当前位置:文档之家› T6865 温控器

T6865 温控器

T6865 温控器
T6865 温控器

T6865 Series Large LCD Digital Thermostat

24 VAC

2-pipe fan coil control

Application

T6865 digital thermostats are designed for application of 3-speed fan and modulating valves in fan coil system.

Including:

2-pipe cool only/heat only/manual changeover Ventilation mode

Manual or automatic 3-speed fan control

modulating valve control

Fan speed can be selected to automatic or manual 3-speed control mode.

In ventilation mode, fan only support manual speed control. Features

?Super modern appearance design, suitable for office, hotel and residential building ?Slim design, direct installation on 86×86mm box or 3×3inch box

?Stylish and elegant green/blue backlight with white colour ring

?2-pipe integrated into one unit with easy configuration

?Big LCD display with English and icons ?Easy to install and set-up

?Time on/off function

?Selectable room temperature or setpoint temperature display

?Manual or automatic fan speed selection ?Energy saving mode activation by button press or dry contact (key card) ?Adjustment of display room temperature ?Temperature unit either ℃ or ℉

?User setting can be kept when power off ?Freezing protection function available ?Lock or unlock keys or part of keys in Installer Set-up ( ISU )

?Heat and cool setpoint limitation for energy saving

?24VAC power supply

?230VAC fan load, 4A resistive and 2A inductive switch rating

Data sheet

Model summary

Model Horizontal/

Vertical

Backlight

Time

on/off

2-

pipe/

4-pipe

Power

supply

(VAC)

Energy

Saving

Ventilation

Manual/

Automatic

Fan

Remote

Setback

T6865H2WB Horizontal Blue Y 2 24 Y Y Y Y T6865H2WG Horizontal Green Y 2 24 Y Y Y Y

1

2

Mechanical design

Thermostat appearance

Fan Operation

LCD display

Function

Modulating Valve control

Thermostat acquires the room temperature via its integrated sensor and maintains the setpoint by delivering modulating output.

Heat/Cool/Vent

Pressing the mode button to select heat, cool or vent mode.

Fan can be selected as manual or automatic 3-speed operation. In Manual mode, the fan is switched to the selected speed via control output Gh, Gm, Gl. In automatic mode, fan speed depends on the

difference between room temperature and setpoint. When room temperature reaches setpoint, valve will be closed and meanwhile, fan will be closed either.

Temperature display

The displayed temperature can be set to display room temperature or setpoint. The setting can be made during ISU process.

Time on/off

When the thermostat is off, holding power button for 3 seconds, system will enter ‘time on’ mode. When the thermostat is on, holding power button for 3 seconds, system will enter ‘time off’ mode.

The range of ‘time on’ or ‘time off’ is from 0 to 12 hours. The step is 0.5 hour and the default time is 0.

Backlight

Pressing any key will activate the backlight.

Backlight will turn off after 8 seconds. When in ISU mode or ‘Installer test’ mode, the backlight will turn off after 60 seconds without operation.

Keypad lock

The default status of ‘Keypad Lock’ is all keys available and it can be changed in ISU mode. Keypad lock has the following settings:

All keys are available (Default)

System button is locked out

Fan and System button are locked out

All buttons are locked

Operating modes

The following operating modes are available: Comfort mode

In comfort mode, the setpoint can be changed by pressing up or down button. Different applications include cool only, heat only and manual heat/cool changeover.

Energy saving mode

A potential-free dry contact (such as hotel key card) or button press (pressing mode button for 3 seconds) can activate the energy saving mode with icon appearing on screen. The dry contact can be selected as normal open or normal close type in ISU.

If activated by dry contact, all buttons will be locked except the multi-key for ISU. If energy saving is activated by button press, pressing any button will stop energy saving mode.

For heating mode, if the energy saving function is enabled, the setpoint will change to remote setback heating setpoint. The range of remote setback heating setpoint is from 10℃ to 21℃ and default value is 18℃. The value may change in ISU with step of 0.5℃.

For cooling mode, if the energy saving function is enabled, the setpoint will change to remote setback cooling setpoint. The range of remote setback cooling setpoint is from 22℃ to 32℃ and default value is 26℃. The value may change in ISU with step of 0.5℃.

Freezing protection mode

Freezing protection can be disabled (default) or enabled. If freezing protection is enabled (It is not available in cool only application) and thermostat is in OFF mode while the room temperature is below 6 ℃, the thermostat will open heating device before the temperature rises to 8℃.

On/off mode

Pressing power button can turn on/ turn off the thermostat.

