当前位置:文档之家› 矢量分析与场论讲义

矢量分析与场论讲义

矢量分析与场论讲义
矢量分析与场论讲义

矢量分析与场论

矢量分析是矢量代数和微机分运算的结合和推广,主要研究矢性函数的极限、连续、导数、微分、积分等。而场论则是借助于矢量分析这个工具,研究数量场和矢量场的有关概念和性质。通过这一部分的学习,可使读者掌握矢量分析和场论这两个数学工具,并初步接触到算子的概念及其简单用法,为以后学习有关专业课程和解决实际问题,打下了必要的数学基础。

第一章 矢量分析

一 内容概要

1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。

2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。

3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。

如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()ds

d s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。

4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。(圆函

数还可以用来简化较冗长的公式,注意灵活运用)。

5 在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为:

dt dt ''???-?=?A B B A B A

dt dt ''???+?=?A B B A B A

前者与高等数学种数性函数的分部积分法公式一致,后者由两项相减变为了求和,这是因为矢量积服从于“负交换律”之故。

6 在矢量代数中,在引进了矢量坐标之后,一个空间量就和三个数量构成一一对应关系,而且有关矢量的一些运算,例如和、差以及数量与矢量的乘积都可以转化为三个数量坐标的相应运算。同样,在矢量分析中,若矢性函数采用坐标表示式,则一个矢性函数就和三个数性函数构成一一对应关系,而且有关矢性函数的一些运算,例如计算极限、求导数、求积分等亦可以转化为对其三个坐标函数的相应运算。

7 矢性函数极限的基本运算公式(14)、导数运算公式(p11)、不定积分的基本运算公式(p16)

典型例题:

教材p6例2、p10 例4、p12例6、p13例7。习题一(p19~20) 此外还有上课所讲的例题。

补充:

1) 设()k e r b a +=θ1,求()??=πθ20'2

1d r r S 2) 一质点以常角加速度沿圆周()?e r a =运动,试证明其加速度

r ω22a

v -=,其中v 为速度v 的模。 3) 已知矢量k j i A t t t ln 2+-=,k j i B t t e t 3sin -+=,计算积分??dt 'B A 。

4) 已知矢量j i A t t 2+=,k j i B t e t t -++=sin cos ,计算积分??dt 'B A 。

第二章 场论

一 内容概要

1 本章按其特点可以划分为三部分:第一部分为第一节,除介绍场的概念外,主要讨论了如何从宏观上利用等值面(线)和矢量线描述场的分布规律;第二部分为第二、三、四节,内容主要是从微观方面揭示场的一些重要特性;第三部分为第五节,主要介绍三种具有某种特性而又常见的矢量场。其中第二部分又为本章之重点。

2 空间数量场的等值面和平面数量场的等值线以及矢量场的矢量线等,都是为了能够形象直观地体现所考察的数量()M u 或矢量()M A 在场中的宏观分布情况而引入的概念。

比如温度场中的等温面,电位场中的等位面,都是空间数量场中等值面的例子;而地形图上的等高线即为平面数量场中等值线的例子。

在矢量场中,矢量线可以体现场矢量的分布状况,又能体现场矢量的走向。例如流场中的流线,体现了流速的分布状况和它们的走向。此外,由于矢量场中的每一点都有一条矢量线通过,因此对于场中的任一条曲线C (非矢量线),在其上的每一点也皆有一条矢量线通过,这些矢量线的全体,就构成一曲面,称为矢量面,特别的,当曲线C 为封闭曲线时,矢量面就成为一管形曲面,称之为矢量管。

3 有一种空间场(矢量场或者数量场)具有这样的一种几何特点:就是在场中存在一族充满场所在空间的平行平面,场在其中每一个平面上的分布,都是完全相同的(若是矢量场,其场矢量同时也平行于这些平面)。对于这种场,只要知道场在其中任一平面的中的特性,则场在整个空间里的特性就知道了,因此,可以将这种场简化到这族平面中的任意一个平面上来研究,因而,也把这种场称为平行平面场。在平行平面场中,通常为了研究方便,通常取所研究的这一个平面为xoy 平面。此时,在平行平面场中,场矢量就可以表示成为平面矢量()()j A i A A y x y x y x ,,+=,在平行平面数量场中,其数量就可以表示成为二元函数()y x u u ,=,并且这样的研究结果适用于任何一块与xoy 面平行的平面。

典型例题:习题2(最好能全部做一下)

(1)求数量场()222ln z y x u ++=通过点M (1,2,1)的等值面。

(2)求矢量场()k j i A y x 2+++=通过点M (2,1,1)的矢量线方程。

4 数量场中函数()M u 的方向导数是一个数量。它表示在场中的一个点处函数()M u 沿某一方向的变化率。详细点说:其绝对值的大小,表示沿该方向函数变化的快慢程度,其符号的正负,则表示沿该方向函数的变化是增加还是减小的。

若在点M 处,函数()M u 可微,则函数u 沿l 方向的方向导数在迪卡尔坐标下的计算公式为:

γβαcos cos cos z

u y u x u l u ??+??+??=??

5 数量场的梯度是一个矢量,场中的每一点都对应着一个梯度矢量。梯度矢量有两个重要性质:

(1)梯度在任一方向上的投影,正好等于函数在该方向上的方向导数,l

u u l ??=grad 。据此可以推出:梯度自身的方向就是方向导数最大的方向,其模就是这个最大方向导数的数值。

(2)数量场中每一点处的梯度都垂直于此数量场过该点的等值面,且指向函数值增大的一方。

梯度在直角坐标系中的表达式为:

k j i grad z

u y u x u u ??+??+??=。 此外,从梯度的基本运算公式可以看出,他与一元函数中导数运算的公式完全类似,这一点可以帮助大家掌握梯度的基本运算(p39)。

典型例题 p34例2,p37例3,例4,p38例5,6,习题3。

(1)求函数xz yz z x u 22322+-+=在点M (1,2,3)处沿矢量k j i αxy xz yz ++=方向的方向导数。

(2)求函数xyz u =在曲面在点M (2,3,3)处沿曲面下侧法线方向的方向导数M n

u |??。 (3)求函数223y y x u -=在点M (2,3)处沿曲线12-=x y 朝x 增大一方的方向导数。

(4)设R 是从点()c b a M ,,0到任意一点()z y x M ,,的距离,求证gradR 是在M M 0=R 方向上的单位矢量。

(5)已知一可微的数量场()z y x u ,,在点()1,2,10M 处,朝点()1,2,21M 方向的方向导数是4,朝点()1,3,12M 方向的方向导数为-2,朝点()0,2,13M 方向的方向导数为1,试确定在0M 处的梯度,并求出朝点()7,4,44M 方向的方向导数。

