当前位置:文档之家› 30m预应力混凝土简支T型梁桥设计

30m预应力混凝土简支T型梁桥设计

30m预应力混凝土简支T型梁桥设计
30m预应力混凝土简支T型梁桥设计

预应力混凝土简支T型梁桥设计

3.1 设计资料及构造布置

3.1.1 设计资料

1.技术资料

标准跨径:30m;

主梁全长:29.96m;

计算跨径:29.00m;

桥面净宽:11+2×0.5m (无人行道)

设计荷载:公路—Ⅰ级

气温:年最高气温:43℃最低:-5℃

2.河床地质情况

见所给桥位地质剖面图

3.材料及工艺

混凝土:主梁采用C50,栏杆及桥面铺装C30。

预应力钢筋采用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)的s 15.2钢绞线,每束7根,全梁配7束,

f=1860Mpa。

pk

普通钢筋直径大于和等于12mm的采用HRB335钢筋;直径小于12mm 的均用R235钢筋。

按后张法施工工艺制作主梁,采用内径70mm、外径77mm的预埋波纹管和夹片锚具。

4.设计依据及参考用书

中华人民共和国交通部标准,《公路桥涵设计通用规范(JTG D60-2004)》北京人民交通出版社;

中华人民共和国交通部标准,《公路桥涵地基与基础设计规范(JTJ029-85)》;

中华人民共和国交通部标准,《公路施工技术规范(JTJ041-89)》;

范立础主编,《桥梁工程》(上册),北京人民交通出版社,1980;

顾安邦主编,《桥梁工程》(下册),北京人民交通出版社,1980;

叶见曙主编,《结构设计原理》,北京1997;

徐光辉主编,《桥梁计算示例集》,预应力混凝土刚架桥,1995;

李廉锟主编,《结构力学》,北京教育出版社,1996;

陈忠延主编,《土木工程专业毕业设计指南》,桥梁工程分册,北京水利水电出版社,2000;

5.基本计算数据表1-1

3.1.2 横截面布置

1.主梁间距与主梁片数

主梁间距通常应随梁高与跨径的增大而加宽为经济,同时加宽翼板对提高主梁截面效率指标ρ很有效,故在许可条件下应适当加宽T梁翼板。

本设计主梁翼板宽度为2400mm,由于宽度较大,为保证桥梁的整体受力性能,桥面板采用现浇混凝土刚性接头,因此主梁的工作截面有两种:预施应力、运输、吊装阶段的小截面(i b=1800mm)和运营阶段的大截面(i b=2400mm)。净—11+2×0.5的桥宽选用五片主梁,如图1—1所示。

图1—1

跨径中线

2.主梁跨中截面主要尺寸拟订 (1)、主梁高度

预应力混凝土简支梁桥的主梁高度与其跨径之比通常在1/15~1/25。当建筑高度不受限制时,增大梁高往往是较经济的方案,因为增大梁高可以节省预应力钢束用量,同时梁高增大一般只是腹板加高,而混凝土用量增加不多。综上所述,主梁高度取1800mm 。 (2)、主梁截面细部尺寸

T 梁翼板的厚度主要取决于桥面板承受车轮局部荷载的要求,还应考虑能否满足主梁受弯时上翼板受压的强度要求。所以预制T 梁翼板的厚度取用160mm ,翼板根部加厚到260mm 以抵抗翼缘根部较大的弯矩。

在预应力混凝土梁中腹板内主拉应力较小,腹板厚度一般由布置预制孔管的构造决定,同时从腹板本身的稳定条件出发,腹板厚度不宜小于其高度的1/15=120mm ,所以腹板厚度取200mm 。

马蹄尺寸基本由布置预应力钢束的要求确定的,设计实践表明,马蹄面积占截面

面积的10%~20%为合适。考虑到主梁需要配置较多的钢束,将钢束按三层布置,一层最多排三束,同时还应根据《公路桥涵设计通用规范(JTG D60-2004)》对钢束净距及预留管道的构造要求,初拟马蹄宽度为550mm,高度250mm,马蹄与腹板交接处作三角过渡,高度150mm,以减小局部应力。

按照以上拟订的外形尺寸,就可绘出预制梁的跨中截面图。如图1-2所示:

图1--2:跨中截面尺寸图(尺寸单位:mm)

计算截面几何特征

将主梁跨中截面划分成五个规则图形的小单元,截面几何特征列表计算见表1—2。

跨中截面几何特性计算表

表1—2

大毛截面

小毛截面

注:大毛截面形心至上缘距离:547764

62.55()8757.5

i s

i

S y cm A

=

=

=∑∑

小毛截面形心至上缘距离:537524

71.89()74777.5

i s i

S y cm A

=

=

=∑∑

(4)、检验截面效率指标ρ(希望ρ在0.5以上) 上核心距:s k =x

I

A y ∑∑?=()

35612820.718757.518062.55?-=34.62()cm

下核心距:()35612820.71

65.018757.562.55

x s

I cm A k y ∑=

==?∑?

