多孔纳米碳纤维的制备及其在超级电容器中的应用研究

多孔纳米碳纤维的制备及其在超级电容器中的应用研究3 牛 强,张孝彬,程继鹏,刘 芙,周胜名,聂安民,谭俊军,崔白雪,周丽娜(浙江大学硅材料国家重点实验室,浙江杭州310027) 摘 要: 利用溶胶凝胶燃烧法制备了碱金属氧化物掺杂的铜催化剂,并使用这种催化剂在不同的温度、掺杂比例下通过热CVD法合成出了具有多孔分叉结构的纳米碳纤维。通过TEM、HR TEM、B ET和激光拉曼光谱等手段对产物进行表征,显示这种纳米碳纤维的比表面积可高达1162m2/g,远高于普通的碳电极材料,并且具有非常丰富的中孔结构,克服了常规碳纳米纤维在应用中表现出的相对有效利用面积不大,比电容不高等缺陷,具备做电极材料的潜力。在将其应用于超级电容器电极材料后,利用二次电池测试仪及电化学工作站对其进行了循环伏安曲线及恒流充放电曲线的测试,结果显示这种纳米碳纤维具有良好的电化学电容行为,电极的可逆性良好,并且比电容值高达203F/g。这些发现将有助于碳纳米材料可控制备的研究,并且提供了一种有一定应用潜力的超级电容器电极材料。 关键词: 化学气相沉积;碱金属;多孔纳米碳纤维;超级电容器 中图分类号: O613.71文献标识码:A 文章编号:100129731(2009)022******* 1 引 言 超级电容器是近年来出现的一种介于传统电容器和电池之间的新型储能元件,它的能量密度大,比充电电池功率密度高,而且可快速充放电,使用寿命长,是一种新型、高效、实用的能量存储装置,在一些情况下能代替电池,并且在大功率,大电流器件等的应用领域十分广泛的应用前景[1,2]。 提高超级电容器性能的关键是寻找合适的电极材料,目前研究较多的有碳材料、金属氧化物和导电聚合物等单一电极材料以及复合电极材料。综合制备工艺,成本因素以及性能表现,我们把研究重点放在了新型的碳纳米纤维上[3]。 常规碳纳米纤维在应用中却表现出相对有效利用面积不大,电容质量比不高等缺陷。所以,将纳米碳纤维用于超级电容器的关键就是设法使它具有特殊的结构[4~6]。这里我们制得了一种具有多孔分叉结构的纳米碳纤维,证明此纤维具有优异的电化学储能性,十分适于作为超级电容器的电极材料。具体来说,我们利用特殊的碱金属氧化物掺杂制得了新型的催化剂,继而利用热CVD合成出的这种多孔纳米碳纤维在具有常规碳纤维的优异性能的同时,还具有非常丰富的中孔,较高的比表面积[7~10]。并且在将其用作超级电容器电极材料后的各项测试中,表现出良好的电化学电容行为。这些发现将有助于碳纳米材料可控制备的研究,并且提供了一种有一定应用潜力的超级电容器电极材料。 2 实 验 2.1 催化剂的制备 本实验中所用的催化剂采用简单的燃烧法制得。将KNO3,Cu(NO3)2?3H2O和Mg(NO3)2?3H2O 按n(K)∶n(Cu)∶n(Mg)=0.3∶1∶2的摩尔比混合,并添加柠檬酸作为助燃剂,在蒸馏水中混合溶解形成透明溶液。将溶液转移至瓷舟,并置于500℃的马弗炉中,溶液迅速燃烧,待完全燃尽后,取出石英舟,冷却至室温。最后将泡沫状的燃烧物研磨成粉末,即得到制备多孔分叉纳米碳纤维的催化剂。 2.2 多孔纳米碳纤维的制备 将炉温升至675℃,以600ml/min的速度通氮气5min,排除生长炉中石英管内的空气,接着按v(C2H2)∶v(N H3)∶v(N2)=100∶300∶200的比例,以600ml/min的速率通入3种气体的混合气,当气流和温度稳定后,将0.2g催化剂均匀铺在石英舟上,推至生长炉中段恒温区进行生长。反应30min后停止,在氮气氛围下冷却至室温,并收集黑色产物即为制备所得多孔纳米碳纤维。 2.3 多孔纳米碳纤维电极超级电容器的制作 首先将纳米碳纤维粗产物进行纯化处理以除去产物中的催化剂残余:以v(HNO3)∶v(H2SO4)=3∶1的体积比配制酸溶液,将纳米碳纤维粗产品浸泡入酸溶液中,超声波振荡5h后取出,置入离心机中反复离心、清洗至p H值约为7,再放入恒温烘箱中以95℃的温度恒温干燥。 以9∶1的质量比将纳米碳纤维与聚四氟乙烯(P TFE)=9∶1的质量比,在纳米碳纤维中加入P T2 FE乳液混合均匀,加蒸馏水调至乳胶状,均匀地涂覆在泡沫镍极片上,置于恒温干燥箱中在80℃下恒温干 413功 能 材 料 2009年第2期(40)卷 3基金项目:国家自然科学基金资助项目(50571087) 收到初稿日期:2008207221收到修改稿日期:2008209227 通讯作者:张孝彬 作者简介:牛 强 (1984-),男,陕西西安人,在读硕士,师承张孝彬教授,从事碳纳米材料的研究。

