当前位置:文档之家› 相山横涧铀矿床元素地球化学特征

相山横涧铀矿床元素地球化学特征

相山横涧铀矿床元素地球化学特征
相山横涧铀矿床元素地球化学特征

铀矿床学复习题

铀矿床学复习题 以授课多媒体为主,结合《铀矿地质与勘查简明教程》的内容进行复习。 题型:名词解释20分(5道),填空题30分,简答题25分(5道),论述题25分(2道)。 期末考试占70%,实验成绩20%,平时成绩10分。 一、绪论 1、铀矿的一般工业指标有哪些? 边界品位:300×10-6 最低工业品位:500×10-6 最小可采厚度:0.7m夹石剔除厚度:0.7m 地浸砂岩型铀矿平米铀含量大于1㎏/㎡,品位大于>0.01% 2、我国已探明铀资源储量的基本特点? 1)资源分布广。现已探明的近350个铀矿床分布于23个省(自治区) 2)产出相对集中。我国已查明的铀矿资源主要集中于5个铀成矿省和3个铀成矿区3)矿床类型多。我国铀矿床按含矿主岩划分多达10个类型,其中以4大类型为主。4)单个矿床规模较小。已探明的铀矿床以中、小规模为主。 5)矿床以中低品位为主,矿体厚度较小。 6)共生、伴生的矿产种类多。目前已经发现与铀伴生的有钍、钼、锗、钒、钇和稀土等元素,但综合利用程度较低。 3、我国铀资源的分布特点? 1)分布不均匀现已探明的近350个铀矿床分布于23个省(自治区)。中东部、南部地区12个省(自治区)的铀资源占已查明的储量的68%,西部地区及东北地区11个省(自治区)占已查明的铀资源储量的32%。 2)产出相对集中。我国已查明的铀矿资源主要集中于5个铀成矿省和3个铀成矿区。即华南铀成矿省、扬子陆块东南部铀成矿省、天山铀成矿省、祁连-秦岭铀成矿省、华北陆块北缘铀成矿省,以及鄂尔多斯盆地铀成矿区、二连-侧老庙盆地铀成矿区和滇西铀成矿区。 4、铀矿的工业指标是指什么? 铀矿的工业指标指矿床储量的最低限量、最低可采品位和最低可采厚度。 二、铀矿床分类 1、铀矿床的成因分类有哪些? 按传统的铀矿床成因分类,分为内生、外生和变质铀矿床。内生铀矿床按岩浆作用、伟晶作用和热液作用等分为岩浆铀矿床、伟晶岩铀矿床和热液铀矿床、 2、岩浆铀矿床 指通过岩浆结晶分异作用直接富集形成的铀矿床。 3、伟晶岩型铀矿床 指经结晶分异的残余酸性熔浆(极少为碱性熔浆)经冷凝结晶和气成交代而形成的花岗质伟晶岩的铀矿床。 4、热液铀矿床 指由不同成因的含铀热水溶液,如地下水热液、岩浆残余热液、变质热液等,以及它们的混合热液,在适宜的物理化学条件下,经过填充和交代等方式形成的铀的富集体。 5、变质铀矿床 指成因上与变质作用有关的铀矿床。主要与区域变质作用和超变质作用关系密切。三、花岗岩型铀矿床

作业-矿床地球化学

包裹体 包裹体,有的简称为包体。包体是指矿物形成过程中被捕获的成矿介质。它相当完整地记录了矿物形成的条件和历史,是矿物最重要的标型特征之一,可作为译解成矿作用,特别是内生成矿作用的密码 主矿物 主矿物是圈闭流体包裹体的矿物,几乎与所包含的包裹体同时形成 子矿物 正矿物生长过程(或之后)捕获(或沿裂隙浸入)的成矿流体(或熔体)被圈闭在晶体缺陷、窝穴(或愈合裂隙)中与主矿物有相界的物质称为矿物中包裹体,其中的内含物随物理化学条件变化出现的盐析物(固相)谓之子矿物。 负晶形包裹体 负晶形包裹体是矿物中常见的一种包裹体。即:在晶体生长过程中因晶格位错等缺陷产生的空穴被高温气液充填后又继续按原晶格方向生长,形成与宿主矿物晶体形状(宿主矿物:含有包裹体的宝石矿物)相似的孔洞,这种由气液充填的形态与宿主矿物晶体形状相似的孔洞称为负晶或空晶,所形成的包裹体称为负晶形包裹体。 充填度 指包裹体或者富气包裹体中,液相所占的整个包裹体的体积比即为充填度。 均一温度 室温下呈两相或多相的包裹体,经人工加热,当温度升高到一定程度时,包裹体由两相或多相转变成原来的均匀的单相流体,此时的瞬间温度称为均一温度,一般认为代表矿物形成温度的下限,经压力校正后可获得近似的矿物形成温度(包裹体的捕获温度) 盐度 指包裹体中溶解于溶液中的卤化物的质量与液体质量百分比。 1、试述均一法测温的原理 均一温度:均一法(高温-低温)是流体包裹体测温的基本方法。其均一过程有两相水溶液包裹体中液-气相的均一作用和不混溶的H2O-CO2 包裹体的均一状态。液相和气相的均一过程有三种模式: ①均一到液体状态(L+V→L)室温下加热时气相逐渐缩小至最后消失,均一到液相,此时的温度称为均一温度;当温度下降则气相又重新出现,说明包裹体内原先捕获的是较高密度的流体相。 ②均一到气体状态(L+V→V)加热时液相缩小,气相逐渐扩大至充满整个包裹体并均一为气相;当温度下降时则液相又重新出现,说明包裹体内原先捕获的是较低密度的流体相。 ③均一到临界状态(L+V→超临界流体)加热时气相既不收缩也不扩大,而是随着温度的升高液-气相之间的弯月面界线逐渐模糊至消失,均一到一个相,即均一到临界状态,说明这类包裹体是在临界状态下捕获的。 均一法测温的主要仪器是显微加热台,如德国莱兹厂生产的1350 显微加热台、Linkam1500 显微加热台及我国浑江光学仪器厂生产的T1350 显微加热台。近十年来又开发了冷热两用台,如法国南锡的Chaimeca 冷热两用台、英国的Linkam 冷热两用台和美国的Reynolds 冷热两用台。近年来,已发展到可将电视录象等设备与显微冷-热台连接进行包裹体研究,对小于1μm 的包裹体进行测定。

