当前位置:文档之家› STM32学习之摄像头-OV7725

STM32学习之摄像头-OV7725

STM32学习之摄像头-OV7725

OV7725

bsp_ov7725.c

bsp_ov7725.h

bsp_sccb.c

bsp_sccb.h

Add files to group

stm32f10x_conf.h

Include paths...

OV7725

XCLK 12M

PCLK

HREF --- ---

VSYNC --- ---

QVGA quarter VGA : 320 *240

RGB565 R5 G6 B5 16bit

D2~D9 D2 D9 FIFO AL422B

RE

OE

RCLK

RRST

RRST

WE

WCLK

WRST

WRST

OV7725 FIFO

PCLK <-> WCLK

WEN IO --PD3

( ) ----------> WE

HREF

WRST IO --PB5

RE

OE IO --PA3

RCLK IO --PC5

RRST IO --PA2

ov7725:D2~D9 FIFO

:D0~D7 IO:PB8~PB15

VSYNC IO

JLINK

BOOT ISP

OV7725 ISO

- OV7725.mmap - 2013/10/20 - Caodaping

(完整版)基于STM32的温湿度监测..

《物联网工程设计与实施》项目设计 项目课题:基于STM32的温湿度检测 院系:计算机科学与技术学院 专业:物联网工程 项目经理:于渊学号:123921043 副经理:谢金光学号:123921024 项目成员:李周恒学号:123921002 项目成员:袁桃学号: 123921048 项目成员:颉涛学号: 123921054 项目成员肖青学号: 123921025 项目成员冯锦荣学号: 123921011 项目成员唐敏学号: 123921023

指导教师: 2014 年 12月

目录 摘要 (5) Absract (7) 一.设计目标 (9) 二.设计方案 (9) 三.实验所需器材 (9) 四.设计内容 (9) 4.1 STM32模块 (9) 4.2 AM2302介绍 (11) 4.2.1 产品概述 (11) 4.2.2 应用范围 (12) 4.2.3 产品亮点 (12) 4.2.4 单总线接口定义 (12) 4.2.5 传感器性能 (13) 4.2.6 单总线通信 (14) 4.3 Nokia 5110 介绍 (15) 4.3.1 SPI接口时序写数据/命令 (15) 4.3.2 显示汉字 (16) 4.3.4 显示图形 (16) 4.4 原理图设计 (16) 4.5 PCB板设计 (17) 五.实验软件设计 (18) 5.1 温湿度传感器DHT22的程序 (18) 5.2 湿度显示函数 (21) 5.3主函数程序 (23) 5.3.1显屏程序 (23) 六.作品实物展示 (32) 七.设计总结 (33)

基于STM 32 的温湿度检测 摘要 随着现代社会的高速发展,越来越多的科学技术被应用于农业生产领域。在温室大棚中对温湿度、二氧化碳浓度等外部参数的实时准确的测量和调节更是保证农业高效生产的重要前提。本次课程设计中实现了一个基于STM32F103VET6的智能温湿度检测系统,目的是实现温湿度的采集和显示,温湿度的采集是作为自动化科学中一个必须掌握的检测技术,也是一项比较实用的技术。本次实验主要作了如下几个方面工作:首先通过对实时性、准确性、经济性和可扩展性等四个方向的分析比较之后,选择了STM32F103VE微控制器作为主控芯片和AM2303温湿度传感器来实现对温湿度数据进行采集;在Nokia5110显示屏上显示出温度和湿度,然后详细介绍了各个模块的工作原理和硬件电路设计思路,实现了温湿度数据实时准确的测量;之后阐述了系统各个部分的软件设计思路;最后对系统在实际应用中采集到的数据进行了处理,分析了误差产生的原因,并通过分段线性插值算法对系统非线性误差进行了校准,同未校准时采集的数据相比,校准后的数据准确度更高,稳定性更好。在保证测量效果的基础上,本系统设计中充分考虑到性价比和再次开发周期性等,具有成本低、设计开发方便、通用性强等特点,不仅适用于现代农业生产中,还能用于其它工业控制、机械制造等其它领域,具有一定的市场推广价值。 【关键词】:嵌入式技术,电路设计,STM32,AM2302温湿度采集,Nokia5110 显示屏,程序设计

MINI-STM32 开发板入门教程.

MINI-STM32 开发板入门教程(一) 开发环境建立及其应用 我们常用的 STM32 开发编译环境为 Keil 公司的 MDK (Microcontroller Development Kit) 和 IAR 公司的 EWARM. 在这里我们提供了比较稳定的新版本编译软件下载: MDK3.50 点击此处下载 EWARM 5.40 点击此处下载 限于篇幅, 在我们的教程里面将先以 MDK 下的一个例子来介绍如何使用 MDK 进行嵌入式 应用开发. MDK 安装与配置: 基于 MDK 下的开发中基本的过程: (1) 创建工程; (2) 配置工程; (3) 用 C/C++ 或者汇编语言编写源文件; (4) 编译目标应用程序 (5) 修改源程序中的错误 (6) 测试链接应用程序 ---------------------------------------------------------------- (1) 创建一个工程: 在 uVision 3 主界面中选择 "Project" -> "New uVision Project" 菜单项, 打开一个标准对话框选择好你电脑中的保存目录后, 输入一个你的工程名字后点确认.我们的工程中建了一个名字叫 "NewProject" 的工程. 从设备库中选择目标芯片, 我们的 MINI-STM32 开发板使用的是 STM32F103V8T6, 因此选 中 STMicrocontroller 下对应的芯片: ARM 32-bit Cortex-M3 Microcontroller, 72MHz, 64kB Flash, 20kB SRAM, PLL, Embedded Internal RC 8MHz and 32kHz, Real-Time Clock, Nested Interrupt Controller, Power Saving Modes, JTAG and SWD,