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

燃烧法直接合成氧化铁纳米粉体

齐鲁工业大学 外文翻译 院系名称:材料科学与工程学生姓名:乔宁 专业班级:材化10-2 学号:201007021047 指导老师:夏国栋

燃烧法直接合成氧化铁纳米粉体:反应机理和性能 Kishori 德什潘德,亚历山大Mukasyan ,和Arvind 尔马 化学与生物分子工程系,分子工程材料中心、圣母大学、圣玛丽,印第安纳州46556,与化学工程学院、普渡大学、西拉斐特,印第安纳州47907 2100 接收于2004年3月23日 不同的氧化物溶液燃烧合成涉及自我持续的反应(如,金属硝酸盐) 的氧化剂和燃料(如甘氨酸、肼)之间。为三个主要的铁氧化阶段,即α -和γ-Fe2O3和Fe3O4,使用的燃烧方法和简单的前体,如铁硝酸盐和草酸盐,以及不同燃料的组合合成反应机制进行调查。第一次在文献中,基于所获得的基本知识、与井结晶结构和表面地区范围50?175 m2/g 的上述粉末生产同时避免额外的煅烧过程同时使用一种方法。它还显示利用复杂的燃料和氧化剂复杂是有吸引力的方法来控制产品组成和特性。 介绍 铁氧化物是许多科学和工业应用中最常用的金属氧化物。例如,R-Fe2O3(赤铁矿)被广泛用作颜料,以及用于醇的催化剂氧化来制备醛和酮,磁铁矿(Fe3O4)是在各种反应中的催化剂如合成氨,同时,γ-Fe2O3(磁赤铁矿)备受关注的多种用途,包括作为磁记录材料,在生物医学中的应用。基于上述需求,所需的相组成和高比表面积的粉末是必需的。目前,有氧化铁纳米粒子的合成的几种方法,包括热分解,热解,醇热,溶胶-凝胶法,水热过程(参见参考4-10)。然而,以前的方法没有报道过可以用于这些氧化物的直接合成法,在纯结晶状态,由一个单一的路线。 水(液)燃烧合成(CS)不同的氧化物,包括铁氧体,钙钛矿,和氧化锆(参见参考11-15)是个有吸引力的技术。它涉及到一个氧化剂(例如,金属硝酸盐)和燃料(例如,甘氨酸,肼)之间自我维持的反应。首先,反应物溶解于水,得到的溶液充分混合,达到反应介质的基本分子水平的均匀化。被加热到水的沸点和蒸发后,该溶液可以点燃或自燃的温度迅速升高(可达104°C/S)值为1500°C.同时为高,这自持反应初始混合物通常细结晶良好的粉体所需的组合物。铁氧化物此前一直燃烧法合成的使用相对罕见的和复杂的含有前体如铁 (n2h3coo)2(N2H4)和n2h5fe (n2h3-coo)3 H2O。上述金属肼羧酸盐热分解产生的主要γ-Fe2O3的平均粒径小于25纳米,具体的比表面积范围是40-75 m2/g 。 在目前的工作中,通过燃烧法合成三大氧化铁物相,比如R- 和γ-Fe2O3和 Fe3O4,是使用一个简单的结合体如硝酸铁和草酸以及不同的燃料的研究。基于所获得的知识和优化的合成参数(大气,燃料的氧化剂比,φ,稀释系统,等等),一个新的上述单相氧化物粉末一步范围在50-175平方米/ g的结晶结构和表面面积的合成开始发展。 如有疑问请联系:电话:(765)494—4075。传真:(765)494-0805。电子邮件:avarma@https://www.doczj.com/doc/966774523.html,。 1) Cornell, R. M.; Schwertmann, U. The Iron Oxides. Structure, Properties, Reactions and Uses; VCH: Weinheim, 1996. (2) Zboril, R.; Mashlan, M.; Petridis, D. Chem. Mater. 2002, 14, 969.