元素地球化学背景特征

一、元素地球化学背景特征 工区对Au、Ag、Cu、Pb、Zn、As、Sb、Bi、W、Sn、Mo等十一种元素的含量进行了统计分析,其地球化学特征参数见表3-1。 1、全区内背景值对比特征, (1)从1∶5万水系沉积物测量—土壤测量—岩石测量,背景值逐渐增高的有Sb、Pb、Ag、Cu、Zn等元素,其中以Pb、Ag、Zn变化最为显著,Pb在1∶5万水系沉积物测量中最低为17.36×10-6,到1∶1万土壤地球化学测量中增加到40.64×10-6,在岩石中最高为85.45×10-6;Ag在1∶5万水系沉积物测量中最低为0.06×10-6,到1∶1万土壤地球化学测量中增加到0.10×10-6,在岩石中最高为0.13×10-6,增加了一个数量级;Zn在1∶5万水系沉积物测量中最低为72.78×10-6,到1:1万土壤地球化学测量中增加到96.38×10-6,在岩石中最高为537.88×10-6, 增加了一个数量级,是正常的成矿序列,反映了是区内的主成矿元素,从岩石中迁移进入土壤经次生变化后迁移到水系中进一步的贫化。 (2)区内从岩石测量或土壤测量—1∶5万水系沉积物测量,背景值逐渐增高的有Sn、Au等元素,Sn在岩石中最低为1.72×10-6; 到1:1万土壤地球化学测量中增加到 2.21×10-6,在1∶5万水系沉积物测量中最高为2.51×10-6,是一个反正常的变化序列,但同处一个数量级;Au在岩石中为0.97×10-9; 到1:1万土壤地球化学测量中减少到0.54×10-9,在1∶5万水系沉积物测量中最高为1.22×10-9,反映出Sn、Au元素从岩石中迁移进入土壤经次生变化后,迁移到水系中富集。 (3)区内从土壤测量—1∶5万水系沉积物测量—岩石测量,背景值逐渐增高的有Bi、W、Mo等元素,这类均是高温元素,其中Bi在土壤中最低0.36×10-6,在1∶5万水系沉积物测量中为0.46×10-6, 在岩石中最高为0.50×10-6; W在土壤中最低2.19×10-6,在1∶5万水系沉积物测量中为2.29×10-6, 在岩石中最高为3.18×10-6; Mo在土壤中最低0.51×10-6,在1∶5万水

地球化学稀土元素配分分析()

《地球化学》实习测验 REE图表处理及参数计算 一、实习目的 1、掌握稀土元素组成模式图的制作方法。 2、掌握表征稀土元素组成的基本参数。 3、培养独立查阅文献及处理数据的能力。 二、基本原理 1、稀土元素组成模式图 1、原子序数为横坐标 2、标准化数据为纵坐标 3、对数刻度 2、表征稀土元素组成的基本参数 3、稀土总量 4、轻重稀土比值 5、轻稀土分异指数 6、重稀土分异指数 7、铕、铈异常 三、实习测验内容 1、绘制各类侵入岩的稀土元素组成模式图; 2、计算各类侵入岩稀土元素组成的基本参数; 3、对已绘制的图表和计算出的数据进行解释。 4、在以上实习内容掌握之后,自行查阅文献一篇,并进行以上3项操作。

四、实习测验步骤 1、根据查阅文献数据,找到自己想要的数据 表1 蒙库铁矿床岩石、矿石、矿物稀土元素成分分析(ppm) 2、选出自己要的数据建立表格 表2 稀土元素组成模式图(ppm) 3、对数据进行球粒陨石标准化 表3球粒陨石标准化后稀土元素组成模式图(ppm) 图1 蒙库铁矿床稀土元素配分图 5、计算稀土元素基本参数 表4 表征稀土元素组成的基本参数 6、数据及图表的解析 (1)绿帘石:∑REE=266.49ppm,表明稀土元素含量较高;LR/HR=4.98,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=2.26,(Gd/Lu)N=1.47,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。Eu异常值=1.23,为强正异常;Ce异常值=0.95,表明Ce基本无异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。 (2)磁铁矿矿石:∑REE=10.75ppm,表明稀土元素含量较低;LR/HR=3.15,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=1.47, (Gd/Lu)N=0.88,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。 Eu异常值=1.8,为强正异常;Ce异常值=0.84,位弱Ce异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。

矿床地球化学国家重点实验室分析测试项目价格表(试行)

矿床地球化学国家重点实验室分析测试项目价格表(试行)文章来源:矿床地球化学国家重点实验室发布时间:2011.08.16

一)理化检测 序号 检验方法 计量单位 收费标准 (元/个数据) 备 注 1 感观指标 每个数据 3 1、按《水和废水监测分析方法》、《空气和废气 监测分析方法》的规定进 行水、气、土壤、底质等 理化检验。 2、分析需使用原子吸收、等离子色谱、原子荧光、测汞仪、离子发射光谱仪、气相色谱、色-质联机、液相色谱、高分辨气相色谱/质谱法等大型仪器的,样品总数少于(不含)10个时加收30%,样品总数50个样(不含50个)以上时,按收费标准的70%收取,样品总数100个样(不含100个)以上时,按收费标准的50%收取。 2 温度计 每个数据 5 3 稀释、对比法 每个数据 15 4 pH 计 每个数据 15 5 电导仪 每个数据 15 6 溶氧仪 每个数据 15 7 酸碱滴定法 每个数据 35 8 络合滴定法 每个数据 50 9 碘量法 每个数据 50 10 电极法 每个数据 60 11 分光光度比色法 每个数据 60 12 重量法 每个数据 60(有机溶剂蒸发100元) 13 离子色谱法 每个数据 80 14 紫外光度法 每个数据 80 15 红外光度法 每个数据 80 16 荧光光度法 每个数据 80 17 火焰光度法 每个数据 80 18 测硫仪 每个数据 80 19 五日培养法 每个数据 100 20 原子吸收法 每个数据 100 15 气相色谱法 每个数据 100 21 高压液相色谱法 每个数据 250 22 色-质联机 每个数据 260 23 三点比较法(恶臭) 每个数据 500 24 气体专用分析仪 每个数据 80(不另收采 样费) 25 等离子发射光谱法 (ICP ) 每个数据 180 26 高分辨气相色 一般有 每个数据 1000