STM32入门教程

前言 一天入门STM32,仅一天的时间,是否有真的这么快。不同的人对入门的理解不一样,这篇一天入门STM32的教程,我们先对入门达成一个共识,如果你有异议,一天入门不了,请不要较真,不要骂街,保持一个工程师该有的修养,默默潜心学习,因为你还有很大的上升空间。 我眼中的入门:(前提是你学过51单片机和C语言) 1、知道参考官方的什么资料来学习,而不是陷入一大堆资料中无从下手。 2、知道如何参考官方的手册和官方的代码来独立写自己的程序,而不是一味的看到人家写的代码就觉得人家很牛逼。 3、消除对STM32的恐惧,消除对库开发的恐惧,学习是一个快乐而富有成就感的过程。

第1章一天入门STM32 本章参考资料:《STM32中文参考手册》《CM3权威指南CnR2》 学习本章时,配合《STM32中文参考手册》GPIO章节一起阅读,效果会更佳,特别是涉及到寄存器说明的部分。 1.151与STM32简介 51是嵌入式学习中一款入门级的精典MCU,因其结构简单,易于教学,且可以通过串口编程而不需要额外的仿真器,所以在教学时被大量采用,至今很多大学在嵌入式教学中用的还是51。51诞生于70年代,属于传统的8位单片机,如今,久经岁月的洗礼,既有其辉煌又有其不足。现在的市场产品竞争激烈,对成本极其敏感,相应地对MCU的要求也更苛刻:功能更多,功耗更低,易用界面和多任务。面对这些要求,51现有的资源就显得得抓襟见肘了。所以无论是高校教学还是市场需求,都急需一款新的MCU来为这个领域注入新的活力。 基于这市场的需求,ARM公司推出了其全新的基于ARMv7架构的32位Cortex-M3微控制器内核。紧随其后,ST(意法半导体)公司就推出了基于Cortex-M3内核的MCU—STM32。STM32凭借其产品线的多样化、极高的性价比、简单易用的库开发方式,迅速在众多Cortex-M3MCU中脱颖而出,成为最闪亮的一颗新星。STM32一上市就迅速占领了中低端MCU市场,受到了市场和工程师的无比青睐,颇有星火燎原之势。 作为一名合格的嵌入式工程师,面对新出现的技术,我们不是充耳不闻,而是要尽快吻合市场的需要,跟上技术的潮流。如今STM32的出现就是一种趋势,一种潮流,我们要做的就是搭上这趟快车,让自己的技术更有竞争力。 1.1.151与STM32架构的区别 我们先普及一个概念,单片机(即MCU)里面有什么。一个人最重要的是大脑,身体的各个部分都在大脑的指挥下工作。MCU跟人体很像,简单来说是由一个最重要的内核加其他外设组成,内核就相当于人的大脑,外设就如人体的各个功能器官。 下面我们来简单介绍下51和STM32的结构。 1.51系统结构 51系统结构框图

用STM32一步一步点亮led灯

STM32之一步一步点亮led (2011-05-09 19:40) 标签: stm32led v3.4MDK 4.12入门分类:stm32 入手stm32以来,一直想快速上手,所以在各大论坛闲逛,各个达人的blog 上学习,正所谓欲速则不达,心急是吃不了热豆腐的!有木有? 最终决定使用st官网的库开发,据大侠们写道使用库可以快速上手,貌似的确如此,一个个教程写的那么好,直接拿过来用就是了。可是那么多个库,聪明的你请告诉到底选择哪一个啊?My God!实话实说,我被这些库折腾了个够!好吧,我最后还是承认最后用的是v3.4的库,是很方便! 切入正题,点亮LED。 硬件:红牛开发板,STM32F103ZET6(144封装). 软件:RealView MDK 4.12 stm32固件库:v3.4 附上自己整理后的库: V3.4_clean.rar 根据官网库自己整理了下,新建了工程模板如下图:(主要参考文章《在 Keil MDK+环境下使用STM32 V3.4库.pdf》)在KeilMDK+环境下使用STM32V3.4库.pdf 入图所示:新建一个目录01_ProLed,建议放在英文路径下,避免不必要的麻烦。将上面的库v3.4解压到此目录,再新建一个project目录,存放工程。 说明: CMSIS:最底层接口。StartUp:系统启动文件。StdPeriph_Lib:stm32外围设

