当前位置:文档之家› 【步步高】2014届高考数学一轮复习 习题课数列求和备考练习 苏教版

【步步高】2014届高考数学一轮复习 习题课数列求和备考练习 苏教版

【步步高】2014届高考数学一轮复习 习题课数列求和备考练习 苏教版
【步步高】2014届高考数学一轮复习 习题课数列求和备考练习 苏教版

习题课 数列求和

一、基础过关

1.数列12·5,15·8,18·11,…,1

3n -1·3n +2,…的前n 项和为________.

2.已知数列{a n }的通项a n =2n +1,由b n =a 1+a 2+a 3+…+a n

n

所确定的数列{b n }的前n 项之

和是________.

3.设数列1,(1+2),(1+2+4),…,(1+2+22

+…+2

n -1

)的前m 项和为2 036,则m 的

值为________.

4.若1+3+5+…+2x -111·2+12·3+13·4+…+1x x +1=132 (x ∈N *

),则x =________.

5.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)

n -1

(4n -3),则S 15+S 22-

S 31的值是________.

6.在100内所有能被3整除但不能被7整除的正整数之和是________. 7.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;

(2)令b n =1a 2n -1(n ∈N *

),求数列{b n }的前n 项和T n .

8.已知数列{a n }满足a 1=1,a n +1=2a n +1. (1)求证:数列{a n +1}是等比数列; (2)求数列{a n }的通项公式a n 和前n 项和S n . 二、能力提升

9.数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么

a n =________.

10.数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=1

3

S n (n ≥1),则a n =____________.

11.在数列{a n }中,a 1=2,a n +1=a n +ln ? ??

??1+1n ,则a n =________.

12.设数列{a n }满足a 1=2,a n +1-a n =3·2

2n -1

.

(1)求数列{a n }的通项公式;

(2)令b n =na n ,求数列{b n }的前n 项和S n . 三、探究与拓展

13.等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的

任何两个数不在下表的同一列.

(1)求数列{a n }的通项公式;

(2)若数列{b n }满足:b n =a n +(-1)n

ln a n ,求数列{b n }的前n 项和S n . 1.n 6n +4 2.12n (n +5) 3.10 4.11 5.-76 6.1 473 7.解 (1)设等差数列{a n }的首项为a 1,公差为d . 因为a 3=7,a 5+a 7=26,

所以?????

a 1+2d =7,2a 1

+10d =26,

解得?

??

??

a 1=3,d =2.

所以a n =3+2(n -1)=2n +1,

S n =3n +n n -12×2=n 2

+2n .

所以,a n =2n +1,

S n =n 2+2n .

(2)由(1)知a n =2n +1,

所以b n =1a 2n -1=1

2n +12-1

=14·1n n +1 =14·? ??

??1

n -1n +1, 所以T n =14·(1-12+12-13+…+1n -1

n +1)

=14·(1-1n +1)=n 4n +1, 即数列{b n }的前n 项和T n =

n

4n +1.

8.(1)证明 ∵a n +1=2a n +1,

∴a n +1+1a n +1=2a n +1+1a n +1=2a n +2a n +1=2a n +1a n +1=2, ∴数列{a n }是等比数列,公比为2,首项为a 1+1=2. (2)解 由(1)知{a n +1}为等比数列, ∴a n +1=(a 1+1)·2n -1

=2n

∴a n =2n

-1. ∴S n =a 1+a 2+…+a n

=(21

-1)+(22

-1)+(23

-1)+...+(2n -1)=(21+22+ (2)

)-n

=21-2n

1-2-n =2n +1-n -2.

9.2n

-1

10.????

?

1, n =113·? ??

??43n -2

, n ≥2

11.2+ln n

12.解 (1)由已知,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(2

2n -1

+2

2n -3

+…+2)+2=2

2(n +1)-1

.

而a 1=2,符合上式,

所以数列{a n }的通项公式为a n =22n -1

.