铀矿床分类初步探讨

第37卷第1期地质调查与研究 Vol.37No.12014年3月 GEOLOGICAL SURVEY AND RESEARCH Mar.2014 收稿日期:2014-01-05 基金项目:中国地质调查项目:华北地区铀矿勘查与选区(1212011220494) 作者简介:金若时(1958-),男,硕士,教授级高级工程师,长期从事矿产地质调查工作,Email:Ruosj2003@https://www.doczj.com/doc/997621429.html,。 ① М.Ф.马克西莫娃,E.M.什玛廖维奇普.层间渗入成矿作用.夏同庆,潘乃礼译.核工业西北地质局203研究所,1993. 铀矿床分类初步探讨 金若时1,苗培森1,司马献章1,冯晓曦1,2,汤超1,朱强1,李光耀1 (1.中国地质调查局天津地质调查中心,天津300170;2.中国地质大学(武汉)资源学院,武汉,430017)摘 要:为了研究铀矿床分类对铀矿勘查的基础指导作用,笔者简要回顾了铀矿床分类历史,研究了前人对铀矿床 分类的系列方案,结合目前世界铀矿床研究进展,尝试以铀成矿地质作用为格架,以赋矿岩石为基础对世界典型铀矿床进行了分类,并将矿床采选方式纳入分类指标,建立了铀矿床种、类、型、式的分类序次,提出了将铀矿床划分为3种7类26型6式的分类方案。 关键词:铀矿分类;成矿作用;赋矿岩石;采选方式中图分类号:P619.14 文献标识码:A 文章编号:1672-4135(2013)04-0001-05 矿床分类是人们认识和阐明自然界种类繁多、形态各异、规模悬殊的各种矿床间的内在联系、共同规律与相互差异性的简单而又实用的方法。不同时期的矿床分类,在一定程度上反映了矿床的研究程度和勘查成果。正确合理的分类有利于促进科学研究并指导生产实践,因此,一直受到地学工作者的广泛重视。 铀元素的化学性质活泼致使其在地壳中存在形式多样,形成了纷繁复杂的矿床类型,其矿床分类一直是地学工作者的一项重要的研究课题。自上世纪中叶,国内外众多学者出于各自需要对铀矿床进行了工业分类、勘探分类[1]、成因分类[2]、构造分类[3]、超大型铀矿分类[4]等等,甚至对其中的某些方案进行了细分[5-8]。在铀矿床成因分类中,不同的学者建立分类所依据的主要标准或建立分类的基础不同,有的按成矿作用和成矿温度划分,以地质-构造环境为第一分类标准[5-6];有的则以含矿主岩为分类基础[7-8];有的对某一单矿种进行了分类,如将花岗岩型铀矿[9]、砂岩型铀矿[10]进行了细致的划分。近四十年来出现了几十种铀矿床的分类方案。 笔者近期的工作已证实中国北方中新生代的砂岩型铀矿主要产于灰色还原环境岩层中[11]。同样加拿大阿萨巴斯卡盆地和奥蒂斯盆地铀矿勘查发现铀矿体不仅产于元古代不整合面构造带中,而且围岩辉长岩中也有广泛分布(据郑大瑜面告),丰富了对 不整合面铀矿的认识。 随着铀矿床勘查和研究的不断深入,笔者等认为有必要对铀矿床进行综合分类,以期更全面反映矿床类别,发挥矿床分类对铀矿研究、勘查工作的基础性指导作用。 1铀矿床分类的简要历史回顾 早在16世纪中叶,G.Agrecola (1556)根据矿床的形态及位置就提出了第一个矿床分类方案[12]。而铀矿床的最早分类由1946年前苏联学者谢尔宾纳和 谢尔巴科夫提出[13] 。 K.D.Cornelius (1977)将铀矿床划分为古元古代石英-卵石-黄铁矿砾岩型、后生砂岩矿床、热液变质矿床、蒸发岩矿床、矽卡岩矿床、页岩、磷块岩、地沥青及褐煤中的矿床、碳酸盐岩矿床、原生热液矿床、砂积矿床9大类[14]。R.H.Mc Millan (1980)曾综合了贝克、西贝尔得、德里、特伦布莱、克里斯托弗、卡尔宁斯等人的观点,将铀矿床分为岩浆型、变质型、碎屑型、水成型4大类12小类[15]。P.C.Goodell (1990)研究认为破火山口及与其有关的岩石是赋存这类铀矿床的有利环境,许多已知的火山环境中铀矿床的分类依据是它们在破火山口中的位置[5]。М.Ф.马克西莫娃等(1993)提出了砂岩型铀矿分为层间渗透型、裂隙渗透型和潜水渗透型①。国际经合组织核能机构(OECD/NEA )和国际原子能机构(IAEA )联合出版

高等地球化学

高等地球化学读书报告 关键词:地球化学研究方法同位素 摘要:主要介绍了地球化学的研究方法,研究领域以及解决的一些问题,着重介绍了同位素地球化学。 地球化学是研究地球的化学组成、化学作用和化学演化的科学,它是地质学与化学、物理学相结合而产生和发展起来的边缘学科。作为一门独立的学科,地球化学的研究对象是地球中的原子,研究地球系统中元素及同位素的组成,元素的共生组合和赋存形式问题,元素的迁移和循环,地球的历史和演化。其学科特点是研究的主要物质系统是地球、地壳及地质作用体系。着重研究地球系统物质运动中物质的化学运动规律。研究原子的自然历史,必然联系到元素自身的性质及其所处的热动力学条件。与有关学科密切结合和相互渗透,使得地球化学的研究范畴不断扩大,并繁衍出众多分支学科。运用学科自身的知识、理论、研究思路和工作方法研究矿产资源、资源利用以及农田、畜牧、环境保护等多方面的问题。我国地球化学工作主要开始于20世纪50年代,最初是进行大规模的土壤分散流和基岩地球化学测量。20世纪80年代至今,随着我国地球化学专业队伍的迅速扩大,一批新的地球化学研究所和研究中心相继建立,并建立了一批具有先进测试设备和技术的实验室和计算中心。成矿作用地球化学、勘查地球化学、同位素地球化学、微疾元素地球化学、实验地球化学、环境地球化学、有机地球化学以及陨石化学、宇宙化学、岩石圈地球化学等多领域的研究已全面展开,目前我国地球化学研究已逐渐进入到与国际合作研究并同步发展的阶段。 一.基本内容 地球化学主要研究地球和地质体中元素及其同位素的组成,定量地测定元素及其同位素在地球各个部分(如水圈、气圈、生物圈、岩石圈)和地质体中的分布;研究地球表面和内部及某些天体中进行的化学作用,揭示元素及其同位素的迁移、富集和分散规律;研究地球乃至天体的化学演化,即研究地球各个部分,如