Technical specification

Electrical:

Power supply 24 (+/-10%) VAC Frequency 50Hz

Modulating output DC 0……10V, Support

VC7900 series actuators Fan load rating 230(+/-10%)VAC, 4(2)A Relay life 100,000 times

Wiring Max 16AWG

Temperature Control:

Sensing element 10K (@25℃) NTC Control algorithm PI, Modulating output Accuracy +/-1℃ at 21℃

Setpoint range 10~32℃

Display range 0~37℃

Environmental:

Protection Class IP20

Operation temperature -18~49℃

Shipping temperature -35~65℃

Relative humidity 5~90%

Installation:

Installed on 86×86mm box or 3×3inch box

3

4

Terminal Designations

Wiring diagrams

Installation & Commissioning

Install the thermostat about 5 feet (1.5m) above the floor in an area with good air circulation at average temperature.

Do not install in locations where the thermostat can be affected by: ? Drafts or dead spots behind doors and in corners

? Hot or cold air from ducts

? Sunlight or radiant heat from appliances ? Concealed pipes or chimneys

? Unheated/uncooled areas such as an outside wall

Installation Step:

Step 1

Pull wires through wire hole

Loosen screw terminals, insert wires into terminal block, and then retighten screws

Step 2

Push the Power box into the junction box.

Step 3

Place Back cover over junction box, insert and tighten mounting screws.

No Terminal Description 1 R 24VAC power

2 C Common 24VAC / Common for control output

3 W/Y Control Output DC 0……10V

4 L 230VAC operating voltage for the fan

5 Gh High speed fan

6 Gm Medium speed fan 7

Gl

Low speed fan 8 SB Remote setback 9 Sc

Common for remote setback

5

Step 4

Insert the cable into connector on circuit board of

thermostat.

Step 5

Align the 4 tabs on the Back cover with corresponding slots on the back of the

thermostat, and then push it until the thermostat snaps in place.

Installer test

Follow the procedure below to test the heating and cooling and fan system.

at any time.

System Test System Status

Installer set up

and save settings

6

Setup Function Settings & Options

Troubleshooting Tips

If… Then…

Heating system does not turn on. ?Set the mode to Heat by pressing the

Mode button. ?Wait five minutes for the heating system

to respond.

Cooling system does not turn on. ?Set the mode to Cool by pressing the

Mode button. ?Wait five minutes for the cooling system

to respond.

The fan doesn’t work. ? Check whether the Fan mode is set to

Auto ? Check whether the heating or cooling

system works well.

The Mode button

doesn’t work.

?Check whether the keypad is locked or not.

? Check whether the system is working in

Energy saving mode.

?Check whether the thermostat is off. The Fan button

doesn’t work.

?Check whether the keypad is locked or not.

? Check whether the system is working in

Energy saving mode.

?Check whether the thermostat is off. The Up or Down button doesn’t work. ?Check whether the keypad is locked or

not. ? Check whether the system is working in Energy saving mode.

?Check whether the thermostat is off.

Dimension

ISU Code

Description Possible Options

0 Heat only

1 Cool only

1 System Type

2 Two pipes 1H1C manual(Default)

0 oF

9

Temperature scale

1 oC(Default) 0 Auto only

1 Constant only 10

Fan Control Type

2 Both(Default) - 2 oC (-4 oF) -1.5 oC (-

3 oF) -1 oC (-2 oF)

-0.5 oC (-1 oF) 0 oC (0 oF) (Default) 0.5 oC (1 oF) 1 oC (2 oF) 1.5 oC (3 oF) 18

Display

Temperature Adjustment

2 oC (4 oF)

0 Display room temperature

1 Display set point 19

Temperature Display Mode 2 Display both (Default)

20 Heating Range Stop

10-32 oC Default 32 oC (50-90 oF Default 90 oF ) 21

Cooling Range Stop

10-32 oC Default 10 oC (50-90 oF Default 50 oF )

0 All keys are available(Default)

1 System button is locked out

2 Fan and System button are locked out 22

Keypad Lock out

3 All buttons are locked 0 Hotel card NO

1 Hotel Card NC 23

Remote setback enable method 2 Button (Default)

24 Remote setback heating setpoint Range 10-21oC Default : 18 oC (Range 50-70oF Default : 64) 25 Remote setback cooling setpoint Range 22-32oC Default : 26 oC (Range 72-90 oF Default : 79 oF) 0 Disabled (Default) 27 Freeze Protection

