当前位置:文档之家› 从HPLC到UPLC的方法转换以适应更高的分析通量

从HPLC到UPLC的方法转换以适应更高的分析通量

从HPLC到UPLC的方法转换以适应更高的分析通量
从HPLC到UPLC的方法转换以适应更高的分析通量

从HPLC到UPLC的方法转换以适应更高的分析通量

一个典型的HPLC分析方法成功地转换并优化为Waters

ACQUITY UPLC TM方法,既达到了样品分析的高通量又得到更高

的分析灵敏度。提出了进一步快速转换方法的策略。对运行成本

和样品通量的分析表明:UPLC的成本优势要超过HPLC。

日益增长的制药行业大批量样品分析的需求,促进了ACQUITY Ultra Performance LC (UPLC TM)的研制和开发。这个系统之所以能够提供如此快速的分析,得益于它采用了小颗粒杂化填料(1.7μm),它具有极好的分离度和奇特的化学特性。(1-5)

为了与这种小颗粒杂化填料相匹配,实现快速分析,Waters公司在普通液相色谱的基础上,从色谱柱到色谱系统都进行了大幅度改进。要实现真正的超高效液相色谱分离,UPLC仪器系统必须耐高压(高达15000psi)、死体积小,且检测器的数据采集速率要大大提高以与高速流出的色谱峰匹配。新型的针内针设计真正地防止了交叉污染,极大地提高了检测灵敏度。

在本文中,一个用于质量控制(QC)的HPLC方法被优化为UPLC方法,目的是减少总运行时间,降低分析成本和增加仪器正常运行时间。

方法的开发

初始的HPLC方法为:分析时间:10分钟,样品:溶于有机溶液中的杂环药物(Cpd A)。加入内标以补偿样品前处理所造成的损失,采用梯度是必要的,目的是清洗后面流出的干扰物。

从普通HPLC方法转换为UPLC方法,开始仅仅是将流动相流速、进样体积进行简单的换算。换算因子由色谱柱横截面积的比率得到,以保持相同的线速度。

从UPLC得到的色谱峰是非常窄的,超凡的分离度表明方法尚有改进的余地。原来认为:只要柱反压允许,流动相的流速可以随意提高。但是后来对色谱柱寿命的研究表明,用提高流动相中的有机相含量的方法来缩短分析时间似乎更经济合算,溶剂的消耗也大大减少。

图(1)显示的是由最初HPLC 方法通过简单的按比例缩小得到的UPLC色谱图。最下面的是经过优化的UPLC色谱图。表?Ⅰ列出了HPLC及UPLC方法具体的色谱条件及药物分析结果。

方法优化指南及探讨

在优化UPLC方法时除要考虑方法转换的速度外,还应考虑以下几点:

●利用UPLC高分离度的优势,

增加流动相的强度,可以缩短分

析时间。(见表Ⅱ)

●对延长色谱柱寿命来说提高流

动相的流速不如增加溶剂强度。

虽然,UPLC可以做到在高流动

相线速度下仍保持良好的分离

度。然而,对于任何柱子,经常

在80%最大流速压力下运行都

会减少色谱柱的寿命。(见图

2)。依据我们的经验,与HPLC

相比,UPLC在反压达到8000psi

时柱损耗还是比较低的。尽管与

传统的HPLC相比,UPLC的损

耗已经很小(比HPLC降低了

一个数量级),但是若尽可能地

保持低流速,还可以进一步减少

溶剂的损耗和废液的处理费用。

● 由于UPLC 的系统体积很小,可以减少色谱柱的再平衡时间。流动相的变化需要一定的时间才能到达色谱柱。UPLC 极低的系统体积(110μL ,仅为HPLC 的15%)允许进一步缩短分析时间。在UPLC 上,当下一个样品进样时,色谱柱已达到了再平衡。它使得分析通量进一步提

高。

● 根据色谱柱的内径,适当地减

小进样体积,可以得到更好的峰形。当过量的强溶样溶剂加到色谱柱头时,色谱峰会分叉。UPLC 一般最大允许进样体积为5μL ,依据我们的经验,一般采用1-3μL 。值得一提的是:由于UPLC 色谱柱的分离度高、

进样器的交叉污染很低,这么小的进样量也会得到理想的峰高、达到相当或更低的LOQ (测试结果表明:UPLC 的交叉污染仅为HPLC 的10%)。另外,小体积进样还可以降低样品溶剂的强度,使得样品在柱头集中进样。

● 尽量先试用部分定量环进样方

式,如图(3)所示:即使当进样体积达到定量环的80%时,部分定量环进样都能得到很好的精密度。在传统的HPLC 检测中,一般进样量的体积都是控制在定量环体积的50%左右。UPLC 的进样系统用两段气隙将样品夹在中间,能更好地利用定量环且精密度更好。这种进样方式比满定量环进样方式更节省样品。从实验的角度来看,满定量环进样需要足够多的样品才能实现充满定量环的功能。这样可能要增加随后的洗针,将会影响样品通量和加大洗针硬件的磨损。大体积的样品转换也增加了样品颗粒析出的可能性,影响仪器的长期可靠性。