备驱动文件。Project:工程文件。User:用户文件。新建工程步骤:此处略去300字。 简单说明: 1.core_cm3.c/core_cm3.h 该文件是内核访问层的源文件和头文件,查看其中的代码多半是使用汇编语言编写的。在线不甚了解。--摘自《在Keil MDK+环境下使用STM32 V3.4库》 2.stm32f10x.h 该文件是外设访问层的头文件,该文件是最重要的头文件之一。就像51里面的reg51.h一样。例如定义了 CPU是哪种容量的 CPU,中断向量等等。除了这些该头文件还定义了和外设寄存器相关的结构体,例如: 1.typedef struct

基于STM32温控风扇设计

齐齐哈尔大学 综合实践(论文) 题目基于STM32的温控风扇 学院通信与电子工程学院 专业班级 学生姓名 学生学号 指导教师朱磊

摘要:随着科技的日新月异,智能家居逐渐走入普通家庭,风扇作为基本的家用电器也将成为智能家居的一部分。这里介绍的是以STM32单片机为控制单元并结合嵌入式技术设计的一款具有温控调速、液晶显示温度等信息的智能电风扇。经过前期设计、制作和最终的测试得出,该风扇电源稳定性好,操作方便,运行可靠,功能强大,价格低廉,节约能耗,能够满足用户多元化的需求。该风扇具有的人性化设计和低廉的价格很适合普通用户家庭使用。 关键词:STM32单片机电风扇温控调速

目录 摘要............................................................................. 错误!未定义书签。 第1章绪论 (1) 1.1 概述............................................................ 错误!未定义书签。 1.2 设计目的及应用 (1) 第2章温控电风扇方案论证 (2) 2.1 温度传感器的选择 (2) 2.2 控制核心的选择 (2) 2.3 显示电路的选择 (3) 2.4 调速方式的选择 (3) 第3章温控电风扇硬件设计 (5) 3.1 硬件系统总体设计 (5) 3.2 本系统各器件简介 (5) 3.2.1 DS18B20简介 (5) 3.2.2 STM32简介 (7) 3.2.3 LCD1602液晶屏简介 (8) 3.3 各部分电路设计 (9) 3.3.1 温度传感器的电路 (9) 3.3.2 LCD1602液晶屏显示电路 (10) 第4章温控电风扇软件设计 (11) 4.1 软件系统总体设计 (11) 4.2 系统初始化程序设计 (11) 4.3 温度采集与显示程序设计..................... 1错误!未定义书签。结论 (14) 参考文献 (15) 附录1 (16) 附录2 (25)

基于stm32温湿度监控装置设计(1)

王江红(1993-),男,云南曲靖人,汉族,学生,在读本科,所学专业通信工程 基于stm32的温湿度监控系统设计 王江红胡湘娟阳泳 邵阳学院信息工程系湖南邵阳422004 摘要:温湿度的监测对于当前控制室内环境,改善室内环境起着重要的作用,为了提高室内用户的舒适度,一般都会对室内的温湿度进行监控,通过监测温湿度的变化情况来确定下一步的动作,例如在温室中严格监控室内温度,使得温室内的植物能到最合适的生存环境。本文就基于stm32的温湿度监控系统设计问题进行了全面分析,通过其有效的提高温度的时效性管理意义重大。 关键字:stm32;温湿度;ucosII系统;监控系统设计 此次的基于STM32的温湿度监控系统设计主要是32位的单片机为主控芯片,DHT11为温湿度监测装置,搭载的是ucosII操作系统,显示设备为主控ITL9438的彩屏,通过DHT11采集的信息对经过单片机的内部程序的处理,将其以数字的形式显示在彩屏上,并且同时根据单片机内部的温度设定值进行相应的动作,实现的室内温湿度的智能控制。 1、温湿度监控系统设计 1.1、温湿度监控系统硬件设计 系统主控芯片为Stm32F103ZET6,除了必须的Stm32单片机正常的驱动的电路之外,彩屏为使用的是已经做成模块的ITL9438彩屏,而采集模块则是使用的DHT11,如图所示为使用的DHT11的引脚图,可得知只要通过采集Dout引脚的输出的电平变化,查看数据手册,根据DHT11的时序图写出相应的驱动程序,驱动DHT11温湿度传感器。彩屏的程序可以直接使用的屏幕厂家写好的程序,移植到Stm32上既可,而通过将Dout引脚上的高低电平变化,进行相应的数据处理可以将温湿度数据已数字的形式显现在彩屏上,通过内部的程序根据比较当前的温湿度值与设定的参数值进行比较,使得进行下一步的温湿度调节动作,通过向外部电路发送信号,例如温度高了,打开排风机降低室内的温度等措施优先对温度的控制,这与空调的原理类似,但是系统比空调电路简捷的多。 DHT11数字湿温度传感器采用单总线数据格式,单个数据引脚端口完成输入输出双向传输。其数据包由5Byte(40Bit)组成。数据分小数部分和整数部分,一次完整的数据传输为40bit,高位先出。DHT11的数据格式为:8bit湿度整数数据+8bit湿度小数数据+8bit温度整数数据+8bit温度小数数据+8bit校验和。其中校验和数据为前四个字节相加,传感器数据输出的是未编码的二进制数据。数据(湿度、 温度、整数、小数)之间应该分开处理。 1.2、温湿度监控系统软件设计 此次的温湿度监控系统软件设计主要实在keil4中完成,操作系统为UCOSII,将UCOSII系统移植到当前单片机上,并且建立相应的任务堆栈,通过调用任务堆栈的形式实现的对系统运行,将DHT11的Dout引脚与PG11连接,PG11引脚设置的为输入模式,用于采集Dout引脚的电平变化。开机的时候先检测是否有DHT11存在,如果没有,则提示错误。只有在检测到DHT11之后才开始读取温湿度值,并显示在LCD上,如果发现了DHT11,则程序每隔100ms左右读取一次数据,并把温湿度显示在LCD上。同时会使用一个LED来指示程序运行状况。 温湿度监控系统的软件设计主要分为的LED驱动程序、LCD驱动程序、DHT11驱动程