勘探地球化学复习资料

化探复习 1、勘查地球化学的概念; 在地质与地球化学的理论指导下,在各种介质(包括岩石、土壤、水、水系沉积物、生物、气体等)中系统地在不同比例尺与规模上采集地球化学样品,经测试分析与数据处理,发现地球化学异常与其它地球化学指标,据此作为找矿的线索与依据,进而寻找矿床;同时用以解决一些地质等其它问题。 2、勘查地球化学的分类; 丰度(Abundance):泛指元素在一定的自然体系中的平均含量,也叫克拉克值。 浓集系数:它就是某元素在矿体中的含量(通常以最低可采平均品位作标准)与其地壳丰度的比值。 浓集系数反映了元素在地壳中局部集中(成矿)的能力。 浓集系数较大的元素在矿体周围呈现的地球化学异常强度较大。 对于某些伴生的微量元素,如果其浓集系数较主要成矿元素明显地大,则这些伴生元素便就是寻找该矿床的良好指示元素。Hg、Sb、Bi、As成为金矿床的指示元素便就是这个原因。浓度克拉克值:即地质体中某元素的平均含量与其克拉克值的比值。浓度克拉克值>1,说明元素富集,反之则分散。 化学元素在不同成分岩浆岩中的丰度变化,反映了岩浆成因与物质来源的差异,以及结晶分异与地球化学演化过程中元素的分配;同时也体现出造岩元素对微量元素含量变化的制约作用。 研究岩浆岩中化学元素的丰度变化具有重大找矿意义。 2、化学元素在各类沉积岩中的分布 (1)碱金属元素(2)碱土金属(3)亲氧元素 元素在地质体内的分布形态一般有五种情况:

①结合在多种矿物中的元素一般服从正态分布; ②集中在一、二种矿物内的元素呈对数正态分布; ③多次地化作用迭加形成的含量呈正态分布;单一作用呈正态分布。 ④扩散作用形成的含量呈对数正态分布;对流混匀作用呈正态分布。 ⑤两次不同地质作用,可引起两种类型相同而参数不同的分布形式。 研究分布类型的目的就是:正确选择背景值、背景上限以及各种数据处理方法。 通过对分布形式检验直接得到某些地化信息。 地壳中元素的存在形式与元素的迁移 地球化学环境就是使元素所在的地球化学系统得以保持平衡的各种物理化学条件的总合 原生环境,就是指从天然降水循环面以下直到能够形成正常岩石的最深水平的环境; 次生环境,就是地表天然水、大气所能够影响范围的环境 丰度研究的意义 1.判断特殊地球化学过程 2.衡量研究区化学元素富集或贫化的程度 3.作为选择分析方法灵敏度的依据 4.作为矿产资源评价预测的依据 地球化学系统中元素的总量称为地球化学储量。 在地球化学储量中,能被人类开采利用的部分叫作资源,资源中被探明的部分叫作矿产储量。资源量占地球化学储量的百分比叫作矿化度。 短吨= 907、18474 公斤=0、91吨 岩石的酸度,就是指岩石中含有SiO2 的重量百分数。 岩石的碱度即指岩石中碱的饱与程度 通常把Na2O+K2O的重量百分比之与,称为全碱含量 各岩类的标型元素组合为: 1、超基性岩元素,典型代表就是Cr、Ni、Co、Mg及Pt族。 2、基性岩元素,Cu、Fe、V、Ti、P、Mn、Ca、Sc、Sb等。 3、亲中性岩元素,Al、Ga、Zr、Sr等。 4、亲酸性岩元素,种类最多,以Li、Be、Ta、U、Th、K、Rb、Cs、F、B为代表。 5、碱性岩以富含Nb、Ta、Be及REE(稀土元素)为特征。 沉积岩可以分为碎屑岩、泥质岩与化学沉积岩三个类型 二、元素的赋存形式 1、矿物形式:独立矿物(主要造岩矿物)、副矿物、主矿物中的机械包裹体、固熔体分解物、液相包裹体中的子矿物; 2、非矿物形式:类质同象混入物,元素呈离子、分子、胶体被矿物表面吸附,超显微非结构混入物,有机结合物。 三、元素迁移 元素迁移的方式 1、化学及物理化学迁移 2、机械迁移 3、生物及生物地球化学迁移 地球化学异常:就是指某些天然物质(岩石、土壤、水系沉积物、生物等)中某一特征元素的含量偏离正常含量或某些化学性质明显的发生变化的现象。 地球化学背景及背景区: 在化探中将无矿或未受矿化影响的天然物质(岩石、土壤、水系沉积物、生物等)中某一特征元素的正常含量(一般含量)称为背景。 而将那些具有正常含量的地区称为背景区或正常区。