图1 :从上往下:原来的HPLC 色谱图;通过简单的缩放得到的UPLC 色谱图(峰形变窄);优化过的UPLC 色谱图。峰1:内标;峰2:CpdA

● 如果想采用满定量环进样方式(也

许是为了满足非常高的精密度的要求),则要保证样品在定量环内充分溢出。在很窄的UPLC 进样管线内,样品在管壁边的流速和在管中心的流速是不同的。采用满定量环进样,至少要用四倍定量环体积的样品溢流定量环,以确保样品将洗针液从5μL 定量环中置换掉。UPLC 仪器在出厂时对每一种规格的定量环都用典型的样品溶剂测试并设置了优化的溢流体积作为缺省值。对于某些特别的样品成分,分析者也可以另外设置相应的溢流体积。

● 选择合适的弱洗针液和弱洗针液的

用量,可以得到更窄的色谱峰形。在采用部分充满定量环进样方式时,会有部分弱洗针液与样品相伴进入色谱柱。因此,弱洗针液的组成要与流动相初始组成条件一致。利用弱洗针液作为定量环内样品的稀释液能够使样品在色谱柱头上富集,防止样品扩散。设置弱洗针液体积时要注意,所用弱洗针液的体积要足够大,要能将前面所用的强洗针液充分替换出去。

图2:由UPLC 实验数据得到的van Deemter 曲线表明,用提高流速来减少总运行时间是一个似是而非的策略。这要权衡反压对色谱柱寿命的影响(见正文)

图3:利用UPLC 标称5μL (实际4.8μL)的定量环,以部分充满环进样方式,得到的峰面积与进样体积的关系图。 对于一般的部分充满定量环进样,线性范围仅为进样环的40-50%。

初步的方法验证

初步的评估包括对分析方法和仪器进行线性范围、精密度、准确度、系统适用性,和样品的交叉污染的考察。

线性和最低定量限(LLOQ )

UPLC 的灵敏度很高,定量范围很广(1—500倍)。用同一个UPLC 分析方法校正,可以得到两个不同范围的线性标准曲线。(见图4和5)。具有54ng/mL 定量限(LLOQ )的UPLC 低范围的分析方法可用于更有特色的LC/MS 分析。特别要指出,这台UPLC 配置的是PDA 检测器。如果用单波长检测器可以得到更低的定量限。

精密度和准确度

在每个指定浓度下,进样三次,以测定其精密度(重复性)和准确度。利用峰面积的相对标准偏差来衡量仪器的精密度(RSD )。准确度是利用峰面积的标准曲线来计算每一个样品的含量,再与理论值相比,以百分比的形式给出。结果高、低两种浓度的精密度、准确度均符合要求。

(见表Ⅲ和Ⅳ)

图4:低浓度(0.054-1.30μg/mL )时浓度和峰面积之间的线性关系。(R 2=0.996 ;1/X 2权重)

图5:高浓度(0.325—25.8μg/ml)时浓度和峰面积之间的线性关系。(R2=0.999967 ;1/X2权重)

系统适用性

同一样品连进五针,用以考察系统的适用性。结果均达到USP要求。(见表Ⅴ)

两次进样之间的交叉污染

上一样品的残留会对下一针样品产生污染(交叉污染),它将直接影响方法的LLOQ。交叉污染还会导致仪器精密度、准确度和系统适用性检测的失败。然而,从详细的研究来看,没有显示出明显的交叉污染的影响。此处将浓样和稀释样品混合编组直接测量交叉污染,期望会出现因交叉污染导致的结果不准确。

UPLC采用了神奇的针内针设计,两套独立的进样器清洗系统,极大地减少了交叉污染的机会。在本实验中,我们采用了200μL的甲醇作为强洗针液,用以除去大部分有机残留物。接下来再用600μL的水:乙腈(90:10)置换强洗针液,使得定量环、进样针、阀内充满了与方法的初始条件一致的溶剂。

交叉污染的测定可以通过在检测完标准样品后,检测其溶剂空白值得到。本实验中,在检测5次低浓度标准样品后检测的空白值为未

检出。检测完最高浓度标样后检测空白,发现有些微小的相关峰,其面积是上一针标样的0.01%,这是可以接受的。然而,还可以通过优化清洗液的设定来进一步消除交叉污染。作为对照,HPLC的交叉污染比UPLC高出5-10倍。

结论

本实验将有机溶剂萃取液中的杂环药物的QC HPLC定量方法成功地转换并优化为UPLC方法。初步实验表明该方法可以被验证。总结了如何加速开发UPLC方法的指南。UPLC的应用具有成本优势。对于每一个分析任务来说,UPLC的色谱柱消耗与HPLC相当甚至更

低一些,其溶剂的损耗、废液的处置费用比传统的HPLC要小一个数量级。ACQUITY UPLC TM的分析时间减少了5倍,令人瞩目地提高了仪器的投资回报率并降低了对仪器(假如只配置HPLC)总台数的需求。