STM32入门基本知识

STM32学前班教程之一:选择他的理由 经过几天的学习,基本掌握了STM32的调试环境和一些基本知识。想拿出来与大家共享,笨教程本着最大限度简化删减STM32入门的过程的思想,会把我的整个入门前的工作推荐给大家。就算是给网上的众多教程、笔记的一种补充吧,所以叫学前班教程。其中涉及产品一律隐去来源和品牌,以防广告之嫌。全部汉字内容为个人笔记。所有相关参考资料也全部列出。:lol 教程会分几篇,因为太长啦。今天先来说说为什么是它——我选择STM32的原因。 我对未来的规划是以功能性为主的,在功能和面积之间做以平衡是我的首要选择,而把运算放在第二位,这根我的专业有关系。里面的运算其实并不复杂,在入门阶段想尽量减少所接触的东西。 不过说实话,对DSP的外设并和开发环境不满意,这是为什么STM32一出就转向的原因。下面是我自己做过的两块DSP28的全功能最小系统板,在做这两块板子的过程中发现要想尽力缩小DSP的面积实在不容易(目前只能达到50mm×45mm,这还是没有其他器件的情况下),尤其是双电源的供电方式和的电源让人很头疼。 后来因为一个项目,接触了LPC2148并做了一块板子,发现小型的ARM7在外设够用的情况下其实很不错,于是开始搜集相关芯片资料,也同时对小面积的AVR和51都进行了大致的比较,这个时候发现了CortexM3的STM32,比2148拥有更丰富和灵活的外设,性能几乎是2148两倍(按照MIPS值计算)。正好2148我还没上手,就直接转了这款STM32F103。 与2811相比较(核心供电情况下),135MHz×1MIPS。现在用STM32F103,72MHz×,性能是DSP的66%,STM32F103R型(64管脚)芯片面积只有2811的51%,STM32F103C型(48管脚)面积是2811的25%,最大功耗是DSP的20%,单片价格是DSP的30%。且有更多的串口,CAP和PWM,这是有用的。高端型号有SDIO,理论上比SPI速度快。 由以上比较,准备将未来的拥有操作系统的高端应用交给DSP的新型浮点型单片机28335,而将所有紧凑型小型、微型应用交给STM32。 STM32学前班教程:怎么开发 sw笨笨的STM32学前班教程之二:怎么开发目前手头的入门阶段使用的开发器概述 该产品为简易STM32调试器和DEMO板一体化的调试学习设备,价格在一百多块。 2、硬件配置

基于stm32的温度控制

摘要 当前快速成形(RP)技术领域,基于喷射技术的“新一代RP技术”已经取代基于激光技术的“传统的RP技术”成为了主流;快速制造的概念已经提出并得到了广泛地使用。熔融沉积成型(FDM)就是当前使用最广泛的一种基于喷射技术的RP 技术。 本文主要对FDM温度控制系统进行了深入的分析和研究。温度测控在食品卫生、医疗化工等工业领域具有广泛的应用。随着传感器技术、微电子技术、单片机技术的不断发展,为智能温度测控系统测控功能的完善、测控精度的提高和抗干扰能力的增强等提供了条件。本系统采用的STM32F103C8T6单片机是一高性能的32位机,具有丰富的硬件资源和非常强的抗干扰能力,特别适合构成智能测控仪表和工业测控系统。本系统对STM32F103C8T6单片机硬件资源进行了开发,采用K型热敏电阻实现对温度信号的检测,充分利用单片机的硬件资源,以非常小的硬件投入,实现了对温度信号的精确检测与控制。 文中首先阐述了温度控制的必要性,温度是工业对象中的主要被控参数之一,在冶金、化工、机械、食品等各类工业中,广泛使用各种加热炉、烘箱、恒温箱等,它们均需对温度进行控制,成型室及喷头温度对成型件精度都有很大影响。然后详细讲解了所设计的可控硅调功温度控制系统,系统采用STM32F103C8T6单片机作微控制器构建数字温度控制器,调节双向可控硅的导通角,控制电压波形,实现负载两端有效电压可变,以控制加热棒的加热功率,使温度保持在设定值。系统主要包括:数据的采集,处理,输出,系统和上位机的通讯,人机交互部分。该系统成本低,精度高,实现方便。 该系统加热器温度控制采用模糊PID控制。模糊PID控制的采用能够在控制过程中根据预先设定好的控制规律不停地自动调整控制量以使被控系统朝着设定的平衡状态过渡。 关键词:熔融沉积成型(FDM);STM32;温度控制;TCA785