(2)由b n =na n =n ·2

2n -1

S n =1·2+2·23+3·25+…+n ·22n -1,①

从而22

·S n =1·23

+2·25

+3·27

+…+n ·22n +1

.② ①-②得(1-22

)S n =2+23

+25

+…+2

2n -1

-n ·2

2n +1

即S n =19[(3n -1)22n +1

+2].

13.解 (1)当a 1=3时,不合题意;

当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意; 因此a 1=2,a 2=6,a 3=18. 所以公比q =3. 故a n =2·3n -1

.

(2)因为b n =a n +(-1)n

ln a n

=2·3n -1+(-1)n ln(2·3

n -1

)

=2·3n -1+(-1)n [ln 2+(n -1)ln 3]

=2·3

n -1

+(-1)n

(ln 2-ln 3)+(-1)n

n ln 3,

所以S n =2(1+3+…+3n -1

)+[-1+1-1+…+(-1)n

](ln 2-ln 3)+[-1+2-3+…

+(-1)n

n ]ln 3

所以当n 为偶数时,

S n =2×1-3n

1-3+n 2ln 3=3n

+n 2

ln 3-1;

当n 为奇数时,

S n =2×1-3n

1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n

-n -12ln 3-ln 2-1.

综上所述,S n =

?????

3n +n

2ln 3-1,n 为偶数,3n

-n -12ln 3-ln 2-1,n 为奇数.

2019年高考数学高频考点专题43数列数列的求和4分组求和倒序相加法 文数(含解析)

专题43 数列 数列的求和4 ( 分组求和、倒序相加法) 【考点讲解】 一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法. 考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述: 求数列前n 项和的基本方法 (1)直接用等差、等比数列的求和公式求和; 等差:; 等比: 公比是字母时需要讨论. (理)无穷递缩等比数列时,q a S -= 11 (2)掌握一些常见的数列的前n 项和公式: ; ; ; ; (3)倒序相加法求和:如果一个数列 {}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前n 项和即可用倒序相加法. (4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么

这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =?,其中{}n a 、 {}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合. 2.关注相减的项数及没有参与相减的项的保留. (5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n = 的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和. 形如: n n b a +其中, (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类 型,可采用两项合并求解. 合并求和:如求 的和. (7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项: ; . 【真题分析】

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高考数学题型全归纳:数列求和的若干常用方法含答案

数列求和的若干常用方法 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。 一、分组求和法 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1.数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311* +∈+==N n b a b b n n n .(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n。 解析:(Ⅰ)由12,,1211-=∴∈-=++*n n n n a S N n a S , 两式相减得:,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同, ,21=∴+n n a a 同定义知}{n a 是首项为1,公比为2的等比数列.(Ⅱ),22,211111-+-+-=-+==n n n n n n n n b b b b a ,2,2,2234123012=-=-=-b b b b b b ,221--=-n n n b b 等式左、右两边分别相加得: ,222 121322211 2101+=--+=++++=---n n n n b b n T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴-- =.12222 121-+=+--n n n n 例2.已知等差数列{}n a 的首项为1,前10项的和为145,求:. 242n a a a +++ 解析:首先由31452 91010110=?=??+=d d a S 则:6223221)21(232)222(32 2323)1(1224221--?=---=-+++=+++∴-?=?-=-+=+n n n a a a a n d n a a n n n n n n n 二、裂项求和法

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

数列的通项公式与求和知识点及题型归纳总结

数列的通项公式与求和知识点及题型归纳总结 知识点精讲 一、基本概念 (1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法. (2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列 的通项公式. 注:①并非所有的数列都有通项公式; ②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式. 题型归纳及思路提示 题型1 数列通项公式的求解 思路提示 常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法 根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a ②叠乘法:形如1()n n a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a ③构造辅助数列:通过变换递推公式,将非等差(等比)数列 构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法. 利用n S 与n a 的关系求解 形如 1(,)()n n n f S S g a -=的关系,求其通项公式,可依据 1* 1(1)(2,) n n n S n a S S n n N -=? =?-≥∈?,求出n a 观察法 观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n -或者1 (1) n -- 部分.②考虑各项的变化 规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2 n 、{}2n 与(1) n -有 关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式: (1)325374 ,,,,,,;751381911 - --L