waters超高效液相色谱

超高效液相色谱(UPLC?)简介 UPLC原理基础 随着科学技术的进步,液相色谱用户对液相色谱技术的 要求也不断提高,他们需要“更快地得到更好的结果”。因 此超高效液相色谱(UltraPerformance LC?)概念的提出也 就十分自然;简单的说:UPLC是用HPLC的极限作为自己的起 点,把分离科学推向一个新领域。 沃特世公司引入UPLC的概念是由研究著名的van Deemter 方程式及其曲线开始。 由van Deemter曲线可以得到以下几点启示: 首先,颗粒度越小柱效越高;其次,不同的颗粒度有各自 最佳柱效的流速;最后,更小的颗粒度使最高柱效点向更高 流速(线速度)方向移动,而且有更宽的线速度范围。所以 降低颗粒度不但能提高柱效,同时还能提高分析速度。 使用更高的流速会受到色谱柱填料耐压及仪器耐压的 限制。反之;如果不用到最佳流速,小颗粒度填料的高柱效 就无法体现。 此外;更高的柱效需要更小的系统体积(死体积)、更快的检测速度等一系列条件的支持,否则小颗粒度填料的高柱效同样无法充分体现。 因此;要真正创建一个全新的分离科学领域- UPLC,必须解决以下几个问题: 1. 大幅度提高色谱柱的性能:第一要解决小颗粒填料的耐压问题,第二要解决小颗粒填 料的装填问题,包括颗粒度的分布以及色谱柱的结构。 2. 高压溶剂输送单元(超过15,000psi) 3. 完善的系统整体性设计,降低整个系统的体积,特别是死体积,并解决超高压下的耐 压及渗漏问题。 4. 快速自动进样器,降低进样的交叉污染 5. 高速检测器;优化流动池以解决高速检测及扩散问题 6. 系统控制及数据管理,解决高速数据的采集、仪器的控制问题 新型的色谱填料及装填技术 UPLC分离只有在新型的、耐压而且颗粒度分布范围很窄的1.7μm颗粒填料合成出来之后才有可能实现。 色谱柱技术应该涵盖几个方面的内容:首先是填料的合成,以得到高质量的填料颗粒,包括:耐高压、耐酸碱等等。其次是颗粒的筛选,选出颗粒度分布尽可能窄的填料。最后是装填技术,以保证既能堵住颗粒不使其外流,又不至于引起反压的大幅升高。 沃特世公司的ACQUITY UPLC?BEH色谱柱使用了更严格的筛分技术,使1.7μm填料的分布很窄,并且使用了全新筛板(专利申请中)及其它色谱柱硬件(柱管及其连接件),在超过20,000psi的压力下装填。沃特世公司为此安装了一条新的色谱柱装填生产线及新的测试设备。因此;ACQUITY UPLC色谱柱的性能及质量比目前的HPLC柱有了质的飞跃。 基于1.7 μm小颗粒技术的UPLC,与人们熟知的HPLC技术具有相同的分离原理。不同的是:UPLC不仅比传统HPLC具有更高的分离能力,而且结束了人们多年来不得不在速度和分离度之间忍痛割舍的历史。使用UPLC可以在很宽的线速度、流速和高反压下进行高效的分离工作,并获得优异的结果。(见下图)

(沃特世)UPLC超高效液相色谱介绍

UPLC超高效液相色谱(沃特世) 主要特点 超高速度 1.小颗粒填料色谱柱能超乎寻常地提高分析速度而不降低分离度 2.显著增加样品的通量,提高工作效率,降低分析成本 3.节省以往一向耗时的方法开发与认证的时间 超高灵敏度 1.小颗粒技术和整体化的仪器设计,UPLC?能在改善分离度的同时提高灵敏度 2.更高的柱效和更窄的色谱峰,意味着更高的色谱峰高和更高的灵敏度 3.在得到超高分离度和超高速度的同时能够得到超高灵敏度 超高分离度 1.利用高效创新小颗粒填料(1.7μL),获得超强分离能力 2.超低扩散体积,充分发挥小颗粒填料分离能力 3.超高分离度,适合复杂混合物的分离分析 超级创新 为满足色谱实验室对历史追踪不断增长的需求,每根ACQUITY UPLC?色谱柱出售时均带一个永久性的eCord,它能记录进样次数,最高的反压和柱温,其中还含有由沃特世公司提供的该色谱柱的分析测试合格证书。色谱柱安装后,智能化的芯片会自动地把关键参数采集进入色谱柱的历史文档,并记录色谱柱整个寿命周期的历史。该记录不能被删除。 技术参数 最大操作压力:15000psi(1mL/min) 溶剂输送精度:0.075%RSD或0.02minSD 流速范围:0.010-2.000mL/min,增量0.001mL/min 梯度曲线:11种。包括线性、凹线、凸线和两种步进梯度变化 有效系统体积:<140μL,与系统反压无关。带标准混合器 溶剂选择:最多四种。可在A1与A2和B1和B2之间选择 交叉污染:0.005%或2nL 进样范围:0.5-50μL 进样精度:<0.3%RSD 进样线性:>0.999 样品室温度控制:4 - 40℃ 色谱柱历史追踪:使用eCord技术 检测器配置:紫外可见检测器、光电二极管矩阵检测器、蒸发光散射检测器以及所有质谱检测器 超高速度,超高灵敏度,超高分离度,超级创新 为满足色谱实验室对历史追踪不断增长的需求,每根ACQUITY UPLC?色谱柱出售时均带一个永久性的eCord,它能记录进样次数,最高的反压和柱温,其中还含有由Waters公司提供的该色谱柱的分析测试合格证书。色谱柱安装后,智能化的芯片会自动地把关键参数采集进入色谱柱的历史文档,并记录色谱柱整个寿命周期的历史。该记录不能被删除。