碳纤维和碳纳米管的区别

碳纤维和碳纳米管的区别 碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。 碳纤维具有许多优良性能,碳纤维的轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。良好的导电导热性能、电磁屏蔽性好等。 碳纤维与传统的玻璃纤维相比,杨氏模量是其3倍多;它与凯夫拉纤维相比,杨氏模量是其2倍左右,在有机溶剂、酸、碱中不溶不胀,耐蚀性突出。 碳纳米管作为一维纳米材料,重量轻,六边形结构,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。 碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

约0.34nm,直径一般为2~20 nm。并且根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。 碳纳米管是中空的,属于纳米级别的,肉眼看不见,有单壁和多壁不同层数的,而炭纤维是微米级别的,比头发丝细但是肉眼肯见,都是碳材料家族的成员。 先进纳米材料制造商和技术服务商——江苏先丰纳米材料科技有限公司,2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看~ ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

纳米氧化铁制备及改性研究(开题报告)

毕业设计(论文)开题报告 学生姓名:高盛学号:P1001130908 所在学院:浦江学院 专业:化学工程与工艺 设计(论文)题目:纳米氧化铁制备及改性研究 指导教师:陈洪龄教授 2017 年3月2日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 一.课题背景及研究意义 纳米技术(nanotechnology)[1]是一种用单个原子、分子制造物质的科学技术。常常会表现出与其块状材料迥异的光、电、磁等物理特性及独特的化学性质,这就产生了四个方面的效应:小尺寸效应、表面效应、宏观量子隧道效应及量子尺寸效应。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。 氧化铁可用于油漆、橡胶、塑料、建筑等的着色,是无机颜料,在涂料工业中用作防锈颜料。用作橡胶、人造大理石、地面水磨石的着色剂,塑料、石棉、人造革、皮革揩光浆等的着色剂和填充剂,精密仪器、光学玻璃的抛光剂及制造磁性材料铁氧体元件的原料等。 二.课题研究方向 1氧化铁纳米颗粒的合成 氧化铁纳米材料由于其独特的超顺磁性质,成为目前生物医学领域应用较为广泛的一类纳米材料,在磁共振成像和肿瘤治疗方面有着很大的优势。合成路线可以分为三种:物理,化学和生物方法。化学方法是生产氧化铁纳米颗粒的最被引用的方法。 1.1氧化铁纳米颗粒合成的物理方法 生产氧化铁纳米颗粒的物理方法是自上而下的方法,这涉及将大颗粒制动成纳米颗粒尺寸。已经报道了生产氧化铁纳米颗粒的不同物理方法,例如粉末和球磨,以及电子束光刻方法。虽然物理方法适合于大规模生产,但是难以控制合成粒子的尺寸。 粉末和球磨法 机械粉末和球磨技术也称为机械化学或机械合金化技术。它利用冲击将微米尺寸的铁前体还原为纳米尺寸。颗粒在围绕其轴线旋转的中空圆柱壳内产生。它被作为研磨介