变质岩性铀矿床

变质岩性铀矿床 概念:变质铀矿床系指成因上与变质作用有关的铀矿床。 1、受变质铀矿床: 矿床中铀的富集主要是在变质作用之前形成的,其中大多数是在沉积或成岩阶段形成的。但在变质作用过程中,岩石发生了重结晶作用,铀发生了局部的再分配,并形成某些新的铀矿物和其他共生或伴生矿物。 特点是,在变质作用过程中,基本上没有铀的带出或带入。属于这一类型的铀矿床有沉积变质型的石英卵石砾岩型铀矿床。 2、变成铀矿床: 主要是指在区域变质(包括超变质)作用过程中,特别是在变质作用晚期的变质热液作用下所形成的铀矿床。 属于这一类型的铀矿床有混合岩化钠交代型铀矿床。 二、变质作用中的铀地球化学 1、区域变质作用中的铀地球化学 1)不同变质相带的铀含量变化 浅变质带中铀含量较高,并随着变质程度加深,铀含量逐渐降低。 2、影响铀在区域变质作用中活化转移的地球化学因素 随着铀在区域变质作用的加强,铀大量从岩石向外带出。 ■铀的带出是随着变质过程中脱水作用,脱气(CO2)作用而进行的。 ■变质作用中矿物的重结晶作用也是促使铀带出的重要因素之一,矿物的自净清除了吸咐在矿物表面和矿物颗粒间隙之间的铀,使铀活化转移。 3、超变质作用中的铀地球化学 ■成矿元素在超变质作用中的活动性普遍增强。 ■超变质岩石按其形成方式可分为原地型混合花岗岩(包括混合岩)和异地型深熔(或再生)花岗岩。 ■原地型混合花岗岩的铀含量较低,接近或低于残留的片麻岩(基体)的铀含量; ■异地型再生花岗岩的铀含量比相应的片麻岩-混合岩的铀含量高1-2倍。 ■在混合岩化阶段,由于大部分活动铀已在原岩浅变质过程中带出,岩石中铀含量没有显著变化。混合岩中,副矿物是铀的主要载体。 ■在深熔(再生)花岗岩浆产生阶段,铀的地球化学特征与岩浆作用中的相似,即铀在晚期酸性分异产物-浅色花岗岩和伟晶岩中趋向富集。 结论:区域变质作用引起铀的活化转移。它是使铀在地壳上部初步富集的重要作用,为以后形成铀矿床准备了丰富的铀源。 区域变质作用引起的铀活化转移可看作是铀成矿作用的序幕。 石英卵石砾岩型铀矿床——典型的代表矿床为南非维特瓦特斯兰德金-铀矿床和加拿大埃利奥特湖铀矿床。 三、石英卵石砾岩型铀矿床的主要特点 1)区域构造位置:分布于太古代克拉通盆地内或克拉通边缘坳陷区,基底强烈褶皱变质,矿化层位为轻微变质的底砾岩层。 2)含矿层的地质时代早:为古元古代(22-27亿年),矿化赋存于元古界构造层的底部。 3)含矿层位的岩相古地理属陆相河流相 4)矿化岩性为陆源碎屑构成。含矿岩系厚度巨大,变质程度不一。岩性主要有砂岩(部分为石英岩)夹部分页岩,含矿砾岩常常产于不整合面或沉积间断面上。

煤中稀土元素地球化学的研究进展

煤中稀土元素地球化学的研究进展 刘文中,肖建辉,陈 萍 (安徽理工大学地球与环境学院安徽省矿山地质灾害防治重点实验室,安徽淮南 232001) 摘 要:对国内外有关煤中稀土元素丰度的资料做了最新的统计分析,并讨论了煤中稀土元素的丰度、来源和赋存形式及地质成因。研究结果表明,稀土元素在煤中主要与硅酸盐矿物结合,其来源主要是陆源碎屑或溶液,同时也不排除煤中有机质在吸附稀土元素时起的重要作用;煤中稀土元素的分布特征继承了陆源物质铕(Eu)负异常的地球化学特征;煤中稀土元素的分布特征不受煤变质程度的影响,煤中稀土元素含量主要取决于煤的无机组分含量。 关键词:稀土元素;地球化学;煤 中图分类号:P595 文献标志码:B 文章编号:0253-2336(2007)11-0106-03 R esearch progress on geochem istry of rare earth elem ent i n coal LIU W en zhong ,X I A O Jian hu,i C HEN P i n g (Anhui P rov i n ci a lK ey L ab of m i ne g eolog ic a l d isaste r pre v e n ti on and con t rol ,School o f Ea rt h and E nvironm e n t , Anhui Universit y o f S cie n ce and Tec hn ology,Hua i nan 232001,C hina ) 基金项目:安徽省教育厅高校省级自然科学重点研究资助项目(KJ2007A006) 稀土元素有特殊的地球化学性能,如化学性质稳定、均一化程度高、不易受变质作用干扰,一经 纪录 在含煤岩系中,容易被保存下来,是研究煤地质成因的地球化学指示剂。稀土元素在自然界分布广泛,虽然煤中稀土元素含量不高,但在煤灰中稀土元素可以富集,并可望得到综合利用。因此,对煤中稀土元素的研究已成为煤地质学、环境科学以及材料科学的重要内容。 1 煤中稀土元素的丰度 国外研究煤中稀土元素起步较早,一些学者在 实验基础上得出了可靠的数据,如Sw a i n 报道了世界多数煤中稀土元素含量大致范围[1] ;世界煤中 稀土元素总量的平均值为46 3 g /g [2] ;美国煤中稀土元素总量的平均值为62 1 g /g [3];加拿大悉 尼盆地煤中稀土元素总量的平均值为30 g /g [4] 。 国内开展煤中稀土元素研究始于20世纪90年代,近年来取得了一些重要的研究成果。赵志根等人对中国110个煤样中稀土元素的含量分布进行了分析与总结[5] ,由于煤中稀土元素的赋存受多方面因素影响,稀土元素在煤中的含量分布范围相当宽,中间值段80%样品的分析数据可较为客观地 反映中国多数煤中稀土元素的丰度。研究者们还发现,在La ,Ce ,N d ,Sm,Eu ,Tb ,Yb,Lu 这8个稀土元素中,除Eu 外其余7个元素在煤中的平均值含量明显高于世界煤。华南二叠纪煤中稀土元素总量的平均值最大,其次是华北石炭、二叠纪煤,中新生代煤最小 [6] 。淮北煤田二叠纪煤中稀 土元素明显富集,稀土元素总量平均值为141 2 g /g ,高于中国及世界其他地区的煤 [7] 。华南地 区晚二叠世和晚三叠世的煤中,不同煤层的稀土元素含量平均值变化较大,在32~456 g /g [8] 。虽然不同地区、不同数量煤样的分析结果丰富了煤中 稀土元素丰度的数据,但就样品数量和代表性而言,研究中国煤中稀土元素的丰度仍具有很大的局限性。 2 煤中稀土元素的来源和赋存形式 近年来,国内外陆续报道了有关煤中稀土元素来源和赋存形式的研究成果:!保加利亚Piri n 煤中稀土元素主要与硅酸盐矿物相结合,煤中稀土元素的含量随灰分的增高而增加;与灰分及灰分的主要成分(S,i A ,l Fe ,Na )具有较好的正相关关系,而与低灰分中的典型组分钙缺少相关性,煤和岩石夹层的稀土元素标准化分布模式相似;与典型的陆源灰分的微量元素(T ,i Pb ,C r ,Th ,Ta , 106