(6)求数量场r u 1=在点()0,0,1M 处沿过点M 的等值面的外法线方向n 的方向导数

l

u ??,其中r 为矢径k j i r z y x ++=的模。

6矢量场A 穿过某一曲面S 的通量???=Φs d S A 是从某些物理量,诸如

流速场中的流量、电场中的电通量、磁场中的磁通量以及热流场中的热量等等概念中抽象出来形成的一个数学概念。因此通量是具有若干物理意义的。

如果S 是一个封闭曲面,则矢量场A 穿出S 的总通量为

???=ΦS

d S A ,

(1) 当0>Φ时,则S 内必有产生通量的源头;

(2) 当0<Φ时,则S 内必有吸收通量的漏洞;

这两种情况,合称为S 内有源(源头为正源,漏洞为负源)。

(3) 当0=Φ时,不能断言S 内无源,因为这时,在S 内正源和

负源互相抵消,也可能恰好出现总通量为零的情况。

由此可见,从穿出某个封闭曲面的总通量,可以初步了解在S 内通量产生的情况,当然这仅仅是一种整体性的粗略了解,这由此引出了矢量场中散度的概念。

7 矢量场A 的散度div A ,是指在场中的一点处,矢量场A 穿出一个包含该点在内的微小区域?Ω的边界曲面S ?的通量?Φ对?Ω的体积变化率,即

V d V div S

??=??Φ=???→?Ω→?ΩS A A 00lim lim

它是一个数量,表示此矢量场在这个点处散发通量或者吸收通量的强度。具体来说,散度以绝对值表示在该点处源的强度大小。当其不为零时,以正负号表示该点处的源为正源或者负源;当其为零时,则表示该点无源,从而将散度恒为零的矢量场称为无源场。与散度相对应的场称为散度场。由于散度场为数量场,故亦可通过其等值面、方向导数和梯度等来揭示其分布规律和变化情况。

在直角坐标系中,矢量场()()()k j i A M R M Q M P ++=在点M 处的散度表示式为:

z

R y Q x P div ??+??+??=A 由此可以得出奥氏公式(高斯定理)的矢量形式为:

?????Ω

=?dV div d S A S A

此式表明了通量和散度之间的一种关系:穿出封闭曲面S 的通量,等于S 所包围的区域Ω上的散度在上Ω的三重积分。

P52散度的基本运算公式。

典型例题 p44例1,p52例4,例5,习题4。

(1)设S 为由圆柱面222a y x =+及平面0=z 和h z =所围成的封闭曲面,求k j i r z y x ++=穿出S 的柱面部分的通量。

(2)已知()()()k j i A xyz cxz z z xy by x axz 2222-+-++++=,试确定阿a ,b ,c 使得A 是一个无源场。

(3)求矢量场()()()k j i A 2232323xz xyz yz y yz x -+++-=所产生的散度场通过点()1,1,2-M 的等值面及其在点M 处沿Ox 轴正向的变化率。

(4) 已知()()0=r r divf grad ,其中k j i r z y x ++=,r =r ,求()r f 。

8 矢量场A 沿有向闭曲线l 的环量??=Γl

d l A 也是从某些物理量,如力

场中的功、流场中的环流以及磁场中的电流强度等概念抽象形成的一个数学概念,和通量概念的形成极为类似,通量是一个曲面积分,环量是一个曲线积分。二者在矢量场中都是一种整体性的概念,为了研究矢量场的局部性质,前面从通量引入了散度,这里又可以从环量引入环量面密度的概念:

在矢量场A 中的一点M 处,取定一个方向为n ,再经过点M 处

以n 为法矢作一微小曲面S ?,同时以S ?表示其面积,其边界l ?之正向与法矢n 构成右手螺旋关系,则场A 沿l ?之正向的环量?Γ与面积

S ?之比,

当S ?沿其自身缩向M 点时,其极限就称为矢量场A 在点M 处沿方向n 的环量面密度(就是环量对面积的变化率),即:

S d S l M S M S n ??=??Γ=??→?→?l A lim lim μ

可见,环量面密度概念与散度概念(通量的体密度)的构成是非常类似的,二者都是一种局部性的概念。

设矢量场()()()k j i A M R M Q M P ++=,则场A 在点M 处沿方向n 的环量面密度在直角坐标系下的计算公式为:

()()()γβαμcos cos cos y x x z z y n P Q R P Q R -+-+-=

9 环量面密度与散度这两个概念的构成虽然很相似,且都是一种变化率,但二者有着重要的差别,这就是:散度和矢量场中之点能构成一一对应关系,二环量面密度不仅与场中的点位置有关,而且还与从该点出发的方向有关,从一个点出发的方向有无穷多个方向,对应的也有无穷多个环量面密度的值,所以,换辆面密度与矢量中的点不能构成一一对应的关系。

环量面密度和散度的上述差别正是环量面密度和方向导数相一致的地方。这就诱导我们去寻找一种矢量,使它在一个点处和环量面密度之间的关系恰如梯度和方向导数之间的关系一样,循此探索,就得出了旋度的概念。

10 矢量场A 在M 点处的旋度A rot ,是这样一个矢量,它在任一方向上的投影,就等于场A 沿该方向的环量面密度,即有:

n n rot μ=A

由此可知:旋度的方向就是环量面密度最大的方向,其模也就是这个最大环量面密度的数值。如果把旋度A rot 与矢量场A 中的点一一对应起来,又得到一个矢量场,叫做有矢量场A 产生的旋度场。 对于那种恒有0=A rot 的矢量场,叫做无旋场。

矢量场()()()k j i A M R M Q M P ++=的旋度,在直角坐标系下的计算公式为:

()()()k j i A y x x z z y P Q R P Q R rot -+-+-= 或者写为:R Q P

x x

x k j

i rot ????

??=A 据此可以将斯托克斯公式写成矢量形式:

()S A l A d rot d S

l ?=????