截面效率指标:

34.6265.01

0.550.5

180

s x

h

k k

ρ

++

===>

表明以上初拟的主梁跨中截面是合理的。

3.1.3 横截面沿跨长的变化

如图1所示,主梁采用等高形式,横截面的T梁翼板厚度沿跨长不变。梁端部区段由于锚头集中力的作用而引起较大的局部应力,也为布置锚具的需要,在距梁端1980mm范围内将腹板加厚到与马蹄同宽。马蹄部分为配合钢束弯起而从六分点附近(第一道横隔梁处)开始向支点逐渐抬高,在马蹄抬高的同时腹板宽度亦开始变化。

3.1.4 横隔梁的设置

模型试验结果表明,在荷载作用处的主梁弯矩横向分布,当该处有横隔梁时比较均匀,否则直接在荷载作用下的主梁弯矩很大。为减小对主梁设计起主要控制作用的跨中弯矩,在跨中设置一道中横隔梁;当跨度较大时,应设置较多的横隔梁。在桥跨中点和交点、1/4点、3/4点处设置五道横隔梁,其间距为7.375m。端横隔梁的高度与主梁同高,厚度为上部260mm,下部240mm;中横隔梁高度为1600mm ,厚度为上部180mm,下部160mm。

3.2 主梁作用效应计算

根据上述梁跨结构纵、横截面的布置,并通过可变作用下的梁桥荷载横向分布计算,可分别求得各主梁控制截面(一般取跨中、四分点、变化点截面和支点截面)的永久作用和最大可变作用效应,然后进行主梁作用效应组合。

3.2.1 永久作用集度

1.永久作用集度

(1)预制梁自重

①跨中截面段主梁的自重(四分点截面至跨中截面,长7.25m):

0.74775257.25135.53()

G kN

=??=

(1)

②马蹄抬高与腹板变宽段梁的自重(长5m):

(1.1791250.74775) 5.75252138.49()

G kN

≈+??=

(2)

③支点段梁的自重(长1.98m)

1.7912525 1.9858.37()

G kN

=??=

(3)

④ 边主梁的横隔梁

中横隔梁体积:

30.17(1.390.70.50.10.50.50.150.175)0.1589m ??-??-??= 端横隔梁体积:

31.6000.550.25()(1.80.16)0.50.0650.3250.212622m ??

?-?--??=????

故半跨内横隔梁重力为:(10.2126 1.50.1589)2511.27()G kN =?+??=(4) ⑤ 预制梁永久作用集度

1(135.53138.4958.3711.27)14.9822.94()g kN m =+++=

(2)二期永久作用 ① 现浇T 梁翼板集度

0160.825 3.2()g kN m =??=(5).

② 边梁现浇部分横隔梁

一片中横隔梁(现浇部分)体积:

30.170.40 1.390.09452()m ??=

一片端横隔梁(现浇部分)体积:

30.250.40 1.640.164()m ??=

故:

0.0945220.1642529.960.51()g kN m =

?+??=(6)(3) ③ 铺装

9cm 沥青混凝土铺装:0.09112322.77()kN m ??= 7cm 钢纤维混凝土铺装:0.07112519.25()kN m ??=

若将桥面铺装均摊给五片主梁,则58.404()g kN m =

=(7)(22.77+19.25) ④ 栏杆

一侧防撞栏:4.99kN m

若将两侧防撞栏均摊给五片主梁,则

4.9925 1.996()g kN m =?=(8)

⑤ 边梁二期永久作用集度:

3.20.518.404 1.9961

4.11()g kN m =+++=2

2.永久作用效应

图1--3 永久作用效应计算图

g

永久作用效应计算见表1—3。

1号梁永久作用效应

表1—3

如图1—3所示,设x 为计算截面离左支座的距离,并令x l α=。 主梁弯矩和剪力的计算公式分别为:

21

(1)2

a M l g αα=-

1

(12)2

a Q lg α=-

3.2.2 可变作用效应计算

1.计算主梁的荷载横向分布系数 (1)跨中的荷载横向分布系数c m

本设计桥跨内设三道横隔梁,具有可靠的横向联系,且承重结构的长宽比为:

110.380.529

B L ==< 所以可按修正的刚性横梁法来绘制横向影响线和计算横向分布系数c m 。 ○

1 计算主梁抗扭惯矩t I 对于T 行梁截面,抗扭惯矩可近似按下式计算:

31m

t i i i i I c b t ==∑

式中:

i i

b t ,——相应为单个矩形截面的宽度和高度;

i c ——矩形截面抗扭刚度系数;

m ——梁截面划分成单个矩形截面的个数。

对于跨中截面,翼缘板的换算平均厚度:

1180160.51010018.8()180t cm ?+??==

马蹄部分的换算平均厚度:

32540325()2

t cm +==.