STM32F103RCT6使用说明

STM32开发板使用手册 风帆 STM32开发板是风帆电子为初学者学习STM32 Cortex M3 系列ARM 而设计的学习板。以STM32F103RCT6芯片为核心,配套2.4/2.8寸彩色TFT屏模块,板载UART、USB、ADC电压调节、按键、JTAG接口、彩屏接口、流水灯、SD卡接口、IO引出口等多种硬件资源。

JTAG 口 2个LED 灯 GPIOA 引出1O USB 串口1 DS10B20预留 HS0038红外接收头 红外温度传感器连接头 GPIOB@C 引出IO OLED@LCD 共用接口 STM32F103RCT6 2.4/2.8寸LCD 接口 485芯片 RS485接口 1:A; 3:B NRF24L01 模块接口 W25Q1 6 FLASH 芯片 SD 卡接口(在背面) JF24C 模块预留接口 GPIO C@D 引出IO 蜂鸣器跳线 PS/2鼠标键盘接口 三个按 键: WAKEUP KEY0 KEY1 RESET 按键 Rs232接口 电源开关 USB 接口 电源指示灯 自恢复保险丝 MAX232 电源芯片 24c02 3.3V 、5V 电 源输出; 线序为: GND/3.3V GND/5V BOOT 设置 线序为: GND /GND BOOT1/BOOT0 3.3V/3.3V

此板子不管硬件还是软件完全无缝接兼容正点原子的MINSTM32,并对MINSTM32进行了完美的升级,让我们用最少的钱做更多的事,具体升级的部分包括: 1、C PU的升级 利用ST意法半导体的CPU兼容性强的优点,此板采用比 STM32F103RBT6性能更强、且完全兼容的的STM32F103RCT6升级 CPU,把完美的MINNI STM板子的功能发挥到极致,具体2个CPU 的主要资源对比如下: 可以看出,FLASH增加了一倍,达到256K,RAM也增加了1倍,让 我们不用再为FLASH\RAM小而烦恼,使我们的存储空间更为强大; 增加了一个16位普通IC/OC/PWM),2个16位基本(IC/OC/PWM),1个STI,2个USART,这里比STM32F103RB还多了一个DAC通 道,这个STM32F103RB是没有的

基于STM32单片机的智能温度控制系统的设计

0 引言 温度是表征物体冷热程度的物理量,是工农业生产过程 中一个普遍应用的参数。因此,温度控制是提高生产效率和 产品质量的重要保证。温度控制的发展引入单片机后,可以 降低对某些硬件电路的要求,实现对温度的精确控制。本文 设计的温度控制系统主要目标是实现温度的设定值显示、实 际值实时测量及显示,通过单片机连接的温度调节装置由软 件与硬件电路配合来实现温度实时控制;显示可由软件控制 在LCD1602中实现;比较采集温度与设定阈值的大小,然后 进行循环控制调控,做出降温或升温处理;同时也可根据判 断发出警报,用以提高系统的安全性[1-5]。图1 系统总体框图 1 系统总体设计本设计以STM32F103RTC6单片机为核心对温度进行控制,使被控对象的温度应稳定在指定数值上,允许有 1℃的误差,按键输入设定温度值,LCD1602显示实际温度值和设定温度值。2 系统硬件设计 图2 系统硬件电路图 display , PTC heater and semiconductor cooler, and realizes the temperature control on the hardware equipment of the self-made analog small constant temperature box? Experimental results show that the design has the advantages of convenient operation, accurate temperature control and intelligence?Keywords: Temperature control ; STM32;Intelligent 基金项目:湖北省教育厅科学技术研究项目(B2018448)。

基于STM32F103的网络温度报警器物联网全解

基于STM32F103的网络温度报警器设计 作品名:基于STM32F103的网络温度报警器设计 作者:陈华健贾从含 时间:2015年6月17日

目录: 1.引言 (1) 2.利用普通二极管PN 结测试环境温度原理 (2) 3.器件的选择和芯片的介绍 (4) 4.UC/OS系统移植 (6) 5.文件系统的移植与文件系统基本函数的功能 (16) 6.Uip及socket实现方法 (27)

1.引言 近年来随着科技的飞速发展,嵌入式的应用正在不断深入,同时带动传统控制检测技术日益更新。在实时检测和自动控制的嵌入式应用系统中,嵌入式往往作为一个核心部件来使用,仅嵌入式方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。 本系统使用STM32F103实现了接收由上位机通过TCP 协议发出的温度报警阈值信号,并存于SD片卡中。单片机利用普通二极管的PN 结测试环境温度,每30s 采集一次,将采集到的温度信息补充上时间(时、分、秒、毫秒)标注存储在存储芯片中。并将报警时的温度值与当前时间的温度进行比较,当前温度大于阀值温度时,通过发光二极管或蜂鸣器报警。上位机通过TCP,向单片机发送“Read_Info”命令后,单片机能将SD 卡中存储的所有数据发到PC 机的串口助手中;数据格式美观、易懂。 本系统采用普通二极管PN节的温度特性来测量环境温度不失为一种低成本而又容易实现的环境温度测量方式。使用STM32自带的ADC模块进一步降低了成本和设计难度。采用大容量存储芯片可以长时采集环境数据,并且在采集到的温度补充上时间信息使数据更加可信,同时移植了文件系统方便文件在WINDOWS下的读取和处理。 本系统采用了无线传输的方式配合可靠的电源设备或太阳能设备可以在室外持续的传输回温度信息或其他的气象数据(需配合适当的传感器),减少了人工成本,并且更加适应于野外大规模投放接点。