此式表明了环量和旋度之间的一种关系:即沿有向封闭曲线l 的环量,等于旋度沿与l 的方向构成右手螺旋的方向穿过以l 为边界的曲面S 的通量。

旋度之所以得名是因为在流场中速度的旋度恰好是流场中该点旋转角速度矢量乘上一个常数2,即ωv 2=rot 。

P65旋度的基本运算公式。

典型例题:p58例1,p60例2,p63例3,p65例6,习题5。

(1)设k j i A y e x y z z xy 2222sin ++=,求A div 和A rot 。

11 三种特殊的矢量场。即有势场、管形场和调和场。其中以有势场为重点。

设矢量场A 为有势场,是指在场中存在单值函数()M u 满足:

gradu =A ,

称函数u v -=为这个场的势函数。从而矢量A 与其势函数v 之间存在下列关系:gradv -=A ,但在流体力学中,也直接把u 定义为矢量场A 的势函数。

12 具有曲线积分??B

A d l A 与路径无关性质的矢量场A 称为保守场。如静电场、引力场、重力场都是保守场。根据第五节定理1及其证明,可知:在线单连域内,“场有势”,“场无旋”,“场保守”以及“表达式Rdz Qdy Pdx d ++=?l A 为某个函数的全微分(这个函数叫做表达式

l A d ?的原函数)

”这四者是等价的。一般通过考察场A 是否无旋,即是否有0=A rot 来判断其余三者是否成立。

由此知:若有0=A rot ,则l A d ?存在原函数,且此原函数就是满足gradu =A 的函数()M u ,它可以用如下公式来计算出:

()()()()C dz z y x R dy z y x Q dx z y x P z y x u z

z y y x x +++=???000,,,,,,,,000 其中()000,,z y x 为场中任意一点,为了计算简便通常取为坐标原点;C

为任意常数。容易看出,在求得u 后,有势场A 的势函数u v -=就随之得到了。

此外,若A 为保守场,则曲线积分

()()()A u B u M u d B A B A -==??| l A

其中u (M )为l A d ?的一个原函数,可用上面公式求出。计算曲线积分的这个公式与计算定积分的牛顿—莱布尼茨公式完全相似,都是通过原函数来计算,用起来很方便。

13 矢量场A 为管形场,是指它恒有散度0=A div ,即A 为无源场。管形场中存在矢量B 满足A B =rot ,矢量B 叫做管形场A 的矢势量。教材为了说明它的存在,直接给出了从已知管形场矢量()()()k j i A M R M Q M P ++=计算其矢势量k j i B W V U ++=的如下计算公式:

()()()????

?????=-=-=???C W dz z y x P V dy z y x R dz z y x Q U z z y y z z 000,,,,,,0 简要给出其推证:由A B =rot ,有?????????=??-??=??-??=??-??)

3()2()1(R

y U x V Q x W z

U P

z V y W ,为简便起见,我们取C W =(C 为常数),然后在(1)与(2)式两边对z 积分,得: ()y x Pdz V z z ,0?+-=?,()y x Qdz U z

z ,0ψ+-=?,这里()y x ,?,()y x ,ψ都是,x ,y 的任意函数,将此两式带入(3)可得:

R y x dz y Q x P z

z =??-??+???? ????+??-?ψ?0 (4) 再由条件0=A div 即???

? ????+??-=???=??+??+??y Q x P z R z R y Q x P 0带入上式得:

R y x dz z R z

z =??-??+???ψ?0 (5) 或者()()R y

x z y x R z y x R =??-??+-ψ?0,,,,,即 ()0,,z y x R y

x =??-??ψ? (6) 为简单起见,再在其中取()0,=y x ? (7) 即得:

()()()x dy z y x R y x y

y ωψ+-=?00,,, 其中()x ω为x 的任意函数,再取()0=x ω,就得到:

()()?-=y

y dy z y x R y x 00,,,ψ (8) 将(7),(8)依次带入(5)与(6)即可得出U ,V ,再由W =0既可得出所推证的矢势量的计算公式。

从上面的推证过程也可以看出,如果不取C W =,()0,=y x ?,()0=x ω而将之取为别的合于条件的函数,则计算矢势量的公式随之变化,这表明同一个管形场A ,存在着无穷多的矢势量,而不限于有这里所推证的公式计算出来的。

14 若矢量场A 恒有0=A div 和0=A rot ,则称A 为调和场。简而言之调和场是一个既无源又无旋的矢量场。在调和场中,由于有0=A rot ,故调和场也是有势场,因此存在函数u 满足gradu =A ,又由于有0=A div ,既有:

()0=gradu div

或者写为:

0222222=??+??+??z

u y u x u 这是一个二阶偏微分方程,叫做拉普拉斯方程,对于满足拉普拉斯方程且有二阶连续偏导数的函数,叫做调和函数,可见上述函数u 以及势函数v =-u 都是调和函数。

15 特别应注意的是平面调和场,就是既无源又无旋的平面矢量场,它与空间调和场相比,有其特殊性。

设()()j i A y x Q y x P ,,+=为平面调和场,则有0=A rot ,故存在势函数v 满足gradv -=A ,又因其有0=A div ,由此可以推出满足gradu P Q =+-j i 的函数u ,这个函数u 叫做A 的力函数。函数u 和v 可用下面公式来求出:

()()()dy y x P dx y x Q y x u y y x x ??+-=00

,,,0 ()()()dy y x Q dx y x P y x v y y x x ??--=0

0,,,0 函数u 和v 还满足如下的关系式:

x

v y u y v x u ??-=????=??, 由此可以得到:

0,022222222=??+??=??+??y

v x v y u x u 这说明函数u 和v 均为满足二维拉普拉斯方程的调和函数,故又称二者为共轭调和函数。应用这个共轭条件,便可以从u 和v 中的一个求出另一个。

此外,力函数和势函数的等值线依次叫做平面调和场的力线

和等势线,其中力线就是矢量场A 的矢量线,而势线就是与矢量线相互正交的一族曲线。

典型例题:p71-73例1,2,3,4,p76例5,p78例6,p80例7,习题6。

(1) 证明()()()k j i A z y z x z xy xz y 2222222+-+-++=为有势场,并

求其势函数。

(2) 解微分方程 ()()()013264223=++-+-dz xz dy x y dx xy z 。

(3) 证明()()k j i A y z x xy 44322--++=为保守场,并计算曲线积分

??l

d l A ,其中l 是从点()2,1,3-A 到点()1,1,2-B 的任意路径。 (4) 证明k j i A xy zx yz ++=为调和场,并求出场的调和函数和矢

势量各一个。

(5) 已知()k j i A R xyz z y x +++=6323,其中函数R 适合0=??z

R ,且当0==y x 时0=R ,求R 使矢量场A 存在函数u 满足gradu =A ,并判断A 是否为管形场。

(6) 矢量场()()j i A y xy x y x +-+-=222是否为平面调和场?若

是,求其力函数u 和势函数v 。

第三章 哈密顿算子

1 哈密顿算子 k j i z

y x ??+??+??=?是一个矢性微分算子。就是说它在运算中具有矢量和微分的双重性质,其运算规则是:

k j i z u y u x u u ??+??+??=?,k j i A z A y A x A z y x ??+??+??=??,k j i A ???