温室气体大气通量

温室气体大气通量 大气中温室气体体积分数增加导致的全球气温升高,引起了世界各国政府和科学家的共同关注,已成为全球生态环境研究中的一个热点领域。CO2、CH4、N2O是大气中最主要的3 种温室气体,在对温室效应的贡献中,CO2占70%,CH4占23%,N2O占7%,它们对全球气候变暖的增温贡献分别是60%、15%和5%。人类活动的影响,大气中CO2,体积分数从1800年的80×10-6增加到目前的345 X 10-6,而且目前正以每年0.5%的速度在增长;CH4是大气中除CO2外最为丰富的含碳化合物,虽然在大气中只有10a的存活时间,但它是一种红外辐射活性气体,其红外吸收能力是CO2的20~30倍,是一种很重要的温室气体。20世纪70年代末80年代初,大气CH4含量随时间变化的监测工作开始在世界不同地方进行,随着研究的不断深入,国内外多项观测结果表明,大气中CH4体积分数从过去的0.72×10-6上升到现在的1.78×10-6,已经增长了一倍多,且目前正以每年0.8%-1.1%的年速率在增长。据估计,全球每年排放CH4总量约为420×1012~620×1012g。 1.湿地温室气体国内外研究现状 国外对自然湿地温室气体的排放研究报道较少,中国的湿地温室气体研究主要集中若尔盖和青藏高原的草丛湿地。辽河三角洲芦苇湿地、三江平原的草丛湿地和沿海红树林湿地等湿地的研究。在若尔盖高原沼泽的研究中温度条件是影响沼泽湿地CH4排放的重要因之一,若尔盖高原沼泽地由于其气候条件影响,其CH4排放量平均值仅是我国面积最大的三江平原沼泽湿地排放量的1/5左右。水分条件和温度条件是影响沼泽地CH4排放地域差异的主要因子。对芦苇湿地温室气体CH4进行研究发现,其排放有明显的季节性变化规律性,大量的CH4发生在夏季,之前因土壤含水量低,表现为吸收CH4,秋季排水后,CH4排放明显减少。芦苇植株不仅能通过其根系的作用促进CH4产生,而且还能将土壤中产生的CH4传到大气中去,芦苇湿地CH4排放与温度呈现正相关。湿地稻田CH4抑制剂的研究、高产低CH4排放的水稻田品种的培育也是当今研究的热点,也是最佳途径。目前世界上研究较为完善的是日本等发达国家。典型草甸小叶章湿地的N20排放与5cm地温的相关性较大,而沼泽化草甸小叶章湿地与之相关并不明显,积水环境条件对其影响更为明显。三江平原沼泽湿地是N2O排放的源,冬季则表现为N2O的汇。地壤温度是影响N2O排放通量季节性娈化的重要环境因素,生长季内的积水水位与土壤温度则会影响到N2O排放通量的年际变化。三江平原沼泽湿地N20与C02排放通量问相关性显著,促使二者之间产生这种内在联系的因素:温度、植物根系、有机质分解及植物气孔行为调节等,这些因素的共同作用使得N20与CO2。排放间存在较为密切的联系],三江湿地毛果苔草沼泽和小叶章湿地草甸贴地气层中植物冠层附近CH4浓度相对较高,冠层以上随高度增加,CH4浓度递减明显。 2大气通量的测量方法 2.1箱法 箱法是目前最常用的方法,用来测量土壤和大气间微量气体交换通量,工作原理简单,用特制箱子罩在一定面积的下垫面上方,隔绝箱内外气体的交换,随时间的变化测定箱内温室气体,根据计算得出气体交换通量。主要分为3种类型:密闭式静态箱、密闭式动态箱和开放式动态箱。密闭式静态箱又包括碱液吸收法和气相色谱法2种,碱液吸收法是用溶液吸收CO2,形成碳酸根,主要是NaOH或KOH溶液,吸收结束后进行滴定,计算出土壤在这一段时间内的CO2排放量。采样箱分为透明箱和暗箱2种。透明箱一般用薄聚酯纤维或有机玻璃制成,在理想状况下该法可测得土壤界面或植被界面与大气间痕量气体的交换通量,但太阳辐射会使箱内温度升高进而影响结果。暗箱是指避光的采样箱,其采样原理和操作方法基本与明箱一样,使用暗箱的主要目的就是减少太阳辐射的影响。动态箱法测定温室气体通量开始于20世纪70年代。这种方法是指气体在气室和传感器之间循环,利用传感器来测量气室内待测气体浓度的变化。分为密闭式动态箱和开放式动态箱。密闭式动态箱只是增加了气体