矿床学研究方法

成矿物质来源及其研究方法开发矿产资源方面的成就, 现在比以往任何时候都更加依赖于对地球化学异常实质的 认识, 地化异常表现为金属的局部富集, 即所谓的金属矿床。从这个公认的原则中可以看出, 必须解决三个基本的问题:金属及其伴生元素是从哪里来的, 它们是怎样、通过什么样的途径迁移到地壳中来的多在什么地方、什么条件下它们停止了迁移, 从而留下了有价值的东西。换言之, 需要重视一般成矿作用的三个部分: 成矿物质的来源, 这些物质的迁移以及这些物质的堆积。研究成矿物质来源可以通过多种途径来解决,其中包括地质学方法、稳定同位素地球化学、矿物包裹体地球化学、稀土元素地球化学和成岩成矿模拟实验等方法。 大多数学者都承认, 含矿接液原则上可能来自冷却了的岩浆, 或者来自沉积岩和火山 一沉积岩(这些岩石中分散的金属在变质作用过程中得以富集), 或者来自地球的深部—上 地慢。在分析现有资料(包括作者在不同矿区工作过程中所取得的资料) 的基础上,我们试图对上述各种成矿物质来源作出评价。 一.成矿物质来源与含矿建造 现代矿床学研究表明,多数矿床,尤其是非成岩矿产矿床都具有成矿物质多来源的特征,重视成矿物质多来源是矿床学地球化学的研究趋势。成矿物质来源对探讨矿床成因、成矿规律以及指导地质找矿具有较大的理论和实际意义。同时研究发现,许多矿床成矿作用具有复合成矿的特点,常不是一次成矿作用完成的,而是经过了预富集到再富集成矿的多次地质作用完成的。我们把预富集阶段形成的成矿物质丰度较高的岩石组合称为含矿建造,含矿建造是包含一系列含矿岩石与非含矿岩石的岩石系列,包括沉积岩、变质岩和岩浆岩。含矿建造中有一部分是成矿元素的富集岩,一部分是具有与矿化有关的矿化剂元素[2],如S、Cl、F、C等[1]。 而根据矿床学研究成矿物质来源分为直接来源与间接来源。直接由地幔岩浆、花岗岩浆或沉积介质提供成矿物质到矿床中的物质来源称为直接来源,由幔源、壳源固结岩石,即矿源层或矿源岩提供成矿物质所反映出的幔源或壳源来源特征,称为间接物质来源。 对于成岩矿产成矿物质来源可能更多地反映直接物质来源,而对于非成岩矿产,由于其经过多次富集成矿,其物质来源特征可能更多反映间接物质来源[4]。 1.成矿元素(“矿质”)的来源

矿床地球化学结课作业(原著-可直接交)

中国地质大学(北京) 课程期末考试 作业

矿床地球化学作业(一) 根据下列给定的火山岩岩石化学数据计算火山岩的特征参数,并作出图解,分析火山岩岩石系列和形成环境(参考岩石矿床地球化学教材第三章计算方法)。 原数据中火山岩岩性有流纹斑岩、杏仁状流纹斑岩、角砾岩和硅化角砾岩。共有样品18个,数据包括样品全分析与部分微量元素。全析中大多样品SiO2含量大于63%,样品岩性以流纹岩为主。 根据样品全分析数据计算出的火山岩的各类特征参数如表1表示,先将样品数据进行CIPW 标准矿物计算,其中氧化铁调整方法为TFeO=FeO+0.8998Fe2O3,所计算出的标准矿物均为重量百分含量,则可得出各矿物分异指数(DI) = Qz + Or + Ab + Ne + Lc + Kp。其中固结指数为(SI) =MgO×100/(MgO+FeO+F2O3+Na2O +K2O) (Wt%)。里特曼指数算式为σ43=(Na2O+K2O)^2/(SiO2-43),据表里特曼指数多位于1.8-3.3显示为钙碱性,由于原岩多数SiO2含量较高,里特曼指数确定出的钙碱度准确度差。碱度率(AR) =[Al2O3+CaO+(Na2O+K2O)]/[Al2O3+CaO- (Na2O+K2O)] (Wt%),当SiO2>50%, K2O/Na2O大于1而小于 2.5时, Na2O+K2O=2*Na2O,本例以碱度率对样品碱度进行判别,由表可知,杏仁状流纹斑岩的碱度率都为1-3,显示钙碱性,流纹斑岩为3.3-5显示出弱碱性。 图1 样品SiO2-K2O+Na2O 图解 Pc-苦橄玄武岩;B-玄武岩;O1-玄武安山岩;O2-安山岩;O3-英安岩;R-流纹岩;S1-粗面玄武岩;S2-玄武质粗面安山岩;S3-粗面安山岩;T-粗面岩、粗面英安岩;F-副长石岩;U1-碱玄岩、碧玄岩;U2-响岩质碱玄岩;U3-碱玄质响岩;Ph-响岩;Ir-Irvine 分界线,上方为碱性,下方为亚碱性。