STM32教程(1)

第一部分开发板介绍 1.1 STM32开发板简介 开发板配置: ●CPU主芯片是STM32F103VCT6,主频72MHz,256KB FLASH ,48KB RAM; ●3个按键,可实现中断或查询方式判断是否有键按下; ●4个发光二极管LED,可进行流水灯或花样显示; ●1个无源蜂鸣器,可用PWM驱动; ●1个电位器,可配合内部AD进行AD转换; ●1个RS232串行通信接口,可使开发板与PC机进行通信; ●1个基于SPI串行总线的触摸屏转换接口芯片,可进行触屏操作; ●1个基于IIC串行总线的EEPROM,可进行数据存储; ●1个基于CPU片内SDIO的TF卡接口,可进行数据读写; ●1个FSMC控制的2.83英寸TFT液晶屏,可进行图片文字显示; ●1个蓝牙模块,可使开发板与PC机进行通信; ●1个USBmin2.0接口为开发板供电; ●所有I/O口引出,可通过跳线自行配置和自制外围模块连接;

下面介绍一下STN32开发板的各个部分。 1、LED灯 STM32开发板有4个LED灯,它们在开发板上的标号分别为LED1、LED2、LED3、LED4。在调试代码的时候,使用LED来指示程序状态,是非常不错的辅助调试方法。 2、按键 STM32开发板有三个普通按键,它们在开发板上的标号分别为KEY1、KEY2、KEY3。可以用于人机交互的输入,三个按键通过跳线帽连接到STM32的开发板的IO口上。 3、电源指示灯 开发板上有一个蓝色电源指示灯,它在开发板上的标号为LED5(POWER)。用于指示电源状态。该开发板通过USB供电,在该电源开启的情况下,指示灯亮,否则不亮。通过这个LED灯判断开发板的上电情况。 4、蓝牙 开发板上有一个蓝牙模块,它在开发板上的标号为Bluetooth。用于开发板与电脑进行无线通讯。 5、SD卡接口 SD卡接口在开发板上的标号为TF_Card。SD卡是最常见的存储设备,是很多数码设备的存储媒介,比如数码相框、数码相机、MP5等。STM32开发板自带了SD卡接口,可用于SD卡试验,方便大家学习SD卡。 6、AT24C01 EEPROM EEPROM型号为A T24C01,用于掉电数据保存。因为STM32内部没有EEPROM,所以开发板外扩了24C01,用于存储重要的数据,也可以用来做IIC实验,及其他应用。 7、RS232接口 RS232在开发板上的标号为J2。用于与电脑进行通信,也可以用来做USART实验。 8、滑动变阻器 滑动变阻器在开发板上的标号为ADJ_RES。通过调节滑动变阻器来改变电压值,可以用来做AD转换的实验。 9、蜂鸣器 蜂鸣器在开发板上的标号为Buzzer。通过调节定时器产生的PWM波的占空比来改变蜂鸣器的声音,可以用来做PWM实验,及其他应用。 10、液晶屏 触摸屏在开发板上的标号为TFT。用来显示一些图片和汉字。可以用来学习触摸屏的一些实验。触摸屏都需要一个AD转换器,STM32开发板触摸屏控制芯片为TSC2046。 11、引出IO口 开发板有很多引出IO口,可以通过跳线帽选择是连接各部分的功能模块还是用作引出IO 口,引出的IO口方便大家使用,可以连接外部器件。 1.2 STM32开发板硬件详解 本节介绍STM32开发板的各部分硬件,让大家对开发板的各部分硬件原理有个了解。