纳米活性炭纤维

纳米活性炭纤维 随着人口的増长和城市化的加速,有机物的污染越来越严重。都市生活污水量的不断増加,使有机污染物增加,而且工业废水中排放的有机物的总量上升。化工、冶金、炼焦、轻工等行业是有机污染的主要来源。这些行业排出的有机物不仅数量多,而且有有害和有毒的物质,对环境造成极大危害。 活性炭纤维(ACF)以它优异的吸附、脱附性能已在有机废水处理中广泛应用。如有机化工中含氯仿废水、制药厂高浓度废水、页岩油干馏废水、农药废水、炼油厂废水、多氯联苯、甲苯废水、苯齡废水、有机染料废水、己内酰胺废水等。 理化性能 ACF最显著的特点是具有很大的比表面积和丰富的微孔,徼孔的体积占总孔体积的90%以上,微孔直径小且直接开口于纤维表面,因而具有吸附容量大、吸附效率高、吸附和脱附速度快等优点,ACF表面也含有大量的有机基团,具有强的氧化还原反应能力。 纳米活性炭纤维比表面积和吸附容量大。微孔的孔径分布范围窄,再生性能大大优于颗粒状活性炭。活性炭纤维中以微孔为主,孔径小,对低浓度物质的吸附性能尤为突出,颗粒状活性炭在甲苯浓度低于0.01%时已基本失去吸附能力,而活性炭纤维在甲苯浓度低于0.001%时仍有良好的吸附效果。 工艺技术 操作过程 生产活性炭纤维(ACF)用的有机原纤维有:纤维素系、酚醛系、聚丙烯腈系、沥青系、聚乙焼醇系、苯乙焼源烃共聚系和木质系等,工业上所使用的主要是前4种原料。 在制造ACF之前,有机原纤维一般要经过低温200~400°C在空气中进行几十分钟乃至几小时的不熔化处理,随后进行(炭化)活化处理,也可以炭化和活化同时进行。活化方法主要包括物理活化、化学活化。用C02为活化介质,在惰性气体如氮气的保护下,处理温度一般在600~1000°C。具体的处理过程根据原材料和实际要求的不同而有所差异。 ACF的制造工艺过程,因原料和产品性能不同而异,但通常都要经过预处理、炭化和活化三个阶段。 预处理的目的,随原料纤维不同而异。对聚丙烯腈纤维和沥青纤维而言,为使原料纤维不熔化,即在炭化过程中不熔融变形,继续保持纤维形状,可采取预氧化稳定处理,使聚丙烯腈和沥青分子形高聚物而提高其热稳定性。而黏胶纤维预处理的目的患是高原料纤维的热氧稳定性、控制活化反应特性,以达到改善活性炭纤维的结构、性能并提高产品的得率。为此,采用无机盐溶液浸渍的方法;常用的浸渍剂为磷系或氯系化合物溶液,如磷酸、偏磷酸、焦磷酸及氯化锌等。酚酵树脂系纤维因不存在软化点,无需作不熔化处理,即可炭化和活化。

碳纳米材料综述

碳纳米材料综述 课程:纳米材料 日期:2015年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene) 的出现到1991年碳纳米管(carbon nanotube,CNTs) 的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim 研究组的报道使得石墨烯( Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

纳米碳纤维及石墨碳纤维

纳米碳纤维及石墨碳纤维 是直径为50~200nm,长径比为100~500的新型碳材料。它填补了常规碳纤维(直径为7~10μm)和单壁碳纳米管(SWNTs)(直径约为1nm)及多壁碳纳米管(MWNTs)(直径为1~50nm)尺寸上的缺口,具有较高的强度、模量、长径比、热稳定性、化学活性、导电性等特点;另外,纳米碳纤维在成本和产量上与碳纳米管相比都有绝对的优势。所以在复合材料(包括增强、导电及电磁屏蔽添加剂等)、门控场发射器件、电化学探针、超电容、催化剂载体、过滤材料等领域都有潜在的应用前景。如:少量加入纳米碳纤维可使芯片的电阻率降到1010Ω·cm,解决静电消散问题;加入少于3%的纳米碳纤维,电阻率可降到104~106Ω·cm,可以解决面板类电子器件的静电喷漆问题,而加入一般碳纤维往往不能满足该要求,因为一般碳纤维直径太大,使静电喷漆表面太粗糙,纳米碳纤维直径很细,静电喷漆表面可以达到A级光洁度;作为力学性能的增强剂时,纳米碳纤维可以达到连续碳纤维一样的增强效果,而价格则相当于采用玻璃纤维作增强剂,应用在聚合物基复合材料领域可以提高基体的拉伸、冲击强度和模量,并且导电导热性都有大幅度的提高,是电子、汽车、航天航空等领域的理想的增强材料,如:在ABS基体中加入5%(质量分数)的纳米碳纤维PyrografIII时,纳米碳纤维可在基体中得到很好的分散并发生取向,使基体的拉伸模量提高44%。所以近年来对纳米碳纤维的理论和应用研究越来越受到广大研究者们的关注。 石墨碳纤维: 通常把2000~3000℃的热处理过程称为石墨化。炭纤维在此温度下处理所得的纤维称为石墨纤维。 一般炭纤维的炭化温度在1000~1500℃。热处理到1000℃时其碳含量已达90%~92%,到1200~1500℃时碳含量可达95%左右。继续升温时,炭纤维中残留的氮、氢等非碳原子进一步被脱除,非芳构化碳减少,六角碳网平面的环数增加,转化为类似石墨层面的组织。随着温度的不断上升,这些分布紊乱的石墨层面进一步靠拢(d002减小),转化为类似石墨的微晶状态,微晶增大(La,Lc增大),结晶态碳的比例增加,石墨层面沿纤维轴的取向度也增加。 石墨单晶的拉伸弹性模量高达1051GPa,炭纤维的拉伸弹性模量也随着最高热处理温度和石墨化程度的升高而升高。但是其拉伸强度也将下降,这是因为在多晶材料中,晶界强度往往比晶粒内部强度小,所以初始裂纹大多存在于晶界处,且其在外力作用下扩展时,多沿