微量元素地球化学期末作业培训课件

西藏阿里多龙地区中侏罗统碎屑沉积岩的地球 化学特征及其构造环境分析 学号:120110100 姓名:胡维云专业:构造地质学 前言 班公湖—怒江成矿带西段位于西藏自治区西北部的阿里地区境内,跨班公湖—怒江缝合带南北两侧,由于仅开展过 1∶25 万区域地质调查、1∶20万区域化探等少量基础地质工作,是西藏地质工作程度最低的地区之一。近年来该成矿带内资源评价工作取得了突出的进展,多龙超大型斑岩铜金矿床和嘎尔穷、嘎拉勒、弗野、材玛等大型矽卡岩型铜铁多金属矿床的相继发现与评价,揭示出班公湖—怒江成矿带成矿条件优越,找矿潜力巨大。关于班公湖—怒江结合带所代表的特提斯洋盆的性质,打开、闭合的时限和多龙大型矿集区的构造背景、成矿作用,不同的学者存在很大的争议。目前,己有许多资料证明了该带代表了一个已消失的具有一定规模的洋壳盆地。王恒忠等(2005)认为班公湖--怒江缝合带内的早白奎世OIB型火山岩是班公湖—怒江洋盆演化晚期的洋岛(塔仁本区早白垩世OIB型玄武岩(主要依据于上覆灰岩中化石时代));而张玉修等(2004)研究认为该套玄武岩是早白垩世冈底斯弧弧后盆地的产物。 一、研究目的及意义 拟通过研究多龙地区中侏罗统地层的岩石类型及组合特征和岩石地球化学特征,分析该地区中侏罗统地层形成的大地构造环境,为正确认识多龙超大型斑岩铜金矿床的成矿地质背景和结合带的演化提供了新的线索。 二、研究区地质背景 构造位置上,多龙地区处于班公湖—怒江缝合带北侧, 羌塘地块的南缘;地理位置上处于西藏自治区阿里地区。该区构造以断裂为主,呈近东西向带状断续展布。断裂构造主要表现为一系列走向近东西向且大致平行的北倾逆冲断层,并控制着地层和岩浆岩的分布。沿构造-岩浆带,大规模的岛弧火山活动发生在中—晚侏罗世,形成燕山早期陆缘火山弧,为一套含大量火山碎屑岩的以安山质为主的玄武—安山—流纹岩组合,火山作用晚期岩浆成分向碱性演化,以陆相中心式喷发为主,兼具熔岩溢流(西藏自治区区域地质志,2000)。岩浆的深成侵入作用发生在早白垩世至晚白垩世早期,以中酸性幕式侵入为特点,岩体一般呈岩珠或小岩基沿东西向呈带状分布,岩性主要有石英闪长岩、花岗闪长岩、二长花岗岩、似斑状花岗岩及花岗斑岩,年龄在70—140Ma之间(西藏自治区区域地质志,2000)。研究区地层主要为晚三叠统的日干配错组、中侏罗统的曲色组一段、色哇组、,早白垩统的美日切组,新近系中新统的康托组、更新统和全新统。地层属羌塘—昌都地层区内的羌南地层分区之多码分区,出露宽度大于10km。 三、研究依据 据现有资料研究表明:砂岩的TFe2O3+MgO、TiO2含量,以及Al2O3/SiO2、K2O/Na2O 和A12O3/(CaO+Na2O)等比值具有显著的构造背景差异,因而成为其形成的大地构造环境判别的重要参数(Bhatia,1983)。Roser等人(1986)认为,K2O/Na2O值与SiO2值可有效地示踪砂岩形成构造环境,并编制了构造判断图解。在Bhatia(1983)提出的TiO2-TFe2O3+MgO图解,Roser和Korsch(1988)提出了区分物源区是铁镁质的、中性的或长英质火成岩和石英沉积

成都市土壤元素地球化学背景

成都市土壤元素地球化学背景 四川省地质矿产勘查局区调队朱礼学刘志祥陈斌邮编610213 国土资源部成都岩矿测试中心李小英邮编610081 摘要:本文扼要介绍了成都市辖区环境背景及土壤环境地球化学背景的调查方法,重点介绍了成都市土壤第一环境、第二环境地球化学元素的背景值及元素分布特征,地球化学分区,首次揭示本区土壤的地球化学背景。 关键词:成都市,土壤,地球化学背景。 成都市位处四川省中部,四川盆地西部,成都平原腹地,地跨东经1020 55'—1050 53'北纬300 6'—310 26',东西长192km,南北宽148km,幅原12900多平方公里,境内有平原、台地、丘陵、山地等多种地貌,海拔387—5364m,气候属于亚热带湿润季风气候区,是四川省工农业、政治、经济文化中心,随着社会的进步与发展,资源与环境日渐成为人们关注的热点,土壤与水、大气、阳光一样是万物生长之源,其环境背景及现状倍受人们关注。由中国地调局部署,四川地勘局实施的国土资源大调查项目“成都平原多目标地球化学调查”首次揭示了成都市土壤环境地球化学背景值及元素分布特征。 一、成都市土壤环境背景 成都市辖区北西部为龙门山区,南东为龙泉山区,腹地为平原,平原与山地间分布有浅丘台地,龙门山区为浅覆盖深切割区或基岩裸露区. 龙泉山区为浅切割、浅覆盖地区,平原区为深覆盖地区,全区覆盖及切割特征见图1。 除龙门山基岩裸露区外,全市土壤是以第四系、第三系、侏罗系、白垩系母岩为基础发育而成的。主要有水稻土、紫色土、黄土、棕壤等主要土壤类型(图2)。 全市土地农业综合分区可划分为五大区: Ⅰ.近郊平原、浅丘粮、油副食品区;Ⅱ.中部平原农、牧、渔区;Ⅲ.中部丘陵粮、果(经作林、枚区);Ⅳ.远郊中低山林、土特产区,Ⅴ.远郊高山水源涵养区(图3)。 二、土壤环境元素地球化学背景调查方法 不同地球化学景观区,土壤成土母质、成土作用、覆盖厚度、农业土壤利用存在着较大差异。地球化学背景的影响因素亦较为复杂,用以确定本地区地球化学背景的样品的采集深度、层位、采集密度、样品分析介质的粒度等应力求一个科学的、经济可行的、易于实施的模式。经国土资源部物化探研究所(河北廊坊)周国华等人研究评估(2000年)认为:本地区土壤第二环境浅层采集深度0—0.2m ,第一环境(深层)深度在0.8m以下,分析样土壤粒度平原区过干筛-20目,低山丘陵区紫色土-40目,土壤样品中地球化学元素的分布能较好地反映采样区的土壤环境地球化学背景。 (一)采样方法技术 平原区采样深度1.50—1.80m,丘区紫色土地区采样深度0.40—0.80m,龙门山区0.80m以