图1—4示出了t I 的计算图示,t I 的计算见表1—4。

图1--4:

计算图示(单位:mm)

t I 计算表

表1—4

其中i 的计算由下表1—4—1内差求得:

i

c 的计算

表1—4—1

2 计算抗扭修正系数β 本设计主梁的间距相同,并将主梁近似看成等截面,则得:

221112i T i

i i

i Gl I E a I β=

+

∑∑

式中:G =0.4E ;l=29.00m ;450.01239666i i T T i

I I m =?=∑∑;1 4.8a m =;

2 2.4a m =;30.0a m =;4 2.4a m =-;5 4.8a m =-;40.3640058113i I m =。

计算得:β=0.98

3 按修正的刚性横梁法计算横向影响线竖坐标值 5

2

1

1

i j

ij i

i a a n

a

ηβ

==+∑

式中:n=5,5

22221

2(4.8 2.4)57.6()i i a cm ==?+=∑。 计算所得的ij η值列于表1—5内

ij η数值

表1—5

④ 计算荷载横向分布系数

1号梁的横向线和最不利荷载图式如图1—5所示。

1号梁图1--5:跨中的横向分布系数计算图示(单位:mm)

可变作用(汽车公路—I级):

两车道:

1

(0.60830.46130.35520.2082)0.8165

2

cq

m=+++=

(2)支点截面的荷载横向分布系数

m

如图1—6所示,按杠杆原理法绘制荷载横向分布影响线并进行布载,1号梁可变作用的横向分布系数可计算如下:

可变作用(汽车):

1

(1.08330.3333)0.7083

2

q

m=?+=

(3)横向分布系数汇总(见表1—6)

一号梁可变作用横向分布系数表1—6

图6:支点的横向分布系数m 0计算图示(尺寸单位:mm)

3.车道荷载的取值

根据《桥规》4.3.1条,公路—I 级的均布荷载标准值k q 和集中荷载标准值

k P 为:

10.5()k q kN m =

计算弯矩时:

280k P =(kN m )

计算剪力时:

1.2280336k P =?=(kN )

4.计算可变作用效应

在可变作用效应计算中,本设计对于横向分布系数的取值作如下考虑:支点处横向分布系数取0m ,从支点至第一根横梁段,横向分布系数从0m

直接过渡到c m ,其余梁段均取c m

(1)求跨中截面的最大弯矩和最大剪力

M影响线

V影响线

图7:跨中截面作用效应计算图示(尺寸单位:mm)

m 汽

计算跨中截面最大弯矩和最大剪力采用直接加载求可变作用效应,图1-7示出跨中截面作用效应计算图示,计算公式为:

k k S mq mP y

=Ω+

式中:S ——所求截面汽车标准荷载的弯矩或剪力;

k q ——车道均布荷载标准值; k P ——车道集中荷载标准值;

Ω——影响线上同号区段的面积;

y ——影响线上最大坐标值。

可变作用(汽车)标准效应:

max 1

0.816510.57.2529(0.81650.7083)7.2510.5 1.208

2

081652807.25901.26299.951657.495

2548.81()

M kN m =????--???+??=-+=?. max 11

0.816510.50.514.5(0.81650.7083)7.2510.50.0833

22

081653360.531.0780.3431137.172

167.9069()

V kN =????--???+??=-+=. 可变作用(汽车)冲击效应:

2548.810.245624.46()M kN m =?=? 167.90690.24541.14()V kN =?=

(2)求四分点截面的最大弯矩和最大剪力

m 汽

图1-8:四分点截面作用效应计算图示(尺寸单位:mm)

V影响线

M影响线

图1—8为四分点截面作用效应的计算图示。 可变作用(汽车)标准效应:

max 11

0.816510.5 5.437529(1.81250.6042)

22(0.81650.7083)7.2510.508165280 5.4375675.959.9528123.1213.4951910.12()M kN m =????-?+?-??+??=-+=?. max 11

0.816510.50.7521.75(0.81650.7083)227.2510.50.0833081653360.7569.92560.34205.758275.34()V kN =????--?