? ????-??+??? ????-??+???? ????-??=??y A x A x A z A z A y A x y z x y z 。 由此可见,场论中的梯度、散度、旋度都可以用哈密顿算子来表示:

u gradu ?=,A A ??=div ,A A ??=rot

从而场论中的一些公式,也可以通过该算子来表示。

此外,为了某些公式中应用方便,,又结合哈密顿算子引入了一个数性微分算子:

k j i A z

A y A x A z y x ??+??+??=?? 其运算规则是:

()()u z

u A y u A x u A u z y x ??=??+??+??=??A k j i A ()k B j B i B B A z A y

A x A z y x ??+??+??=?? 此处的??A 与A ??是完全不同的。

2 教材中把场论中的一些常见公式用算子?表示,并将其汇集列出便于查用(p85),其中:

(1)公式(1)~(11)前八个是最基本的公式,后三个则是比较常用的。

(2)公式(15)~(17)

公式(15)表示:()u gradu div ?=,说明“梯度场的散度就是调和量”,而公式(16)和(17)分别表示:()0=gradu rot 和()0=A rot div 分别说明“梯度场无旋”,“旋度场无源”。

(3)公式(19)~(21)是一组关于矢径r 的基本公式,是经常用到的。

此外(27),(28)分别是奥氏公式与斯托克斯公式用哈密顿算子表达的形式。

典型例题:例1到例8(p86-90)习题7

补充:(1)证明:()()()C A C A u u ??=??,

()()()()k A j A i A B A z y x B B B ??+??+??=??

(2)设yz x u 2=,222z y x v -+=,计算:()v u ?????和()v u ?????

(3)已知速度()t z y x ,,,v ,其中x ,y ,z 为点的坐标,且都是时间t 的函数,证明:()v v v v ??+??=t

dt d (4)若A 与B 均为调和场,证明:()()()[]B A B A B A ???-??=??21

(5)已知函数u 满足()u u 42=?和()u u u 10=???,计算曲面积分????S

dS n u ,其中S 为中心在坐标原点的单位球面,n u ??为u 沿S 的向外单位法矢 n 的方向导数。

(6)设n 为封闭曲面S 的向外单位法矢,证明:

(1)[]?????Ω

??+??=?A A n A u u dS u S

(2)()()()[]?????Ω

???-???=??B A A B n B A S dS

(7)证明()S d v u udv S

l ????=???,其中n 为曲面S 的单位法矢,l

为S 的有向边界曲线,其正向与n 符合右手法则,u ,v 都是点M 的函数。

(8)设S 为区域Ω的边界曲面,n 为S 的向外单位法矢,若矢量F 和G 在Ω中满足G F ??=??,G F ??=??,证明在Ω中有G F =。 (提示利用格林第一公式:()()[]?????Ω

?+???=??v u u v d v u S S 取v u =的

情况)

《矢量分析与场论》

1、若一个矢量的大小和方向不变,则该矢量为常矢量。 ( ) 2、若穿过一个封闭曲面的通量为零,则该曲面内无源。 ( ) 3、平行平面矢量场中的所有矢量的大小和方向都相同。 ( ) 二、单项选择题 1、下列关于导矢()t 'r 的说法正确的是( ) A 、()t 'r 的几何意义为矢端曲线上的一个单位切向矢量。 B 、()t 'r 的物理意义为一个质点的加速度矢量。 C 、若()t =r 常数,则()t r 与()t 'r 互相平行。 D 、()t 'r 恒指向t 值增大的一方 2、下列关于环量面密度和旋度的各种说法,正确的是( ) A 、环量面密度和旋度都是矢量。 B 、矢量场中某一个点的环量面密度有无数个 ,其中最大的那个环量面密度就 是旋度。 C 、旋度是用矢量场来描述数量场。 D 、某个方向的环量面密度等于旋度在该方向上的投影。 3、下列关于拉普拉斯运算符、调和场和调和函数,说法错误的是( ) A 、若0u ?=,则u 为调和函数 B 、()u divgrad u ?= C 、调和场的散度和旋度都为0 D 、调和场是一个矢量场

1、已知曲线的矢量方程为sin sin cos t t t =++r i j k ,该曲线的参数方程是______。 2、矢性函数()t A 的导矢()t 'A 可分解为两个矢量,分解后的矢量一个与()t A 垂直, 另一个矢量与()t A ______。 3、数量场x y u z -=22 通过M (2,1,1)的等值面方程为______。 4、矢量场()22xz yz x y =+-+A i j k 的矢量线方程为______。 5、矢量场333x y z =++A i j k 穿出球面2221x y z ++=的通量为______。 6、在线单连域内,场有势,场无旋,______,P Q R ?=++A dl dx dy dz 为某个函数 的全微分是互相等价的。 7、平面调和场的力线又是矢量场的_____。 8、正交曲线坐标系中一般曲线弧微分ds 和坐标曲线弧微分1ds ,2ds ,3ds 的关系是______。 四、计算题(每题8分,共40分) 1、已知矢量()()232(2)424t t t t t t =-++-A i j k ,计算(1)()1 lim t t =A (2分), (2)()d dt t A (2分),(3)()dt t ?A (2分),(4)()11dt t -?A (2分)。 2、计算积分()()0a e b d a ???≠?e ,式中()b ?e 为圆函数。 3、求函数u xyz =在曲面20z xy -=上的点M (2,3,3)处沿曲面上侧法线方向的 ()23222)()3yz y yz xyz xz -+++-i j k 所产生的散度场通过点

电磁场与电磁波_ 矢量分析和场论_

1.2 梯 度
自强●弘毅●求是●拓新

1.2.1 场的概念
任何物理过程总是在一定空间上发生,对应的物理量在 空间区域按特定的规律分布。如
电荷在其周围空间激发电场的分布 电流在周围空间激发磁场的分布 地球上太阳及其他原因激发温度的分布
在空间区域上每一点有确定物理量与之对应,称在该区 域上定义了该物理量的场

1.2.1 场的概念
只有数值的大小而没有方向的场称为标量场 既有数值的大小又有方向的场称为矢量场 如果场与时间无关,称为静态场,反之为时变场
静态标量场用 u x, y,z
静态矢量场 F x, y,z
时变场标量场用 u x, y,z,t 时变矢量场 F x, y,z,t

1.2.1 场的概念
14 16
18
20
?35.50
22
12 50 MLAT 10 60
70 80
2 0 MLT
40
8 30
20
10 6
0
?10
?20
4
?30
?40
33.42
Potential (kV)
Z [R]
15 10
5 0 -5 -10 -15
10
t = 21:15 UT
0
-10
X [R]
p [nPa]
2
1.7725
1.545
1.3175
1.09
0.8625
-20
0.635
0.4075
0.18

矢量分析与场论课后答案..