数列求和高考专题

数列求和高考专题 1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328 433 n n n T +-=?+. 【解析】 (II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=?,有()221314n n n a b n -=-?, 故()23 245484314n n T n =?+?+?+ +-?, ()()23414245484344314n n n T n n +=?+?+?+ +-?+-?, 上述两式相减,得()2 3 1324343434314n n n T n +-=?+?+?+ +?--?

( )()()1 112144314 14 3248.n n n n n ++?-= ---?-=--?- 得1328 433 n n n T +-= ?+. 所以,数列221{}n n a b -的前n 项和为 1328 433 n n +-?+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++ ++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”; (2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析 (2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,① 当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③ 2314n n n a a a ++++=- ()1n n a a -+,④ 将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,, a a a 是等差数列,设其公差为'd .

数列求和方法及典型例题

数列求和方法及典型例题 1.基本数列的前n 项和 ⑴ 等差数列{}n a 的前n 项和:n S ???? ??????+?-++=n b n a d n n na a a n n 211)1(212)( ⑵ 等比数列{}n a 的前n 项和n S : ①当1=q 时,1na S n =;②当1≠q 时,q q a a q q a S n n n --=--=11)1(11; 2. 数列求和的常用方法:公式法;性质法;拆项分组法;裂项相消法;错位相减法;倒序相加法. 题型一 公式法、性质法求和 1.已知n S 为等比数列{}n a 的前n 项和,公比7,299==S q ,则=++++99963a a a a 2.等差数列{}n a 中,公差2 1= d ,且6099531=++++a a a a ,则=++++100321a a a a . [例1]求数列 ,,,,,)21(813412211n n +的前n 项和n S . 题型二 拆项分组法求和 [练2]在数列{} n a 中,已知a 1=2,a n+1=4a n -3n +1,n ∈*N . (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为S n ,求S n 。 [练].求数列{}2)12(-n 的前n 项和n S . [例].求和:) 1(1431321211+++?+?+?n n . 题型三 裂项相消法求和 [例].求和: n n +++++++++11341231121 . [例]求和:n +++++++++++ 321132112111 [练4]已知数列{}n a 满足()*1112,1N n a a a n n ∈+==+

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

高三数学总复习综合专题数列求和(学生版)

数列求和 概述:先分析数列通项的结构特征,再利用数列通项揭示的规律来求数列的前n 项和,即求和抓通项。 1、直接(或转化)由等差数列、等比数列的求和公式求和 思路:利用下列常用求和公式求和是数列求和的最基本最重要的方法。 ①等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=; ②等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n ; ③)1(211+==∑=n n k S n k n ; ④)12)(1(6112++==∑=n n n k S n k n ; ⑤21 3)]1(21[+==∑=n n k S n k n 。 2、逆序相加法 思路:把数列正着写和倒着写再相加。(即等差数列求和公式的推导过程的推广) 例1:设函数2 22)(+=x x x f 的图象上有两点),(),,(211121y x P y x P ,若)(2121OP OP OP +=,且点P 的横坐标为2 1。 (1)求证:P 点的纵坐标为定值,并求出这个定值; (2)若; 求,),()3()2()1(*n n S N n n n f n f n f n f S ∈+?+++= 3、错位相减法