基于STM32的温度测量系统

基于STM32的温度测量系统 梁栋 (德州学院物理与电子信息学院,山东德州253023) 摘要:温度是日常生活和农业生产中的一个重要参数,传统的温度计有反应缓慢,测量精度不高的和读数不方便等缺点,此外,通常需要人工去观测温度,比较繁琐,因而采用电子技术的温度测量就显得很有意义了。 面对电子信息技术的进步,生成了各种形式的温度测量系统。本文设计了一个基于以STM32为核心的温度测量与无线传送的系统,温度信息采集使用数字化温度传感器DS18B20,无线传输使用ATK-HC05蓝牙模块的智能测温系统。 关键词 STM32; DS18B20; TFTLCD;智能测温系统 1 绪论 在现代社会的生产生活中,人们对于产品的精度要求越来越高,而温度是人们在生产生活中十分关注的参数,因此,对温度的测量以及监控就显得十分重要。在某些行业中对温度的要求较高,由于工作环境温度的偏差进而引发事故。如化工业中做酶的发酵,必须时刻了解所发酵酶的温度才可以得到所需酶;文物的保护同样也离不开温度的采集,不仅在考古文物的出土时间上,还是在档案馆和纪念馆中,温度的控制也是藏品保存关键,所以温度的检测对其也是具有重要意义的;另外大型机房的温度的采集,超出此范围会影响服务器或系统的正常工作等等。传统方式监控温度往往很耗费人力,而且实时性差。本文就设计了一个基于STM32的温度测量系统,在测量温度的同时能实现无线传输与控制。 STM32RBT6具有较低的价格、较高的测量精度、便捷的操作,同时在编程方面STM32也具有和其他单片机的优势之处,如51要求从基层编程,而STM32所有的初始化和一些驱动的程序都是以模板的形式提供给开发者,在此开发者只需要了些其他的模块功能和工作方式和少量的语法知识便可以进行编程,此优势不但节约了时间,也为STM32的发展做出了强有力的铺垫,而且STM32目前是刚刚被作为主流开发的单片机,所以其前景是无可估量的,这次毕业设计也是看好了其优越的发展趋势来选择的。 无线传输采用蓝牙技术,将采集的温度传输至终端,以此实现远程监控。利用“蓝牙”技术,能够在10米的半径范围内实现单点对多点的无线数据传输,其数据传输带宽可达1Mbps。综合考虑,在设计硬件时选择的软件是Altium Designer,该软件集成了电路仿真、原理图设计、信号完整性设计、分析等诸多功能,使用起来很方便。通过原理图的绘制,

芯达STM32入门系列教程之三《如何使用J-Flash调试》

STM32入门系列教程如何使用J-Flash调试 Revision0.01 (2010-04-12)

对初学者来说,要进行STM32的程序下载调试,一般有三种方法: (1)使用SEGGER J-Flash(J-Link)下载程序到闪存中运行; (2)使用串口ISP来下载HEX文件到CPU中运行; (3)J-Link+MDK组合,来在线调试程序(可下载、调试)。 本文档讲述如何在芯达STM32开发板上使用SEGGER J-Flash下载HEX文件。而其他两种方法,我们将在文档《如何使用MDK+J-Link调试》、以及《如何使用STM32-ISP下载调试》中详细说明。 先来解释SEGGER。实际上,大家更为熟悉的ARM仿真器J-Link,就是由SEGGER公司开发的。J-Link是SEGGER为支持仿真ARM内核芯片推出的JTAG 仿真器。 不管什么CPU的仿真器,都需要安装其相应的驱动后才能使用。J-Link也不例外,它的驱动软件可以去官方网站:https://www.doczj.com/doc/908306997.html,下载最新版本。这里使用的驱动软件版本是V4.08l,该驱动的安装非常简单,请参考文档《如何安装J-Link驱动软件》。 安装完毕,会出现如下两个图标: 现在开始我们的工作吧! 步骤一先进行设备连接操作。芯达STM开发板的JTAG口(开发板面朝上,最顶端有一个JTAG20pin的插口),与J-Link V8仿真器的输出排线连接,J-Link另一头的USB插口则插在电脑的USB口上。这时,J-Link的指示灯开始闪烁,并保持“点亮”的状态。 注意:大家购买J-Link仿真器的时候,JTAG接口要求是标准的20pin的2.54间距的针座。否则需要转接卡进行JTAG接口的转换。 步骤二进入PC的桌面,点击上图左边的图标:J-Flash ARM V4.081,出现如下界面:

(完整版)STM32F103通用教程

STM32F103_使用心得 IO端口输入输出模式设置:...........; Delay延时函数:..............; IO端口使用总结:...............; IO口时钟配置:................; 初始化IO口参数:...............; 注意:时钟使能之后操作IO口才有效!......; IO端口输出高低电平函数:...........; IO的输入 IO端口输入输出模式设置: (1) Delay延时函数: (2) IO端口使用总结: (2) IO口时钟配置: (2) 初始化IO口参数: (2) 注意:时钟使能之后操作IO口才有效! (2) IO端口输出高低电平函数: (2) IO的输入和输出宏定义方式: (3) 读取某个IO的电平函数: (3) IO口方向切换成双向 (3) IO 口外部中断的一般步骤: (3) 内部ADC使用总结: (4) LCDTFT函数使用大全 (5) TFTLCD使用注意点: (5)

IO端口宏定义和使用方法: (6) Keil使用心得: (6) ucGUI移植 (6) DDS AD9850测试程序: (6) ADC 使用小结: (7) ADC测试程序: (9) DAC—tlv5638测试程序 (9) 红外测试程序: (9) DMA使用心得: (9) 通用定时器使用: (9) BUG发现: (10) 编程总结: (10) 时钟总结: (10) 汉字显示(外部SD卡字库): (11) 字符、汉字显示(内部FLASH) (12) 图片显示: (16) 触摸屏: (17) 引脚连接: (19) IO端口输入输出模式设置: Delay延时函数: delay_ms(u16 nms); delay_us(u32 nus); IO端口使用总结: 1)使能IO 口时钟。调用函数为RCC_APB2PeriphClockCmd()。 2)初始化IO 参数。调用函数GPIO_Init();