1 Enabled

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

家用空调温度控制器的控制程序设计

《微机原理及接口技术》 课程设计说明书 课题:家用空调温度控制器的控制程序设计专业: 班级: 姓名: 学号: 指导老师:王亚林 2015年1月8 日

目录 第1章、设计任务与目标................................................................................ 错误!未定义书签。 设计课题:................................................................................................ 错误!未定义书签。 设计目的:................................................................................................ 错误!未定义书签。 设计任务:................................................................................................ 错误!未定义书签。 基本设计要求:............................................................................................................. 错误!未定义书签。 第2章、总体设计规划与方案论证 (6) 设计环节及进程安排 (6) 方案论证 (5) 第3章、总体软件设计说明及总流程图 (10) 总体软件设计说明 (10) 总流程图 (11) 第4章、系统资源分配说明 (13) 系统资源分配 (13) 系统内部单元分配表 (13) 硬件资源分配 (15) 数据定义说明 (16) 部分数据定义说明 (16) 第5章、局部程序设计说明 (17) 总初始化以及自检 主流程 按键音模块 (17) .2 单按键消抖模块 (17) PB按键功能模块 (18) 基本界面拆字模块 (19) 4*4矩阵键盘模块 (19) 模式显示模块 (20) 显示更新模块 (21) 室内温度AD转换模块 (21) 4*4矩阵键盘扫描子程序 (21) 整点报时模块 (23) 空调进程判断及显示模块 (23) 三分钟压缩机保护模块 (23) 风向摆动模块 (24) 驱动控制模块 (24) 定时开关机模块 (25) 第6章、系统功能与用户操作使用说明 (26)

计算机控制课程设计电阻炉温度控制系统

计算机控制课程设计 报告 设计题目:电阻炉温度控制系统设计 年级专业:09级测控技术与仪器 化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产

生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1.1电阻炉组成及其加热方式 电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加

热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件, (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

温度控制电路实验报告

温度控制电路实验报告 篇一:温度压力控制器实验报告 温度、压力控制器设计 实 验 报 告 设计题目:温度、压力控制器设计 一、设计目的 1 ?学习基本理论在实践中综合运用的初步经验,掌握微机控制系统设计的基本方法; 2.学会单片机模块的应用及程序设计的方法; 3?培养实践技能,提高分析和解决实际问题的能力。 二、设计任务及要求 1.利用赛思仿真系统,以MCS51单片机为CPU设计系统。 2?设计一数据采集系统,每5分钟采集一次温度信号、10分钟采集一次压力信号。并实时显示温度、压力值。 3.比较温度、压力的采集值和设定值,控制升温、降温及升压、降压时间,使温度、压力为一恒值。 4?设温度范围为:-10—+40°C、压力范围为0—100P&;升温、降温时间和温度上升、下降的比例为1°C/分钟,升压、降压时间和压力上升、下降的比例为10P"分钟。

5?画出原理图、编写相关程序及说明,并在G6E及赛思 仿真系统上仿真实现。 三、设计构思 本系统硬件结构以80C51单片机为CPU进行设计,外围扩展模数转换电路、声光报警电路、LED显示电路及向上位PC机的传输电路,软件使用汇编语言编写,采用分时操作的原理设计。 四、实验设备及元件 PC机1台、赛思仿真系统一套 五、硬件电路设计 单片微型计算机又称为微控制器,它是一种面向控制的大规模集成电路芯片。使用80C51来构成各种控制系统,可大大简化硬件结构,降低成本。 1.系统构架 2.单片机复位电路 简单复位电路中,干扰易串入复位端,在大多数情况下不会造成单片机的错误复位,但会引起内部某些寄存器的错误复位,故为了保证复位电路的可靠性,将RC电路接斯密特电路后再接入单片机和外围IC的RESET引脚。 3.单片机晶振电路 晶振采用12MHz,即单片机的机器周期为1卩so 4.报警电路

简易水温控制器设计报告

简易水温控制器设计报告 目录 一.设计要求 (2) 二.设计作用、目的 (2) 三.设计的具体实现 (3) 1.系统概述 (3) 2.单元电路设计、仿真与分析 (4) 四.心得体会及建议 (21) 五.附录 (23) 六.参考文献 (25)