铀矿床的分类

铀矿床的分类 铀矿床分类是认识和阐明自然界种类繁多、形态各异、规模悬殊的各种矿床间的内在联系和共同规律的简单而又重要的一种方法,即用分类的方法找出同类矿床的共性和各类矿床之间的联系及差异,把复杂的自然现象加以归纳,从而研究其共同的、一般的规律。不同时期的矿床分类,在一定程度上代表着人们对矿床的研究程度和认识水平。正确的合理的分类有利于促进科学研究和指导生产实践。因此,任何一位自然科学工作者都十分重视分类的研究。 根据分类目的,分类原则和解决问题的实质,矿床分类可分为:工业分类、勘探分类和成因分类等,这些分类又可具体进行细分。 如在铀矿床成因分类中,不同的学者建立分类所依据的主要标准或赖以建立分类的基础不同,有的按成矿作用和成矿温度划分的,以地质-构造环境为第一分类标准;有的以含矿主岩为分类基础,而有的以成矿物质来源为分类的基本准则等等。因此近四十年来,至少出现了四十多种铀矿床的成因分类。各种分类的合理程度决定于它是否能概括和反映客观实际。作为一种合理的分类应该是既不过于简单,也不过于复杂,而且分类中应有统一的标准,便于认识和掌握。 铀矿床的最早分类见于1946年由前苏联学者谢尔宾纳和谢尔巴科夫提出,铀矿床的成因具体分类可参阅有关文献。 现在采用的铀矿床分类多是以含矿主岩岩性为基础建立的主要工业铀矿床分类,出现了较多的描述性的分类方案,而从成因方面作为分类依据已经逐渐不被看重。这是因为对矿床成因问题还有许多悬而未决的问题,而成因认识是不断变化的,且可以因人而异,对同一个矿床,或因研究程度、认识深度不同,或因研究者的出发点不同,可提出不同的成因观点。但是矿床的围岩(或含矿主岩)一经正确鉴定是不会改变的。因此,许多年来,国际原子能机构、以及一些国际机构和有关学者,常常把矿床的围岩作为主要的分类标志。如把主要工业铀矿床分为白岗岩型、古砾岩型、砂岩型等等。或据工业类型进行分类,有的矿床或强调其形态,如脉型;或强调其产出的独特的地质环境,如不整合面型。这种分类方法和所划分出来的矿床类型,也已被铀矿地质界沿用成习。 我国自70年代开始,也采用了类似的分类方案,把主要工业铀矿床归纳为“四大类型”,即花岗岩型、火山岩型、砂岩型和碳硅泥岩型。这种以含矿主岩为依据划分的铀矿床类型,易于被铀矿工作人员认识和掌握,较少出现争议,也有利于指导普查勘探工作。 非中央计划经济国家学者从主要勘查类型的工业价值前提下根据铀矿床的含矿岩性、构造、蚀变矿物共生组合、形成年代和空间分布等特点,按目前和近阶段的工业等级依次筛选出15种主要铀矿床类型,近40个亚类和分类,该分类是目前国际原子能机构推荐的矿床分类方案,具体如下: 1.不整合-接触型1.1 与元古代不整合面有关;1.2与显生宙不整合面有关。 2.准不整合-浅变质2.1无钠长石化;2.2钠长石化。 3.脉型3.1与花岗岩有关;3.2与花岗岩无关。 4.砂岩4.1板状/准整合型;4.2卷锋型(或卷状型);4.3构造-岩性。 5.塌陷角砾岩筒型。 6.表生型6.1钙质壳型(非成土型);6.2泥炭和沼泽型;6.3喀斯特溶洞型;6.4表生成土和构造充填型。 7.石英-卵石砾岩型7.1以铀为主,伴有稀土元素;7.2以金为主,金含量大于铀。 8.角砾杂岩型。 9.侵入岩型9.1白岗岩;9.2花岗岩-二长岩型;9.3碳酸岩型;9.4过碱性正

地球化学稀土元素配分分析

地球化学稀土元素配分分 析 Final revision by standardization team on December 10, 2020.

《地球化学》实习测验 REE图表处理及参数计算 一、实习目的 1、掌握稀土元素组成模式图的制作方法。 2、掌握表征稀土元素组成的基本参数。 3、培养独立查阅文献及处理数据的能力。 二、基本原理 1、稀土元素组成模式图 1、原子序数为横坐标 2、标准化数据为纵坐标 3、对数刻度 2、表征稀土元素组成的基本参数 3、稀土总量 4、轻重稀土比值 5、轻稀土分异指数 6、重稀土分异指数 7、铕、铈异常 三、实习测验内容 1、绘制各类侵入岩的稀土元素组成模式图; 2、计算各类侵入岩稀土元素组成的基本参数; 3、对已绘制的图表和计算出的数据进行解释。 4、在以上实习内容掌握之后,自行查阅文献一篇,并进行以上3项操作。 四、实习测验步骤 1、根据查阅文献数据,找到自己想要的数据 表1 蒙库铁矿床岩石、矿石、矿物稀土元素成分分析(ppm) 2、选出自己要的数据建立表格 表2 稀土元素组成模式图(ppm) 3、对数据进行球粒陨石标准化 表3球粒陨石标准化后稀土元素组成模式图(ppm) 图1 蒙库铁矿床稀土元素配分图 5、计算稀土元素基本参数

表4 表征稀土元素组成的基本参数 6、数据及图表的解析 (1)绿帘石:∑REE=,表明稀土元素含量较高;LR/HR=,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=,(Gd/Lu)N=,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。Eu异常值=,为强正异常;Ce异常值=,表明Ce基本无异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。 (2)磁铁矿矿石:∑REE=,表明稀土元素含量较低;LR/HR=,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=, (Gd/Lu)N=,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。Eu异常值=,为强正异常;Ce异常值=,位弱Ce异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。 (3)块状黄铁矿:∑REE=225ppm,表明稀土元素含量较高;LR/HR=,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=,(Gd/Lu)N=,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。Eu异常值=,为强正异常;Ce异常值=,为Ce弱异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,Eu正异常明显特征。 五、结论 1、绿帘石、磁铁矿矿石、块状黄铁矿的配分模式具有相似性,均为右倾型,正Eu 异常,富集轻稀土元素。差别在于(1)稀土元素含量,绿帘石和块状黄铁矿具有较丰

相关主题
文本预览
相关文档 最新文档