矢量分析与场论 习题1 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 32 3 2+ += 则其切向矢量为k t tj i dt dr 222++= 模为24221441||t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在t π 4 = 处,t r ai a k t π τ4 d 2d 2 = = =- 7.求曲线t t z t y t x 62,34,12 2 -=-=+= 在对应于2=t 的点M 处的切线方程和法平面方程。 解:由题意得),4,5,5(-M 曲线矢量方程为,)62()34()1(22k t t j t i t r -+-++=

矢量分析与场论推导

矢量分析与场论 矢量分析是矢量代数和微机分运算的结合和推广,主要研究矢性函数的极限、连续、导数、微分、积分等。而场论则是借助于矢量分析这个工具,研究数量场和矢量场的有关概念和性质。通过这一部分的学习,可使读者掌握矢量分析和场论这两个数学工具,并初步接触到算子的概念及其简单用法,为以后学习有关专业课程和解决实际问题,打下了必要的数学基础。 第1章 矢量分析 在矢量代数中,曾经讨论过模和方向都保持不变的矢量,这种矢量称为常矢。然而,在科学和技术的许多问题中,也常遇到模和方向改变或其中之一会改变的矢量,这种矢量称为变矢。如非等速及非直线运动物体的速度就是变矢量的典型例子。变矢量是矢量分析研究的重要对象。本章主要讨论变矢与数性变量之间的对应关系——矢函数及微分、积分和它们的一些主要性质。 §1.1 矢函数 与普通数量函数的定义类似,我们引进矢性函数(简称矢函数)的概念,进而结出矢函数的极限与连续性等概念。 1、矢函数的概念 定义1.1.1 设有数性变量t 和变矢A ,如果对于t 在某个范围D 内的每一个数值,A 都以一个确定的矢量和它对应,则称A 为数性变量t 的矢量函数,记作 A =A )(t (1.1.1) 并称D 为矢函数A 的定义域。 在Oxyz 直角坐标系中,用矢量的坐标表示法,矢函数可写成 A {})(),(),()(t A t A t A t z y x = (1.1.2) 其中)(),(),(t A t A t A z y x 都是变量t 的数性函数,可见一个矢函数和三个 有序的数性函数构成一一对应关系。即在空间直角坐标系下,一个矢 函数相当于三个数性函数。 本章所讲的矢量均指自由矢量,所以,以后总可以把A )(t 的起点取在坐标原点。这样当t 变化时,A )(t 的终点M 就描绘出一条曲线l (图1.1),这样的曲线称为矢函数A )(t 的矢端曲线,也称为矢函数A )(t 的图形。同时称(1.1.1)式或(1.1.2)式为此曲线的矢量方程。愿点O 也称为矢端曲线的极。 由于终点为),,(z y x M 的矢量对于原点O 的矢径为 zk yj xi r ++== 当把A )(t 的起点取在坐标原点时,A )(t 实际上就成为其终点),,(z y x M 的矢径,因此)(t A 的三个坐标)(),(),(t A t A t A z y x 就对应地等于其终点M 的三个坐标z y x ,,,即 )(),(),(t A z t A y t A x z y x === (1.1.3) 此式就是曲线l 的参数方程。 只是模变化而方向不变的矢量,它的矢端曲线是通过记得射线。只改变方向而模不变的矢量,它的矢锻曲线是位于以极为中心模为半径的球面上的某一曲线。 2、矢函数的极限和连续性 定义1.1.2 设矢函数A )(t 在点o t 的某个领域内有定义(但在o t 处可以无定义),A 0为一常矢。若对于任意给定的正数ε,都存在一个正数δ,

(完整版)矢量分析与场论第四版谢树艺习题答案

4 习题 1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 1 x acost, y bsint 2 x 3sin t, y 4sin t,z 3cost 解: 1 r a costi bsin tj ,其图形是 xOy 平面上之椭圆。 2 r 3sin ti 4sin tj 3cos tk , 其 图 形 是 平 面 4x 3y 0 与 圆 柱 面 222 x 2 z 2 32 之交线,为一椭圆。 2.设有定圆 O 与动圆 c ,半径均为 a ,动圆在定圆外相切而滚 动, 所描曲线的矢量方程。 uuuur 解:设 M 点的矢径为 OM r xi yj , AOC 与 x 轴的夹角为 uuuur uuur ;因 OM OC uuuur CM 有 r xi yj 2acos i 2asin j acos 2 asin 2 则 x 2acos acos2 ,y 2asin asin2 . 故 r (2acos acos2 )i (2asin asin2 )j 4.求曲线 x t,y 2 ,z 2 t 3 的一个切向单位矢 量 解:曲线的矢量方程为 ti t dr 则其切向矢量为 dt 2t j 模为| d d r t | 1 4t 2 4t 4 dr 于是切向单位矢量为 dt / | d d r t 6.求曲线 x asin 2 t,y 23 t 3 k 2t 2 k 2t 2tj 2t 2 k 2 1 2t 2 asin 2t,z acost,在 t 处的一个切向矢量。 解:曲线矢量方程为 r asin 2 ti asin2tj acostk 求动圆上一定点 M

矢量分析与场论

矢量分析与场论 第一章 矢理分析 1.1 矢性函数 1. 矢性函数的定义:数性变量t 在一范围G 内,对于任意的t 都有唯一确定的矢量A 与其 对应则称A 是t 的矢性函数,并称G 为A 的定义域,记作:()A A t = 2. 矢性函数的极限和连续性 (1) 矢性函数极限的定义:()A t 在0t 某领域内有定义,对于0ε?>,0δ?>,常矢 量0A ,只要为0<0t t δ-<就有0()A t A ε-< ,则称0A 为()A t 当0t t →的极 限,记作:0 0lim ()t t A t A →= ; 极限的性质:(有界性)若0 0lim ()t t A t A →= ,则0δ?>,M>0,0(;)t U t δ?∈ 都有 ()A t M < 。 证明: 0lim ()1,0,..(;) t t A t A s t t U t εδδ→=∴=?>?∈ 都有0()1A t A ε-<= ,00()()1A t A A t A ∴-<-< , 0()1A t A ∴<+ ,取M=01A + 极限的则运算:0 lim ()()lim ()lim ()t t t t t t u t A t u t A t →→→=? 000l i m (()())l i m ()l i m () t t t t t t A t B t A t B t →→→±=± lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=? lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=? 其中()u t ,()A t ,()B t 当0t t →时极限均存在。 证明:设0 0lim ()t t A t A →= ,0 0lim ()t t u t u →=,0 0lim ()t t B t B →= ; 000000()()()()()()u t A t u A u t A t u A t u A t u A -=-+- ,