第二节 土壤热通量和土温

第二节 土壤热通量和土温 一、影响土壤温度的因素 (一)土壤表面热量的收支 土温的变化首先决定于土壤表面热量的收支状况。地面的热量收支可用地面热量平衡方程来表示。即 B =LE+P+Q S (3-3) 式中B 为净辐射;P 为感热通量;LE 为潜热通量,E 为蒸发或凝结量,L 为蒸发或凝结耗热量(蒸发或凝结潜热),约等于2.5?106J/kg , Q S 为土壤热通量。 将(3—3)式改写为: Q S =B-LE+P (3-4) 感热通量(P ):地面和大气间,在单位时间内,沿铅直方向通过单位面积流过的热量。单位为:W/m 2或cal/(cm 2·min)。 土壤热通量(Q S ):单位时间、单位面积上的土壤热交换量。 白天,净辐射B 为正值(日出后40-60分钟),一部热量消耗于LE 上,一部热量消耗于P 上,余下的热量进入土壤;夜间(日落前60-90分钟),净辐射B 为负值,由LE 、P 和Q S 来补偿,土壤热通量方向与白天相反,也就是地面失去热量。Q S 值的方向和大小,决定了土壤得失热量的多少,它直接影响到土壤温度的高低和变化。 由公式Q S =B-LE-P 可见,如果LE 和P 一定时,Q S 的值由净辐射B 值所决定。净辐射绝对值愈大,地面得热或失热愈多,土温变化可能愈大。如果B 值一定时,土壤愈潮湿,LE 增大,Q S 值减小,土温变化可能较缓和,感热通量值减小,气温变化也较缓和;土壤愈干燥,LE 减小,Q S 值增大,土温变化可能愈大,感热通量相应增大,气温变化愈大。 (二)土壤热属性 当Q S 一定时,土温的高低和变化则决定于土壤热特性,如热容量、导热率和导温率。土壤热容量和导热率愈大,土温变化则缓和;反之,土温变化较剧烈。 因此,土温的高低和变化主要决定于土壤的热收支和土壤热属性。所以,所有影响土壤热收支和土壤热特性的因子都会影响到土温的高低和变化。这些因子有纬度、季节、太阳高度、天气状况、斜坡方位和坡度、海拔高度、土壤种类、颜色、质地、土壤湿度和孔隙度、地面有无植物或其他覆盖物等等。这些因子对土温的影响随时间和地点是不同的。例如坡向和坡度的影响,在中纬度山地就很大,而在低纬度山地就较小。因此,在考虑土温高低和变化时,要对影响土温的诸因子进行具体和综合分析,并找出其主导因子。只有这样才能掌握土温的高低和变化规律。 二、土壤热通量及其确定方法 白天,土壤表面在吸收净辐射后,一部分能量用于蒸发LE ,一部分用于与空气乱流热交换P ,只有一部分作为土壤热通量Q S ,借分子传导方式向土中传播热量;夜间,地表由于辐射冷却,除由LE 和P 补偿一部分外,一部分由Q S 从土中向土表传播。 土壤热交换过程:热量由地表向下层或由下层向地表传输的这个过程。 土壤热通量:单位时间、单位面积上的土壤热交换量,它的单位为J/(cm 2·min)或W/m -2或kWm -2(千瓦/米2)。 土壤热通量( Q S )的大小与热流方向的温度梯度及土壤导热率(λ)成正比,即 如果用导温率来表示,因 , Z T Q s ??-=λ V C K λ=ρ C C V =

超高效液相色谱仪技术参数

超高效液相色谱仪技术参数 原装进口 1. 工作条件 1.1 电源:220V,50Hz 1.2 操作环境 15?C-28?C 1.3 湿度:20-80% 2.技术参数 *2.1 二元高压泵结构:四压力传感器,数控直线驱动色谱双泵。四个压力传感器能够准确的监控泵系统的压力,并对泵做出相应调整,保证流量精度的重复性和稳定性。(需在投标文件中提供泵结构示意图予以证明并加盖仪器制造商公章,并标明四压力传感器示意图位置和真实位置)。 2.1.1 泵类型:数控直线驱动色谱双泵 2.1.2 泵输出压力:≥20000 psi *2.1.3 泵驱动马达:≥4 2.1.4 柱塞杆与马达联接方式:刚性直连 *2.1.5 泵压力传感器数量:≥4 2.1.6 1-4路溶剂任意混合 2.1.7可配内置溶剂选择阀,扩展到9路溶剂 #2.1.8 真空脱气:六通道在线真空脱气机 #2.1.9 流量:最小流量范围≥0.0100,最大流量范围≤2.000mL/min,以0.001mL/min 为增量 *2.1.10 最大操作压力:≥17,800psi(须提供厂家英文官方原版指标及应用证明文件,并加盖仪器制造商公章。 #2.1.11 梯度模式:线性、步进、凹线、凸线四种类型 2.1.12 柱塞清洗:自动,可编程 2.1.13 流量精度:+/-0.02min SD,(全流速范围内),不随反压变化 2.1.14 流速准确度:±1.0% 2.1.15 梯度准确度:± 0.5%,不随反压变化 2.1.16 梯度精度:±0.15%RSD,不随反压变化

#2.1.17缓冲盐浓度和pH值调节:自动配置缓冲盐浓度和自动调节pH值2.1.17.1配置方式:自动比例混合 2.1.17.2计算方式:梯度曲线 2.1.17.3 pH精度: ±0.01 2.2 自动进样器系统 2.2.1密封在线针进样 2.2.2 耐压: 18,000psi 2.2.3 进样模式:任意体积直接注射进样 2.2.4 样品瓶数:≥90 位 2.2.5 进样精度:<0.3%RSD #2.2.6 样品交叉污染度:<0.001% 2.2.7 进样体积:0.1-50μL,以 0.1μL 为增量 2.2.8 进样线性度:>0.999 2.2.9 自动进样循环时间:<30 秒 2.3 柱温箱及色谱柱 2.3.1 温度范围:室温以上 5℃-90℃,增量:0.1℃ 2.3.2加热方式:电加热 2.3.3 预热方式:主动式 2.3.4 色谱柱颗粒度:≤1.7 um 2.3.5 色谱柱与柱温箱上带有使用信息记录装置 2.4紫外/可见光检测器 *2.4.1波长范围:190~700nm 2.4.2波长准确度:±1nm 2.4.3测量范围:0.0001~4.0000AUFS 2.4.4基线噪音:6.0×10-6 AU, 2.4.5基线漂移: ≤5.0x10-4AU/hr/℃ 2.4.6线性范围:2.5AU 2.4.7吸收范围:0.0001 to 4.0000 AUFS 2.4.8光源:氘灯,寿命2000小时