纳米氧化铁材料

纳米氧化铁材料 班级:材料化学091班姓名:林赚学号:091304101 摘要:氧化铁纳米粒子是一种新型的磁功能材料,被广泛应用于生物、材料以及环境等众 多领域。本文介绍了超顺磁氧化铁纳米粒子的制备方法,比较了各种方法的优缺点;评述了磁性氧化铁纳米粒子在细胞、蛋白质和核酸分离及生物检测中的应用,对多功能复合磁性氧化铁纳米粒子的构建,在生物医学领域中的应用具有的指导意义。 关键词:超顺磁性氧化铁纳米粒子;制备;生物分离;生物检测 1 引言 磁性纳米粒子是近年来发展起来的一种新型材料,因其具有独特的磁学特性,如超顺磁性和高矫顽力,在生物分离和检测领域展现了广阔的应用前景。同时,因磁性氧化铁纳米粒子具有小尺寸效应、良好的磁导向性、生物相容性、生物降解性和活性功能基团等特点,在核磁共振成像、靶向药物、酶的固定、免疫测定等生物医学领域表现出潜在的应用前景。但由于其较高的比表面积,强烈的聚集倾向,所以通常对其表面进行修饰,降低粒子的表面,能得到分散性好、多功能的磁性纳米粒子。对磁性纳米粒子的表面进行特定修饰,如果在修饰后的粒子上引入靶向剂、药物分子、抗体、荧光素等多种生物分子,可以改善其分散稳定性和生物相容性,以实现特定的生物医学应用。此外,适当的表面修饰或表面功能化还可以调节磁性纳米粒子表面的反应活性,从而使其应用在细胞分离、蛋白质纯化、核酸分离和生物检测等领域。 2 磁性氧化铁纳米粒子的合成方法 磁性纳米粒子的制备是其应用的基础。目前已发展了多种合成和制备方法,如共沉淀法、水热合成法、溶胶凝胶法和微乳液法等,上述方法均可制备高分散、粒度分布均匀的纳米粒子,并能方便地对其表面进行化学修饰。 在这些合成方法当中,共沉淀法是水相合成氧化铁纳米粒子最常用的方法。该方法制备的磁性纳米颗粒具有粒径小,分散均匀,高度生物相容性等优点,但制得的颗粒存在形状不规则,结晶差等缺点。通过在反应体系中加入柠檬酸,可得到形状规则、分散性好的纳米粒子。利用这种方法合成的磁性纳米材料被广泛应用在生物化学及生物医学等领域。微乳液法制备纳米粒子,产物均匀、单分散,可长期保持稳定,通过控制胶束、结构、极性等,可望从分子规模来控制粒子的大小、结构、特异性等。微乳液合成的磁性纳米粒子仅溶于有机溶剂,其应用受到限制。通常需要在磁性纳米粒子的表面修饰上亲水分子,使其溶于水,从而能应用于生物、医学等领域。 热分解法是有机相合成氧化铁纳米粒子最多也是最稳定的方法。利用热分解法制备的纳米Fe3O4颗粒产物具有好的单分散性,且呈疏水性,可以长期稳定地分散于非极性有机溶