思路:设数列{}n a 是等差数列,{}n b 是等比数列,则求{}n n b a 的前n 项和n S 可用错位相减法。 例2:在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>。 (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S 。 4、裂项相消法 思路:这是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。一般地,数列{}n a 为等差数列,且公差不为 0,首项也不为0,∑∑∑=++==+-?=-=n i i i i i n i n i i i a a d a a d a a 111111)11(1)11(11。 常见的通项分解(裂项)如下: ①)11(1)(1k n n k k n n a n +-?=+=,(当1≠k 时,通项裂项后求和是隔项相消的,注意观察剩余项) 1 11)1(1+-=+=n n n n a n ;(通项裂项后求和是逐项相消的,剩余的是所裂项的首项和末项) ②)1 21121(211)12)(12()2(2+--+=+-=n n n n n a n ; ③]) 2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n 等。 例3:求数列 ???++???++,11 ,,321 ,211 n n 的前n 项和。 补充练习:已知二次函数()y f x =的图象经过坐标原点,其导函数为26)('-=x x f ,数列{}n a 的前n 项

数列常见题型总结经典(超级经典)

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )?? ?-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3 ,1111≥+==--n a a a n n n ,证明2 13-=n n a

1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式. 3.形如 )(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中1111,1-+-= =n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1232,11 1≥+-==-n a n n a a n n 的通项公式。

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高三数学一轮复习 数列求和巩固与练习

高三数学一轮复习 数列求和巩固与练习 A .64 B .100 C .110 D .120 解析:选B.设等差数列公差为d ,则由已知得 ? ???? a 1+a 1+d =4a 1+6d +a 1+7d =28, 即????? 2a 1+d =42a 1+13d =28 , 解得a 1=1,d =2, ∴S 10=10a 1+10×92d =10×1+10×9 2 ×2=100. 2.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列{S n n }的前10项的和为( ) A .120 B .70 C .75 D .100 解析:选C.S n =n (a 1+a n )2=n (n +2),∴S n n =n +2. 故S 11+S 22+…+S 10 10 =75. 3.(原创题)设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{ 1f (n ) }(n ∈N * )的前n 项和是( ) A.n n +1 B.n +2n +1 C.n n -1 D.n +1n 解析:选A.f ′(x )=mx m -1 +a =2x +1,∴a =1,m =2,∴f (x )=x (x +1), 1f (n )= 1 n (n +1) =1n -1n +1,用裂项相消法求和得S n =n n +1 .故选A. 4.若S n =1-2+3-4+…+(-1)n -1 ·n ,S 17+S 33+S 50等于________. 解析:由题意知S n =????? n +12(n 为奇数), -n 2(n 为偶数). ∴S 17=9,S 33=17,S 50=-25, ∴S 17+S 33+S 50=1. 答案:1 5.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2 +3n (n ∈N * ),则a 12+a 23+…+ a n n +1 =________. 解析:令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2 +3(n -1)]=2n +2,所以a n =4(n +1)2 ,当n =1时,也适合,所以a n =4(n +1)2 (n ∈N * ).于是 a n n +1 =

数列求和方法及典型例题

数列求和方法及典型例题 1?基本数列的前n 项和 门佝 aQ 2 1 ⑴等差数列a n 的前n 项和:S n na n(n 1)d an bn ⑵等比数列a n 的前n 项和S n : ①当q 1时,S n na i ;②当q 1时,& a i (1 q n ) a 1 a .q ; ; 1 q 1 q 2.数列求和的常用方法: 公式法:性质法:拆项分组法:裂项相消法;错位相减法;倒序相加法 题型一公式法、性质法求和 a 99 ______________________ 2?等差数列 a n 中,公差d 2,且a1 a 3 a 5 a 99 60,贝V a 1 a ? a 3 a 100 111 [例1]求数列1 一,2 — ,3-, ,(n 右), 的前n 项和S n ? 题型二拆项分组法求和 (1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求S n 。 [练]?求数列(2n 1)2的前n 项和S n . [例]?求和: 1 n(n 1) 题型三裂项相消法求和 [例]?求和: 1 , 2 1 1 ■ 4 “3 [例]求和:1 [练4]已知数列a n 满足a 1 1,a n 1 2a n 1 nN 1?已知S n 为等比数列 a n 的前n 项和,公比q 2,S g9 7 ,贝V a 3 a 6 a 9 [练2]在数列 a n 中,已知 a 1=2, a n+1=4a n — 3n + 1, n € N