高通量筛选技术简要综述

高通量筛选技术简要综述 药物高通量筛选(HTS)技术,是发现创新药物的重要技术手段之一,已受到药学同行的极大关注。现将近年来药物高通量筛选技术的研究进展做一综述。 发展中的高通量筛选技术 高通量筛选的组合模式近年来,由于自动化技术特别是机器人的应用,在新药研究中出现了高通量筛选技术,该技术将化学、基因组研究、生物信息,以及自动化仪器等先进技术,有机组合成一个高程序、高自动化的新模式,从而创造了发现新药的新程序。由于该技术具有快速、高效等特点,因而成为新药发现的主要手段。 高通量筛选的实验方法分子水平和细胞水平的实验方法(或称筛选模型)是实现药物高通量筛选的技术基础。由于药物高通量筛选要求同时处理大量样品,实验体系必须微量化,而这些微量化的实验方法应根据新的科研成果来建立。第四军医大学周四元研究认为,药物高通量筛选模型的实验方法,根据其生物学特点,可分为以下几类:受体结合分析法;酶活性测定法;细胞分子测定法;细胞活性测定法;代谢物质测定法;基因产物测定法。这些实验方法,均已广泛用于药物高通量筛选中。 高通量筛选的特色效用高通量筛选技术是将多种技术方法有机结合而形成的一种新技术体系,它以微板形式作为实验工具载体,以自动化操作系统执行实验过程,以灵敏快速的检测仪器采集实验数据,以计算机对数以千计的样品数据进行分析处理,从而得出科学准确的实验结果和特色效用。英国学者AlanD研究提示,一个实验室采用传统的方法,借助20余种药物作用靶位,1年内仅能筛选75000个样品;1997年高通量筛选技术发展初期,采用100余种靶位,每年可筛选100万个样品;1999年高通量筛选技术进一步完善后,每天的筛选量就高达10 万种化合物。 高通量筛选技术采用的先进检测方法 光学测定技术:近年来,美、英两国研究人员在高通量筛选检测中,努力进行了光学测定方法的研究,建立了大量的非同位素标记测定法,如用分光光度检测法筛选蛋白酪氨酸激酶抑制剂、组织纤溶酶原激活剂等,均获得成功。

Agilent-1290-超高效液相色谱仪标准操作规程

Agilent 1290 超高效液相色谱仪标准操作规程 一、目的 制定Agilent 1290超高效液相色谱仪使用操作规程,确保操作人员能正确规范地操作液相色谱仪。 二、范围 适用于Agilent1290超高效液相色谱仪的使用。 三、操作规程 1 开机 1.1 打开计算机,进入 Windows画面。 1.2 打开 1290INFINITY HPLC 各模块电源。 1.3 待各模块自检完成后,双击“Instrument 1 Online”图标,化学工作站自动与 12001290INFINITY HPLC 通讯。 1.4 从“View”菜单中选择“方法和运行控制”画面,点击”视图”菜单中的“样品视图 “系统视图”,使其命令前有“√”标志,来调用所需的界面。 1.5 点击泵下面的瓶图标,选择‘瓶填充‘如下图所示,输入溶剂的实际体积和瓶体积。也 可输入停泵的体积。点击“Ok”。 1.6 从菜单“视图”中,选中“在线信号”,选中“信号窗口 1”,然后点击“改变…”钮, 将所要绘图的信号移到右边的框中,点击“确定”。(如同时检测二个信号,则重复选中“信号窗口 2”) 2 排气 2.1 首先在方法编辑中,泵的参数设置部分,选好需要排空的通道(保证是开的) 2.2 点击仪器状态视图中泵的图标,选择控制,出现如下图 2.3 勾上吹扫,并且输入流速,时间,比例就可以 purge 泵头。排空的时候阀会自动切换, 无需人为介入。 2.4 当我们发现泵头里面有气泡出不来的时候,选择预备---开。然后点击确定。此时泵会 用很强烈的方式朝外泵液体,并持续 20 次自动停止。 3 编辑数据采集方法 3.1 开始编辑完整方法: 从“方法”菜单中选择“编辑完整方法…”项,如下图所示选中除“数据分析”外

通则0512高效液相色谱法

高效液相色谱法: 系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测, 由积分仪或数据处理系统记录和处理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。 色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。 超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、 高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱: 以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱: 用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶 和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。

色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。 (2)检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器, 其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器, 其响应值不仅与被测物质的量有关,还与其结构有关; 蒸发光散射检测器和示差折光检测器为通用型检测器, 对所有物质均有响应,结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一 定范围内呈线性关系, 但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。 紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求; 采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。 蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 (3)流动相