矢量分析与场论讲义

矢量分析与场论 第一章矢量分析 一内容概要 1矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2本章所讨论的,仅限于一个自变量的矢性函数 A t ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数A x,y或者A x, y,z,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3本章的重点是矢性函数及其微分法,特别要注意导矢A't的几何意义,即 A' t是位于A t的矢端曲线上的一个切向矢量,其起点在曲线上对应t值的点处,且恒指向t值增大的一方。 如果将自变量取为矢端曲线的弧长S,即矢性函数成为A = A s,则 A' s =d A不仅是一个恒指向S增大一方的切向矢量,而且是一个单位ds 切向矢量。这一点在几何和力学上都很重要。 4矢量A t保持定长的充分必要条件是 A t与其导矢A' t互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数 e t = cost i si nt j为单 位矢量,故有e t _e't,此外又由于e' t = ei t,故e t — & t。(圆函数还可以用来简化较冗长的公式,注意灵活运用)。 5在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为: A B'dt 二AB— B A'dt

A B'dt 二 A B B A'dt 前者与高等数学种数性函数的分部积分法公式一致,后者有两两项变为了求和,这是因为矢量积服从于“负交换律”之故。 6在矢量代数中,在引进了矢量坐标之后,一个空间量就和三个数量构成 对应关系,而且有关矢量的一些运算,例如和、差以及数量与矢量的乘积都可以转化为三个数量坐标的相应运算。同样,在矢量分析中,若矢性函数采用坐标表示式,则一个矢性函数就和三个数性函数构成一一对应关系,而且有关矢性函数的一些运算,例如计算极限、求导数、求积分等亦可以转化为对其三个坐标函数的相应运算。 7矢性函数极限的基本运算公式(14)、导数运算公式(p11)、不定积分 的基本运算公式(p16)典型例题: 教材p6 例2、p10 例4、p12 例6、p13 例7。习题一(p19~20) 此外还有上课所讲的例题。补充: 1 2 TT 1)设r 二a0]亠b k,求S 二-i ir r' d^ 2)一质点以常角加速度沿圆周r = ae「运动,试证明其加速度 2 八-£r,其中v为速度v的模。 a 3)已知矢量 A =t i -2t j l nt k , B = e t i si nt j - 3t k ,计算积分.A B' dt。 4)已知矢量 A = t i 2t j , B = cost i sint j ? e,k,计算积分A B'dt。 第二章场论一内容概要1本章按其特点可以划分为三部分:第一部分为第一节,除介绍场的概念外,主要讨论了如何从宏观上利用等值面(线)和矢量线描述场的分布规律;第二部分为第二、三、四节,内容主要是从微观方面揭示场的一些重要特性;第三部分为第五节,主要介绍三种具有某种特性而又常见的矢量场。其中第二部分又为本章之重点。 2空间数量场的等值面和平面数量场的等值线以及矢量场的矢量线等,都是为了能够形象直观地体现所考察的数量uM或矢量A M在场中的宏观分布情况而引入的概念。 比如温度场中的等温面,电位场中的等位面,都是空间数量场中等值

全的矢量分析与场论讲义(必考

矢量分析与场论 第一章 矢量分析 一 内容概要 1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。 如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()ds d s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。 4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。(圆函数还可以用来简化较冗长的公式,注意灵活运用)。 5 在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为:

矢量分析与场论讲义

矢量分析与场论 矢量分析是矢量代数和微机分运算的结合和推广,主要研究矢性函数的极限、连续、导数、微分、积分等。而场论则是借助于矢量分析这个工具,研究数量场和矢量场的有关概念和性质。通过这一部分的学习,可使读者掌握矢量分析和场论这两个数学工具,并初步接触到算子的概念及其简单用法,为以后学习有关专业课程和解决实际问题,打下了必要的数学基础。 第一章 矢量分析 一 内容概要 1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。 如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()ds d s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。 4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。(圆函

矢量分析与场论第四版_谢树艺习题答案

矢量分析与场论习题解答 习题1解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面2 2 2 3x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+,AOC θ∠=,CM 与x 轴的夹角为2θπ-;因OM OC CM =+有 ()()r xi yj a i a j a i a j θθθπθπ2cos 2sin cos 2sin 2=+=++-+- 则 .2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2+ += 则其切向矢量为k t tj i dt dr 2 22++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在π r d 2

矢量分析与场论(2)

第02讲 本节内容 1,方向导数 2,梯度 3,散度 4,旋度 1 / 38

2 / 38 5, 正交坐标系 第一章 矢量分析与场论(2) 1,数量场的方向导数 1.1方向导数 由上节可知,数量场)(M u u 的分布情况,可以借助于等值面或等值线来了解,但这只能大致地了解数量场中物理量u 的整体分布情况。而要详细地研究数量场,还必须对它作局部性的了解,即要考察物理量u 在场中各点处的邻域内沿每一方向的变化情况。为此,引入方向导数的概念。

3 / 38 设0M 是数量场 )(M u u =中的一点,从 0M 出发沿某一方向引一 条射线l ,在l 上0M 的邻 近取一动点M ,ρ=M M 0, 若当 M M →时(即 0→ρ): 的极限存在,则称此极限为函数)(M u 在点0M 处沿l 方向的方向导数。记为 M l u ??,即: 可见,方向导数0 M l u ??是函数)(M u 在点0M 处沿l 方向对距离的变化率。 M 0 l

4 / 38 当0>??l u 时,表示在0M 处 u 沿l 方向是增加的,反之就是减小的。 在直角坐标系中,方向导数有以下定理所述的计算公式: [定理] 若函数),,(z y x u u =在点),,(0000z y x M 处可微,αcos ,βcos ,γ cos 为l 方向的方向余弦。则u 在0M 处沿l 方向的方向导数必存在,且: 证:M 坐标为),,(000z z y y x x ?+?+?+ ∵u 在点0M 可微,故: ω是比ρ高阶的无穷小。两边除以ρ得 两边取0→ρ时的极限得 例 求数量场z y x u 2 2+=在点)2,1,1(M 处沿z y x l ?2?2?++= 方向的方向导数。