简易水温控制器设计报告 一.设计要求 设计一个简易的水温控制器,在市电的情况下,能够检测容器内水的温度,以检测到的温度信号控制加热器的开关,将水温控制在一定的范围之内。 (1).当温度小于t1时,两个电阻丝同时通电加热,将容器内的水加热; (2).当水温大于t2,但小于t1时,仅一根电阻丝通电加热; (3).当水温大于t2时,两根电阻丝都不通电; (4).用显示电路显示出开关通断情况; (5).电源:220V/50HZ的工频交流电供电; (6).根据上述要求选定设计方案,画出系统框图,写出详细的设计过程; (7).利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单。 二.设计作用、目的 模拟电路课程设计是电子技术基础课程的实践性教学环节,通过课程设计,要求达到以下目的。 (1).通过水温控制器的设计,使我们能够巩固和加深对模拟电子电路基本知识的理解,了解日常电子产品的设计与应用; (2).培养学生根据课题需要选学参考书籍,查阅手册,图表和文献资料的自学能力。通过独立思考,深入研究有关问题,学会自己分析并解决问题的方法。 (3).通过电路方案的分析、论证和比较,设计计算和选取元

器件初步掌握简单实用电路的分析方法和工程设计方法。 (4).了解与课题有关的电子电路及元器件的工程技术规范,能按设计任务书的要求,完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。 三.设计的具体实现 1.系统概述 水温控制器电路的总体框图如图所示。它由水温检测电路、比较电路、电阻丝开关电路,显示电路和电源电路5部分组成。 图1 简易水温控制电路的总体框图 水温检测电路的功能是利用温度传感器的特性检测水温的变化,在这里利用可变电阻代替热敏电阻,同时将温度信号转化为电信号。比较电路的功能是利用比较器的原理实现水温范围的确定,同时利用滞回比较器的迟滞特性来避免跳闸现象。电阻丝开关电路的功能是完成控制电路和对水温的加热。显示电路的功能是利用发光二极管将电阻丝通电与否显示出来。电源电路的功能是为上述所有电路提供直流电源。

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

温度控制电路设计---实验报告

温度控制电路设计一、设计任务 设计一温度控制电路并进行仿真。 二、设计要求 基本功能:利用AD590作为测温传感器,T L 为低温报警门限温度值,T H 为高 温报警门限温度值。当T小于T L 时,低温警报LED亮并启动加热器;当T大于 T H 时,高温警报LED亮并启动风扇;当T介于T L 、T H 之间时,LED全灭,加热器 与风扇都不工作(假设T L =20℃,T H =30℃)。 扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。 三、设计方案 AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1μA/K。AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。 主要特性:流过器件的电流(μA) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55℃~+150℃;AD590的电源电压范围为4~30 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。 基本使用方法如右图。 AD590的输出电流是以绝对温度零度(-273℃)为基准, 每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其 输出电流I out =(273+25)=298μA。 V o 的值为I o 乘上10K,以室温25℃而言,输出值为 10K×298μA=2.98V 。 测量V o 时,不可分出任何电流,否则测量值会不准。 温度控制电路设计框图如下: 温度控制电路框图 由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。通过温度校正电路得

单片机智能温控器课程设计

单片机课程设计 说明书 专业:机械设计制造及其自动化 设计题目:智能温控器 设计者: 指导老师: 设计时间:

一、课题名称:一个基于51单片机的智能温控器课程 设计 二、主要技术指标及工作内容和要求:本设计以MCS-51系列单片机为核心,采用常用电子 器件设计,一个电源开关,两个控制温度设定按键(增大/减小),四位数码管分别显示设 定温度和实际温度,量程为0~99度,打开电源开关后设定温度初始化为26度。 1,按键输入采用中断方式,两个按键分别接INT0和INT1。 2,采用铂电阻(Pt100)温度传感器进行温度测量,模数转换采用ADC0809。 3,单片机根据设定温度S和实测温度P控制继电器R的动作,死区设为2度:当P<=S-1时,控制R接通电加热回路; 当P>S+1时,控制R断开电加热回路; 当S-1

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

基于单片机的温控器

天津理工大学 课程设计报告 题目:基于单片机的温控器设计 学生姓名李天辉学号 20101009 届 2013 班级电气4班 指导教师专业电气工程及其自动化

说明 1. 课程设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成课程设计工作。 3. 设计报告内容建议主要包括:概述、系统工作原理、系统组成、设计内容、小结和参考资料。 4. 设计报告字数应在3000-4000字,采用电子绘图、采用小四号宋 体、1.25倍行距。 5.课程设计成绩由平时表现(30%)、设计报告(30%)和提问成绩(40%) 组成。