AlphaScreen技术在高通量筛选研究的现况分析

AlphaScreen技术在高通量筛选研究的现况分析 本文介绍了AlphaScreen和AlphaLISA在基础药物研发研究和高通量筛选(HTS)方面的技术现状。AlphaScreen用于HTS 第二信使检测 Gs偶联的GPCR被激活后,可激活细胞内的cAMP 释放,并引起下游的信号转导。AlphaScreen技术用于cAMP检测采用了竞争性实验(Competition Assay),示意图如下: 反应体系内供体珠包被了亲和素,用于偶联上生物素化的cAMP;受体珠表面为anti-cAMP 抗体;通过生物素化的cAMP可将供体珠和受体珠拉近,单体氧分子得以传递至受体珠,发生化学反应,产生光信号。 将细胞裂解液加入反应体系内,胞内含有的游离cAMP同生物素化的cAMP竞争性结合抗体,体系产生的光信号降低。 蛋白激酶检测 蛋白激酶是一类磷酸转移酶,将ATP的磷酸基团转移至靶标底物。蛋白激酶主要分为2大家族,其中一族将磷酸基团转移至蛋白的酪氨酸残基上,称为酪氨酸激酶;另一族将磷酸基团转移至蛋白的丝氨酸/苏氨酸残基上,称为丝氨酸/苏氨酸激酶。 针对酪氨酸激酶检测,AlphaScreen利用了酪氨酸磷酸化抗体,这些特异性的抗体已偶联于受体珠表面。作为激酶作用的蛋白底物,已经过生物素化处理,能连接于供体珠表面。 激酶有活性状态下,利用蛋白底物的磷酸化基团能将供体珠与受体珠的距离拉近,单体氧分子得以传递至受体珠,发生化学反应,产生光信号。 通常意义上,丝氨酸/苏氨酸激酶特异性高于酪氨酸激酶,因此进行检测时,对于抗体的特异性要求更高。在这里,受体珠表面包被上Protein A(Protein A是一种分离自金黄色葡萄球菌的细胞壁蛋白,主要通过Fc片断结合哺乳动物IgG),用于偶联鼠源或兔源磷酸化抗体;供体珠可以通过表面包被的亲和素偶联生物素化的磷酸化多肽或者是通过表面包被的谷胱甘肽(GSH)偶联GST标签蛋白底物。一旦多肽或蛋白底物被磷酸化,将拉近抗磷酸化抗体,产生光信号。 常见的激酶检测方法都需要特异性的抗体用于检测磷酸化多肽,新近又有一些方法采用Lewis 金属螯合物用于螯合底物上的磷酸基团。在这里,磷酸化的激酶底物可以通过生物素化或是加上GST标签而偶联在供体珠上,供体珠表面包被了Lewis金属螯合物。一旦磷酸化的底物被Lewis螯合将拉近供体珠和受

什么是高通量筛选技术

什么是高通量筛选技术 高通量筛选(high—throughout screening)是近年来迅速发展起来的药物筛选技术。高通量药物筛选就是应用分子细胞水平的药物活性评价方法(模型),通过自动化手段,对大量样品进行生物活性或药理作用的检测,发现新药的过程。高通量药物筛选的规模至少为每日筛选数千个样品。同时它通过运用基因科学、蛋白质科学、分子药理学、细胞药理学、微电子技术等多学科理论和技术,以及与疾病相关的酶和受体为作用靶点。对天然或合成化合物进行活性测试,并在此基础上进行筛选。高通量筛选具有快速、高效、经济、高特异性等优点,其中所用的样品量甚少的特点尤其适用于天然化合物的活性筛选。 高通量筛选可以根据待测样品的种类分为非细胞相筛选、细胞相筛选、生物表型筛选。其中非细胞相筛选常用的方法有Microbead—FCM 联合筛选、放射免疫性检测、荧光检测(FA)、闪烁接近检测、酶连接的免疫吸附检测(ELISA)等;细胞相筛选常用的方法有选择性杀死策略、离子通道检测、报告基因检测等;生物表型筛选可以有目的敲除或屏蔽掉某些未知功能的基因等等。 高通量筛选在抗病毒药物筛选中有很大的应用,介绍一些抗病毒药物筛选方法:利用亲合闪烁分析对HIV逆转录酶活性测定、HCV NS5B 活性测定、HCV NS3(nonstructural protein 3,NS3)解旋酶活性的测定;利用荧光共振能量转移对SARS—CoV病毒3CL 蛋白酶活性测定;

抗病毒药物的其它高通量筛选模型如病毒与宿丰细胞结合的细 胞模型、HCV NS3/4A蛋白酶活性测定、HIV整合酶(integrase,IN)活性的测定等等。 高通量筛选体内药动学模型中传统的药动学研究以测定药物在 体内的浓度及分布为主要手段。高通量筛选体外药动学模型中常用的筛选模型建立在组织、器官水平和细胞及亚细胞水平,观察的是药物与分子靶点的相互作用,能够直接体现药物的基本作用机制。高通量筛选的体内和体外筛选模型是互为补充、相辅相成的。体内药动学筛选模型可以很好地预测药物在体内的吸收、分布、代谢等药动学性质,但存在样品需求量大、筛选费用高、较难达到高通量筛选水平等缺陷。体外筛选模型可以对大量的候选化合物进行筛选,但它却忽略了生物的整体性,有时用其预测体内药动学参数并不一定理想,必须借助 于体内筛选模型。 高通量筛选技术极大地提高了对目标分子、活性物质以及前导药物的筛选速度,当前HTS技术进一步向着高内涵筛选(HCS)技术发展。HCS技术是生物学、分析软件、自动化控制以及显微观测技术最新发展的综合运用,HCS的出现彻底改变了以细胞为基础的靶目标的确认、二次筛选、前导化合物优化和结构活性分析的传统方法引。随着科技的发展,HTS/HCS技术将不断向着微型化、自动化、高效化、低廉化和微量化方向发展。