山东科技大学《矢量分析与场论》试卷

一、判断题 1、若一个矢量的大小和方向不变,则该矢量为常矢量。 ( ) 2、若穿过一个封闭曲面的通量为零,则该曲面内无源。 ( ) 3、平行平面矢量场中的所有矢量的大小和方向都相同。 ( ) 二、单项选择题 1、下列关于导矢()t 'r 的说法正确的是( ) A 、()t 'r 的几何意义为矢端曲线上的一个单位切向矢量。 B 、()t 'r 的物理意义为一个质点的加速度矢量。 C 、若()t =r 常数,则()t r 与()t 'r 互相平行。 D 、()t 'r 恒指向t 值增大的一方 2、下列关于环量面密度和旋度的各种说法,正确的是( ) A 、环量面密度和旋度都是矢量。 B 、矢量场中某一个点的环量面密度有无数个 ,其中最大的那个环量面密度就 是旋度。 C 、旋度是用矢量场来描述数量场。 D 、某个方向的环量面密度等于旋度在该方向上的投影。 3、下列关于拉普拉斯运算符、调和场和调和函数,说法错误的是( ) A 、若0u ?=,则u 为调和函数 B 、()u divgrad u ?= C 、调和场的散度和旋度都为0 D 、调和场是一个矢量场 三、填空题 1、已知曲线的矢量方程为sin sin cos t t t =++r i j k ,该曲线的参数方程是______。 2、矢性函数()t A 的导矢()t 'A 可分解为两个矢量,分解后的矢量一个与()t A 垂直,

另一个矢量与()t A ______。 3、数量场x y u z -=22 通过M (2,1,1)的等值面方程为______。 4、矢量场()22xz yz x y =+-+A i j k 的矢量线方程为______。 5、矢量场333x y z =++A i j k 穿出球面2221x y z ++=的通量为______。 6、在线单连域内,场有势,场无旋,______,P Q R ?=++A dl dx dy dz 为某个函数 的全微分是互相等价的。 7、平面调和场的力线又是矢量场的_____。 8、正交曲线坐标系中一般曲线弧微分ds 和坐标曲线弧微分1ds ,2ds ,3ds 的关系是 ______。 四、计算题(每题8分,共40分) 1、已知矢量()()232(2)424t t t t t t =-++-A i j k ,计算(1)()1 lim t t =A (2分), (2)()d dt t A (2分),(3)()dt t ?A (2分),(4)()11dt t -?A (2分)。 2、计算积分()()0a e b d a ???≠?e ,式中()b ?e 为圆函数。 3、求函数u xyz =在曲面20z xy -=上的点M (2,3,3)处沿曲面上侧法线方向的方向导数M u n ??。 4、求矢量场()2322(32)()3x yz y yz xyz xz =-+++-A i j k 所产生的散度场通过点 (2,1,1)M -的等值面方程及其在点M 处沿x 轴正向的变化率。 五、证明题 1、设n 为闭合曲面S 的向外单位法矢,证明 (1)dV u u dS u S )(A A n A ??+??=??????Ω 2、在球面坐标系中,证明2 1r r = A e 为有势场,并求其势函数v 。

矢量分析与场论课后答案

矢量分析与场论课后答案矢量分析与场论 习题1 1(写出下列曲线的矢量方程,并说明它们是何种曲线。 1 xatybt,,cos,sin,, 2 xtytzt,,,3sin,4sin,3cos,, 1解: ,其图形是平面上之椭圆。 ratibtj,,cossinxOy,, ,其图形是平面与圆柱面rtitjtk,,,3sin4sin3cos430xy,,2,,222xz,,3之交线,为一椭圆。 2234(求曲线x,t,y,t,z,t的一个切向单位矢量。 ,3 223,,,rtitjtk解:曲线的矢量方程为 3 dr2,i,2tj,2tk则其切向矢量为 dt dr242||,1,4t,4t,1,2t 模为 dt 2drdri,2tj,2tk /||,于是切向单位矢量为 2dtdt1,2t ,2t,6(求曲线在处的一个切向矢量。 xatyatzat,,,sin,sin2,cos,4 2ratiatjatk,,,sinsin2cos解:曲线矢量方程为 dr,,,,,atiatjatksin22cos2sin切向矢量为 dt

,d2rt,在处, ,,,,aiak,4t,4d2t 22t,27.求曲线在对应于的点M处的切线方程和x,t,1,y,4t,3,z,2t,6t 法平面方程。 22r,(t,1)i,(4t,3)j,(2t,6t)k,M(5,5,,4),解:由题意得曲线矢量方程为dr在的点M处,切向矢量 t,2,,,[2ti,4j,(4t,6)k],4i,4j,2kt,2dtt,2 y,5y,5x,5z,4x,5z,4于是切线方程为 ,,,即,,442221于是法平面方程为,即 2(x,5),2(y,5),(z,4),0 2x,2y,z,16,0 238(求曲线上的这样的点,使该点的切线平行于平面。 xyz,,,24rtitjtk,,, dr2解:曲线切向矢量为, ? ,,,,,23itjtkdt 平面的法矢量为,由题知 nijk,,,2 22 ,,,,,,,niktt,,itjtk2302j,,,143,,,, 1t,,,1,得。将此依次代入?式,得3 111 |,|11t,,,,,i,j,k,,,i,j,k t,,39273 111,,,,,,1,11,,,故所求点为,,,,3927,, 习题2 1(说出下列数量场所在的空间区域,并求出其等值面。 11 u,;,,AxByCzD,,, z2,sinuarc ,,22,xy 1AxByCzD,,,,0解:场所在的空间区域是除外的空间。,, 等值面为 11,C或Ax,By,Cz,D,,0,这是与平(C,0为任意常数)11Ax,By,Cz,DC1

矢量分析与场论_谢树艺习题答案清晰版

习题1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+,AOC θ∠=,CM 与x 轴的夹角为 2θπ-;因OM OC CM =+有 ()()r xi yj a i a j a i a j θθθπθπ2cos 2sin cos 2sin 2=+=++-+- 则 .2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2++= 则其切向矢量为k t tj i dt dr 2 22++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。

矢量分析与场论课后答案.