纳米氧化铁的制备与应用_方敏

第24卷第3期(总第95期) 2005年9月湿法冶金 Hy dro metallurg y of China Vo l .24No .3(Sum .95) Sep .2005 纳米氧化铁的制备与应用 方 敏1,段学臣1,周常军2 (1.中南大学材料科学与工程学院,湖南长沙 410083; 2.湖南省石门县第三中学,湖南石门 415314) 摘要:综述了近年来纳米氧化铁的制备方法,对沉淀法、胶体化学法、水热法、水解法、气相法和固相法等各种制备工艺的优劣进行了比较,并详细地介绍了纳米氧化铁的性能及其在各种领域中的应用。关键词:纳米氧化铁;制备;性能;应用 中图分类号:T Q 138.11 文献标识码:A 文章编号:1009-2617(2005)03-0117-04 收稿日期:2005-03-08 作者简介:方敏(1981-),女,硕士研究生,主要研究方向为纳米材料制备。  纳米材料(Nano cry stalline M ate rials )是指 在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。由于其具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应,因而具有各种奇异的力、电、光、磁、热效应以及化学活性。纳米氧化铁(N anocrystalline Iron O xide )具有良好的耐候性、耐光性、磁性和对紫外线具有良好的吸收和屏蔽效应,可广泛应用于闪光涂料、油墨、塑料、皮革、汽车面漆、电子、高磁记录材料、催化剂以及生物医学工程等方面,且可望开发新的用途[1]。 1纳米氧化铁的制备方法 目前,国内外有很多不同的纳米氧化铁的制 备方法,但总体上可分为湿法(Wet Method )和 干法(Dry Me thod )。湿法多以工业绿矾、工业氯化(亚)铁或硝酸铁为原料,采用沉淀法、胶体化学法、水热法、水解法、溶胶-凝胶法、水溶胶萃取法等制备;干法常以羰基铁[Fe (CO )5]或二茂铁(FeCP 2)为原料,采用火焰热分解、气相沉积、低温等离子化学气相沉积法(PCVD )或激光热分解法制备。1.1湿法 由于湿法具有原料易得、操作简便、粒子可控等特点,因而普遍受到重视,特别是在工业生产中多采用此法。 1.1.1沉淀法 沉淀法通常是在溶液状态下将不同化学成分 的物质混合,在混合溶液中加入适当的沉淀剂先制备纳米粒子的前驱体沉淀物,再将此沉淀物干燥或煅烧,从而制得相应的纳米级粒子。该方法可分为直接沉淀法和均匀沉淀法。直接沉淀法通常是在金属盐溶液中加入沉淀剂,于一定条件下使生成沉淀析出,将阴离子除去,沉淀物经洗涤、热分解等处理可制得纳米级微粒。均匀沉淀法是通过控制溶液中沉淀剂的浓度,使之缓慢增加,可使溶液中的沉淀处于平衡状态,且沉淀在整个溶液中均匀地出现。 用碱将亚铁离子沉淀为Fe (OH ) 2,通入气体(如空气)氧化制得晶种,再引入亚铁盐,继续通气氧化。产品质量与沉淀粒子Fe (OH ) 2质量及氧化转化情况密切相关。而粒子大小取决于加料速度、搅拌状况、溶液初始浓度、反应温度、添加剂 等。在Fe (OH )2氧化过程中,用控制气体通入量和通入方式来控制α-FeOOH 的粒度,也可向 亚铁盐中加入诸如硅酸盐、磷酸盐、柠檬酸盐、酒石酸、聚乙烯醇(0.5%)、丙三醇、2,3-丁烯醇等添加剂[2] ,使结晶成核中心增多,从而使生成的α-FeOO H 的粒子微细、均匀。 沉淀法是液相化学反应合成金属氧化物纳米颗粒最早采用的方法。沉淀法成本较低,但是存在有下列问题:沉淀物通常为胶状物,水洗时过滤较困难;沉淀剂易作为杂质残留;沉淀过程中各种成分可能发生变化,水洗时部分沉淀物易发生溶解;此外,由于有多种金属不容易发生沉淀反应,这种方法的适应面较窄。

相关主题
相关文档 最新文档