h 1 O h 1 1 nh 1 n (1)求数列a n的通项公式。⑵若数列b n满足41 4 2 4 3 4 n a n 1 ,求数列 2n 若c n,求数列c n的前n项和S n。 a n a n 1 题型四错位相减法求和 [例]?设数列a n为1 2,2 22,3 2 3,4 2 3 n 2n x 0求此数列前n项的和. [例]?设数列{a n}满足a1+ 3a2 + 32a3 + …+ 3n_ 1a n=£, n€ N*. (1)求数列{a n}的通项公式;⑵设b n= n,求数列{b n}的前n项和S n. [练1]已知数列{ a n}、{b n}满足a11 , a2 3, b n 1 2(n N*),b n a n 1 a n。 b n (1)求数列{b n}的通项公式; (2)数列{ C n}满足C n b n log 2( a n 1)(n * N ),求S n C1 C2 ........ C n。 [练4]等比数列a n中,已知对任意自然数n, a〔a? a3 a n 2n 1,求a;a;a3 2 A.2n 1 B.12n 1 C.4n 1 1 n . D.— 4 1 3 3 a;的值 b n的通项公式。(3)

数列知识点总结与题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个 位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式 就叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1 开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2) n n n S n a S S n -=?=?-?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为 1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,124971 16a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念: 定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。其中2 a b A += a ,A ,b 成等差数列?2 a b A += 即:212+++=n n n a a a (m n m n n a a a +-+=2) 例:1.(06全国I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++= ( ) A .120 B .105 C .90 D .75 (四)、等差数列的性质: (1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n m a a d n m -= -()m n ≠; (4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; (五)、等差数列的前n 和的求和公式:11()(1)22 n n n a a n n S na d +-= =+n d a )(2n 2112-+=。(),(2 为常数B A Bn An S n +=?{}n a 是等差数列 ) 递推公式:2 )(2)()1(1n a a n a a S m n m n n --+=+= 例:1.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 2.(2009湖南卷文)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 63 3.(2009全国卷Ⅰ理) 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ) A.13项 B.12项 C.11项 D.10项

详解数列求和的方法+典型例题

详解数列求和的常用方法 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+ =+= 2、等比数列的前n 项和公式 ?? ? ??≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(2 1 3211+= +?+++== ∑=n n n k S n k n (2)、)12)(1(6 1 321222212++= +?+++== ∑=n n n n k S n k n (3)、23 3331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列 }{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1 -n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1 321+=+?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则1 2 321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ②

①式—②式:n n n nq q q q q S q -+?++++=--1 321)1( ?)1(11 132n n n nq q q q q q S -+?++++-= - ?)11(11n n n nq q q q S ----= ?q nq q q S n n n ----=1) 1(12 综上所述:????????? ≠≠----=+==)10(1) 1(1)1)(1(2 1 )0(02 q q q nq q q q n n q S n n n 且 解析:数列}{1 -n nq 是由数列{}n 与{}1-n q 对应项的积构成的, 此类型的才适应错位相减,(课本中的的等比数列前n 项和公式就是用这种方法推导出来的),但要注意应按以上三种 情况进行分类讨论,最后再综合成三种情况。 第三类:裂项相消法 这是分解与组合思想在数列求和中的具体应用。 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如: 1、乘积形式,如: (1)、1 1 1)1(1+- =+= n n n n a n (2)、)1 21 121(211)12)(12()2(2+--+=+-= n n n n n a n (3)、]) 2)(1(1 )1(1[21)2)(1(1++-+=++=n n n n n n n a n ( 4 ) 、 n n n n n n n n S n n n n n n n n n a 2 )1(1 1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++= -则 2、根式形式,如:

相关主题
文本预览
相关文档 最新文档