矢量分析与场论 习题1 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2+ += 则其切向矢量为k t tj i dt dr 222++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为 2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在t π 4 = 处,t r ai a k t π τ4 d d = = =- 7.求曲线t t z t y t x 62,34,12 2-=-=+= 在对应于2=t 的点M 处的切线方程和 法平面方程。 解:由题意得),4,5,5(-M 曲线矢量方程为,)62()34()1(22k t t j t i t r -+-++=

矢量分析与场论A卷2011答案

(学生填写) : 姓名: 学号: 命题: 廖思泉 审题: 审批: ---------------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ----------------------------------------------------------- (答题不能超出密封装订线) 《矢量分析与场论》期末考查A 卷试题答案 命题教师:李伟勋 使用班级:电子10-1,2班 一、名词解析(含定义、算法、物理意义等个,每小题5分,共20分) 1.通量 定义:矢量A 沿某一有向曲面S 的面积分为A 通过S 的通量,即 ???=ψS d S A ----------------------3分 物理意义:矢量通过闭合面的通量反映了闭合面内源的性质。 --------5分 2.矢量的旋度 定义:在矢量场A 中,围绕Q 点做一闭合回路,所围面积为?S ,A 的旋度是矢量,其大小为?S →0 时环流面密度的最大值,其方向为使环流面密度取最大值时面元的法线方向,即 0max 0lim n l A A A A S d Curl rot l S ??=??==?→?--------3分 物理意义:矢量的旋度是环流面密度的最大值,与面元的取向有关。-------5分 3.标量的梯度 定义:标量场u 在某点的梯度是一个矢量,其方向为u 增加最大的方向,即等值面法线方向;其大小等于u 在该方向上的增加率,即最大增加率。---------3分 物理意义:标量的梯度表示了标量u 增加率的最大值及方向。 00grad grad u u u u n ?=?==?n n ---------5分 4、保守场 ?u 沿线积分与路径无关,沿闭合回路的积分为零。 即)()(1221p u p u d u p p -=???l ------------3分 则?u 称为保守场,u 称为保守位场。------------5分 二、计算题(每小题10分,共70分) 1、数量场 22yz x u = 在点)1,1,2(-M 处沿哪个方向的方向导数最大?这个最大值是多少? (本小题10分)

(完整版)矢量分析与场论第四版谢树艺习题答案.docx

习题 1解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 1x a cos t, y b sin t 2x3sin t , y4sin t , z3cos t 解:1r a costi b sin tj ,其图形是 xOy 平面上之椭圆。 2r3sin ti4sin tj3cos tk,其图形是平面 4 x 3 y 0 与圆柱面x2z232之交线,为一椭圆。 2.设有定圆O与动圆c,半径均为a,动圆在定圆外相切而滚动,求动圆上一定点 M 所描曲线的矢量方程。 uuuur xi yj ,AOC uuur 解:设 M 点的矢径为OM r, CM 与x轴的夹角为 2 uuuur uuur uuuur ;因 OM OC CM 有 r xi yj2a cos i 2asin j acos2i a sin 2j 则 x2acos acos2, y2a sin asin 2 . 故 r( 2acos a cos2 )i(2a sin asin 2) j 4.求曲线x t , y t 2 , z2t 3的一个切向单位矢量。 3 解:曲线的矢量方程为r ti t 2 j2t 3 k 3 dr i2tj2t 2k 则其切向矢量为 dt 模为 | dr |14t 24t 412t 2 dt 于是切向单位矢量为dr/ |dr|i 2 tj 2 t 2 k dt dt1 2 t 2 6.求曲线x a sin 2 t , y a sin 2t , z a cost , 在 t处的一个切向矢量。 4 解:曲线矢量方程为r asin 2 ti asin2tj acostk

切向矢量为 dr asin2ti 2acos2tj asintk dt 在 t 处, d r ai a 2 k 4 d t 2 t 4 7. 求曲线 x t 2 1, y 4t 3, z 2t 2 6t 在对应于 t 2 的点 M 处的切线方程和 法平面方程。 解:由题意得 M (5,5, 4), 曲线矢量方程为 r ( t 2 1) (4 3) j (2 2 6 ) k , i t t t 在 t 2 的点 M 处,切向矢量 dr ti j t k i j k dt t 2 [ 2 4 (4 6) ] t 2 4 4 2 于是切线方程为 x 5 y 5 z 4 , 即 x 5 y 5 z 4 4 4 2 2 2 1 于是法平面方程为 2( x 5) 2( y 5) ( z 4) 0 ,即 2 x 2 y z 16 8.求曲线 r ti t 2 j t 3 k 上的这样的点,使该点的切线平行于平面 x 2y z 4 。 解:曲线切向矢量为 dr i 2tj 3t 2 k , ⑴ dt 平面的法矢量为 n i 2 j k ,由题知 n i 2 tj 3t 2k i 2j k 1 t 3t 2 4 得 t1, 1 。将此依次代入⑴式,得 3 |t 1 i j k , | 1 t 3 故所求点为 1,1 1 , 1 , 1 , 1 3 9 27 1 i 1 j 1 k 3 9 27 习题 2 解答 1.说出下列数量场所在的空间区域,并求出其等值面。 1 u 1 ; Ax By Cz D

矢量分析与场论

数学准备:矢量分析与场论第1章 ?The language of transport phenomena is mathematics Ordinary(partial) differential equations Elementary vector analysis.

本章的目的 ?作为传递过程原理的数学准备,通过本章的学习,需要熟悉以下内容: 矢量运算(标量积、矢量积) 三种正交曲线坐标系 直角坐标系下梯度、散度、旋度的定义 标量和矢量的拉普拉斯运算 偏导数、全导数和随体导数的定义

例:用矢量运算形式表示的传递方程 请将下面三个方向上的Navier-Stokes 方程写成统一的矢量运算和随体导数的形式: 2 2 2 22213y x x x x x z u Du u u u u u p X Dt x x y z x x y z ρρμμ????????????=-++++++ ? ?????????????222 222 13y y y y y x z Du u u u u u u p Y Dt y x y z y x y z ρρμμ???????? ????=-++++++ ? ? ???????????? ? 222 22213y x z z z z z u u Du u u u u p Z Dt z x y z z x y z ρρμμ????????????=-++++++ ? ?????????????21()g Du F p u u ρρμμ=-?+?+???

第1章教学目录 1.1 标量、矢量和张量基本概念1.2 正交曲线坐标系 1.2 矢量微分运算

矢量分析与场论 第四版 谢树艺 习题答案 高等教育出版社

矢量分析与场论 第四版 谢树艺 习题答案 高等教育出版社 习题1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面2223x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+,AOC θ∠=,CM 与x 轴的夹角为2θπ-;因OM OC CM =+有 则.2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3232,,t z t y t x ===的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 323 2++= 则其切向矢量为k t tj i dt dr 222++= 模为24221441||t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2sin ,sin 2,cos ,===在t π 4=处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+-

相关主题
文本预览
相关文档 最新文档