??+??=-+=. 可变作用(汽车)冲击效应:

1909.120.245467.73()M kN m =?=? 275.340.24567.46()V kN =?=

(3)求N7锚固截面的最大弯矩和最大剪力

m

图9:锚固截面作用效应计算图示(尺寸单位:mm)

V影响线

M影响线

图1-9为钢束N7锚固截面作用效应的计算图示。由于本设计中该处有预应力筋锚固,应力有突变,是控制截面,位置离支座中心1.4444m 。

可变作用(汽车)标准效应:

计算N7锚固截面汽车荷载产生的弯矩和剪力时,应特别注意集中荷载k P 的作用位置。集中荷载若作用在计算截面,虽然影响线纵坐标最大,但其对应的横向分布系数叫小,荷载向跨中方向移动,就出现相反的情况。因此,对应两个截面进行比较,即影响线纵坐标最大截面(N7锚固截面)和横向分布系数达到最大值的截面(第一根横梁处截面),然后取一个最大的作为所求值。

通过比较,集中荷载作用在第一根横梁处截面处为最不利情况,结果如下:

max 111

0.816510.5 1.03442910.5 1.44440.715510.5

222

1

0.7299 5.80560.961810.5(0.81650.7083)7.250.0907

2

2800.81650.8165

128.5885 5.6121.39710.3735186.668287.88()M kN m =????-???-????-??-??+??=---+=? max 11

0.816510.50.963027.555610.50.7299 5.80560.9618

221

10.5(0.81650.7083)7.250.08453360.81650.81652

113.7521.3970.348224

316()

V kN =????-????-??-??+??=--+= 可变作用(汽车)冲击效应:

287.880.24570.53()M kN m =?=? 3160.24577.42()V kN =?=

V影响线

图10:支点截面作用效应计算图示(尺寸单位:mm)

m

(4)求支点截面的最大弯矩和最大剪力 图1—10为支点截面最大剪力计算图示。 可变作用(汽车)标准效应:

max 11

0.816510.5129(0.81650.7083)7.2522

081653360.75124.31 3.7749205.758

326.29()

V kN =????--??+??=-+=(0.8333+0.0833)

. 可变作用(汽车)冲击效应:

326.290.24579.94()V kN =?=

3.2.3 主梁作用效应组合

本设计按《桥规》4.1.6—4.1.8条规定,根据可能出现的作用效应选择了三种最不利效应组合:短期效应组合、标准效应组合和承载能力极限状态基本组合,见表1-7。

主梁作用效应组合

表1—7

3.3 预应力钢束的估算及其布置

3.3.1 跨中截面钢束的估算和确定

根据《公预规》规定,预应力梁应满足正常使用极限状态的应力要求和承载能力极限状态的强度要求。以下就跨中截面在各种作用效应组合下,分别按照上

述要求对主梁所需的钢束数进行估算,并且按这些估算的钢束数的多少确定主梁的配束。

1.按正常使用极限状态的应力要求估算钢束数

对于剪支梁带马蹄的T 型截面,当截面混凝土不出现拉应力控制时,则得到钢束数n 的估算公式:

1()

k

p pk s p M n C A f k e =

???+

式中:k M ——持久状态使用荷载产生的跨中弯矩标准组合值,按表1—7取用;

1C ——与荷载有关的经验系数,1C 取用0.565

p A ?——一股615.2s φ钢绞线截面积,一根钢绞线的截面积是21.4cm ,故

p A ?=28.4cm 。

在一中已计算成桥后跨中截面180.00180.0062,55117.45x s y y cm =-=-=,34.62s k cm =,初估15p a cm =,37068.1510k M =?,则钢束偏心距为:117.4515102.45()p x p e y a cm =-=-=。

1号梁:

3

47657.7410 6.30.5658.4101860(0.3462 1.0245)

n -?==???+

2.按承载能力极限状态估算钢束数

根据极限状态的应力计算图式,受压区混凝土达到极限强度cd f ,应力图式呈矩形,同时应力钢束也到达设计强度pd f ,则钢束数的估算公式为:

d

pd p

M n h f A α=

???

式中:d M ——承载能力极限状态的跨中最大弯矩,按表1—7取用;

α——经验系数,一般采用0.75—0.77,本设计取用0.76;

pd f ——预应力钢绞线的设计强度,见表1—1,为1260MPa 。

计算得:

3

64

9941.8610 6.90.761.81260108.410n -?==?????

根据上述两种极限状态,取钢束数n =7。

3.3.2 预应力钢束布置

1.跨中截面,在保证布置预留管道构造要求的前提下,尽可能使钢束群重心的偏心距大些,管道至梁底和梁侧净距不应小于3cm 及管道直径的12。根据

相关主题
文本预览
相关文档 最新文档