STM32F103编程入门

STM32F103单片机编程入门 一款单片机入门,至少四样:时钟、端口、定时、串口、中断。 系统时钟 RCC 系统内部有8M_RC晶振和32678Hz_RC晶振有大约2%的温飘。当外部有8M 晶振时,自动选择外部晶振,失效时自动切换成内部。程序自动倍频成72M。 如果用于通信最好加个外部晶振。判断是否使用外部晶振的方法:短接外部晶 振引脚观察工作情况。 分为两个桥,对应不同的外设,每个外设又可以单独设定时钟。 初步学习,先不用单独设定,均选用系统时钟72M。可根据情况做一步分频。 用到某外设时,配置RCC(打开外设时钟),一般只有一句指令。一般临时查找。呵呵,我也没找到好办法。 GPIO:RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOC , ENABLE); USART:RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); Timer2:RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 , ENABLE); 端口GPIO 端口配置思路: 1,先定义一个结构体配置成员参数值, 类型是GPIO_InitTypeDef,下划线是结构体名;结构体名是GPIO_InitStructure:名称可以自定义。在后面利用参数初始化函数时要一致。 2,打开相对应的端口时钟RCC。 3,声明要配置的管脚,可以用“|”复选 4,配置模式,4种输入,4种输出 5,配置管脚频率,一般都是50Mhz 6,最后调用函数GPIO_Init(GPIOA, &GPIO_InitStructure);第2个参数是,结构体地址指针。 Eg: GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOC , ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode =GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &GPIO_InitStructure); 一、串口 USART 串口配置思路: 1,定义结构体,类型是USART_InitTypeDef; 2,打开串口时钟,可以选择和端口GPIO一起 3,设置波特率,—————省去了复杂的烦人的计算 4,设置字长。8位?9位? 5,设置停止位。1位?2位? 6,设置校验位,奇偶?无? 7,设置硬件流(调制解调器用)————用不到设None就行 8,串口工作模式:收?发?都有? 9,调用函数USART_Init(USART1, &USART_InitStructure); 配置串口 10,开启串口中断USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);或USART_IT_TXE, ENABLE);收发中断的使能。 11,中断响应函数void USART1_IRQHandler(void) 12,取出缓存数据data=USART_ReceiveData(USART1);读操作自动清零串口接 受标志位。 13,发送数据USART_SendData(USART2,FromScreen[Ua1])和 while(USART_GetFlagStatus(USART2, USART_FLAG_TXE) == RESET);等待发送 完成(寄存器非空)。 Eg: USART_InitTypeDef USART_InitStructure;

基于STM32F103的恒温系统的设计.docx

. 中国矿业大学计算机学院2013级本科生课程报告 课程名称信科专业综合实践 报告时间2016.09.20 学生姓名张谊坤 学号08133367 专业电子信息科学与技术 任课教师王凯

任课教师评语 任课教师评语(①对课程基础理论的掌握;②对课程知识应用能力的评价;③对课程报告相关实验、作品、软件等成果的评价;④课程学习态度和上课纪律;⑤课程成果和报告工作量;⑥总体评价和成绩;⑦存在问题等): 成绩:任课教师签字: 年月日

摘要 针对目前温度控制在生产生活中被广泛应用,而传统的温度控制系统是由功能繁杂的大量分离器件构成,为了节约成本、提高系统的可靠性,本文设计了一种基于 STM32F103T6 的温度控制系统。本设计是基于 DS18B20 的温度控制系统,以STM32F103ZET6 为控制系统核心,通过嵌入式系统设计实现对温度的显示和控制功能。 在该系统中,为了减小干扰的影响,用均值滤波算法对采样数据进行处理之后再进行温度 判定等一系列操作的依据。设计中,基本上实现了该系统的功能,通过 DS18B20 采集温度数据,使用 LCD 屏幕来显示相关的信息,能够通过加热和降温将温度控制在恒定的范围内,并可以手动设置恒温范围,温度超出限制后会有声光报警。 关键词: STM32F103,均值滤波,恒温控制,DS18B20

. 目录 1 绪论................................................................................................................................................................................. 1.1 选题的背景及意义 (1) 1.2 设计思想................................................................................................................................................................. 1.3 实现的功能 (2) 2 硬件设计........................................................................................................................................................................ 2.1 硬件平台................................................................................................................................................................. 2.2 硬件设计模块图 (3) 2.3 温度传感器DS18B20 (4) 2.4 LCD 屏幕 (8) 2.5 DC 5V 散热风扇 (10) 2.6 加热片 (10) 3 软件设计 (11) 3.1 软件平台 (11) 3.2 软件设计模块图 (12) 3.3 主程序流程图 (12) 3.4 子程序流程图 (14) 3.4.1 恒温控制子程序流程图 (14) 3.4.2 flag 标志设置子程序流程图 (15) 3.4.3 温度设置子程序流程图 (16) 3.4.4 温度读取函数流程图 (17) 3.4.5 均值滤波程序流程图 (18) 3.4.6 显示函数程序流程图 (19) 4 调试分析 (19) 4.1 硬件调试 (20) 4.2 软件测试 (20) 4.3 功能实现分析 (21) 5 实验总结 (21) 参考文献 (23)

相关主题
文本预览
相关文档 最新文档