课程设计任务书、指导书 课程设计题目: Ⅰ.课程设计任务书 一、课程设计的内容和要求(包括原始数据、技术要求、工作量) 当今社会,温控器已经广泛应用于电冰箱、空调和电热毯等领域中。其优点是控制精度高,稳定性好,速度快自动化程度高,温度和风速全自动控制,操作简单可靠,对执行器要求低,故障率低,效果好。目前国内外生产厂家正在研究开发第三代智能型室温空调温控器,应用新型控制模型和数控芯片实现智能控制。现在已有国内厂家生产出了智能型室温空调温控器,并已应用于实际工程。 本课程设计要求设计温度控制系统,主要由温度数据采集、温度控制、按键和显示、通讯等部分组成。温度采集采用NTC或PTC热敏电阻(或由电位器模拟)或集成温度传感器、集成运算放大器构成的信号调理电路、AD转换器组成。温控部分采用交流开关BT136通过改变导通角进行调压限流达到控制加热丝温度的目的。 温度控制算法采用PID控制,可以采用普通PID或模糊PID。对控制PID参数进行整定,进行MATLAB仿真,说明控制效果。进行程序编制。 设计通讯协议,并能够通过RS485总线将数据传回上位机。2.课程设计的要求 1、选择相应元器件设计温度控制系统原理图并绘制PCB版图。 2、进行PID控制算法仿真,设计PID参数,或模糊PID规则。 3、系统功能要求:a要能够显示实时温度;b能够进行温度设置;c 能够进行PID参数设定;d能够把数据传回上位机;e可以设定本机地址。F温度控制范围0~99.9度。 4、编制程序并调试通过,并有程序流程图。

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

武汉理工大学模电课设温度控制系统设计

课程设计任务书 学生姓名:张亚男专业班级:通信1104班 指导教师:李政颖 工作单位:信息工程学院 题目: 温度控制系统的设计 初始条件:TEC半导体制冷器、UA741 运算放大器、LM339N电压比较器、稳压管、LM35温度传感器、继电器 要求完成的主要任务: 一、设计任务:利用温度传感器件、集成运算放大器和Tec(Thermoelectric Cooler, 即半导体致冷器)等设计一个温度控制器。 二、设计要求:(1)控制密闭容器内空气温度 (2)控制容器容积>5cm*5cm*5cm (3)测温和控温范围0℃~室温 (4)控温精度±1℃ 三、发挥部分:测温和控温范围:0℃~(室温+10℃) 时间安排:19周准备课设所需资料,弄清各元件的原理并设计电路。 20周在仿真软件multisim上画出电路图并进行仿真。 21周周五前进行电路的焊接与调试,周五答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

温度控制系统的设计 1.温度控制系统原理电路的设计 (3) 1.1 温度控制系统工作原理总述 (3) 1.2 方案设计 (3) 2.单元电路设计 (4) 2.1 温度信号的采集与转化单元——温度传感器 (4) 2.2 电压信号的处理单元——运算放大器 (5) 2.3 电压值表征温度单元——万用表 (7) 2.4 电压控制单元——迟滞比较器 (8) 2.5 驱动单元——继电器 (10) 2.6 TEC装置 (11) 2.7 整体电路图 (12) 3.电路仿真 (12) 3.1 multisim仿真 (12) 3.2 仿真分析 (14) 4.实物焊接 (15) 5.总结及体会 (16) 6.元件清单 (18) 7.参考文献 (19)

温度控制器实验报告

单片机课程设计实验报告 ——温度控制器 班级:学号: 电气0806 姓名: 08291174 老师: 李长城 合作者: 姜久春 李志鹏

一、实验要求和目的 本课程设计的课题是温度控制器。 ●用电压输入的变化来模拟温度的变化,对输入的模拟电压通过 ADC0832转换成数字量输出。输入的电压为0.00V——5.00V, 在三位数码显示管中显示范围为00.0——99.9。其中0V对应00.0,5V对应99.9 ●单片机的控制目标是风机和加热器。分别由两个继电器工作来 模拟。系统加了一个滞环。适合温度为60度。 ◆当显示为00.0-50.0时,继电器A闭合,灯A亮,模拟加热 器工作。 ◆当显示为为50.0-55.0时,保持继电器AB的动作。 ◆当显示为55.0-65.0时,继电器A断开,灯A熄灭,模拟加 热器停止工作。 ◆当显示为65.0-70.0时,保持继电器AB的动作 ◆当显示为70.0-99.9时,继电器B闭合,灯B亮,模拟风机的 工作。 二、实验电路涉及原件及电路图 由于硬件系统电路已经给定,只需要了解它的功能,使用proteus 画出原理图就可以了。 实验设计的电路硬件有: 1、AT89S52 本温度控制器采用AT89C52单片机作为CPU,12MHZ晶振

AT89C52的引脚结构图: AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes 的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash 存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。 AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。 此外,AT89S52设计和配置了振荡频率可为0Hz并可通过软件设置

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

相关主题
文本预览
相关文档 最新文档