色谱分析(中国药科大学)超高效液相色谱(UPLC)

超高效液相色谱(UPLC) 超高效液相色谱技术(ultra performance liquid chcromatography,简称UPLC)是一种综合了小颗粒填料、非常低系统体积(死体积)及快速检测手段等全新的检测技术。在全面提升HPLC的速度、灵敏度及分离度的同时,保留其原有的实用性及原理。基于小颗粒技术的UPLC,并非普通HPLC系统改进而成。它不但需要耐压、稳定的小颗粒填料(可达1.7μm),而且需要耐压的色谱系统(>15,000psi)、最低交叉污染的快速进样器、快速检测器及优化的系统体积等诸多方面的保障,以充分发挥小颗粒技术优势。这就需要对系统所有硬件和软件的进行全面创新。世界第一个商品化UPLC产品是Waters ACQUITY UPLC TM超高效液相色谱系统,它于2004年3月投入市场。 图1:填料技术的沿革 1.小颗粒填料改善分离的理论与科学基础 液相色谱30年的发展史是颗粒技术的发展史。颗粒大小的改变直接影响到柱效,从而对分离结果产生直接影响。由上图可知:随着颗粒度的不断降低,色谱分

离度不断提高。事实上,上述规律的理论基础是著名的Van Deemeter方程。Van Deemeter方程是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。Van Deemeter曲线(见图2)预测最佳柱效与相应的流动相流速。由Van Deemeter方程得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。还应该注意到1.7 μm颗粒的HETP最小值区域扩大了(见图2),这表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来适当提高流动相的流速(分析速度)。小颗粒填料为色谱分离带来如此的高柱效和速度优势,使得利用小颗粒技术成为色谱科学家梦寐以求的目标。然而HPLC系统的设计,一直难于发挥出最小颗粒的优点。小颗粒技术的运用,不但要求仪器在超出目前限度(6000 psi/ 400 bar)的压力下工作,同时要求仪器系统的死体积要更小,以便不影响梯度性能,而且还要检测器能高速检测出峰宽只有几秒的色谱峰。 在利用杂化颗粒技术合成出耐压的新一代小颗粒色谱填料之后,UPLC超高效液相色谱系统的设计,充分利用了小颗粒填料的所有优点,弥补传统HPLC系统的不足。

高通量筛选技术

高通量筛选技术 高通量筛选(high—throughout screening)是近年来迅速发展起来的药物筛选技术。高通量药物筛选就是应用分子细胞水平的药物活性评价方法(模型),通过自动化手段,对大量样品进行生物活性或药理作用的检测,发现新药的过程。高通量药物筛选的规模至少为每日筛选数千个样品。同时它通过运用基因科学、蛋白质科学、分子药理学、细胞药理学、微电子技术等多学科理论和技术,以及与疾病相关的酶和受体为作用靶点。对天然或合成化合物进行活性测试,并在此基础上进行筛选。高通量筛选具有快速、高效、经济、高特异性等优点,其中所用的样品量甚少的特点尤其适用于天然化合物的活性筛选。 高通量筛选可以根据待测样品的种类分为非细胞相筛选、细胞相筛选、生物表型筛选。其中非细胞相筛选常用的方法有Microbead—FCM 联合筛选、放射免疫性检测、荧光检测(FA)、闪烁接近检测、酶连接的免疫吸附检测(ELISA)等;细胞相筛选常用的方法有选择性杀死策略、离子通道检测、报告基因检测等;生物表型筛选可以有目的敲除或屏蔽掉某些未知功能的基因等等。 高通量筛选在抗病毒药物筛选中有很大的应用,介绍一些抗病毒药物筛选方法:利用亲合闪烁分析对HIV逆转录酶活性测定、HCV NS5B 活性测定、HCV NS3(nonstructural protein 3,NS3)解旋酶活性的测定;利用荧光共振能量转移对SARS—CoV病毒3CL 蛋白酶活性测定;

抗病毒药物的其它高通量筛选模型如病毒与宿丰细胞结合的细 胞模型、HCV NS3/4A蛋白酶活性测定、HIV整合酶(integrase,IN)活性的测定等等。 高通量筛选体内药动学模型中传统的药动学研究以测定药物在 体内的浓度及分布为主要手段。高通量筛选体外药动学模型中常用的筛选模型建立在组织、器官水平和细胞及亚细胞水平,观察的是药物与分子靶点的相互作用,能够直接体现药物的基本作用机制。高通量筛选的体内和体外筛选模型是互为补充、相辅相成的。体内药动学筛选模型可以很好地预测药物在体内的吸收、分布、代谢等药动学性质,但存在样品需求量大、筛选费用高、较难达到高通量筛选水平等缺陷。体外筛选模型可以对大量的候选化合物进行筛选,但它却忽略了生物的整体性,有时用其预测体内药动学参数并不一定理想,必须借助于体内筛选模型。 高通量筛选技术极大地提高了对目标分子、活性物质以及前导药物的筛选速度,当前HTS技术进一步向着高内涵筛选(HCS)技术发展。HCS技术是生物学、分析软件、自动化控制以及显微观测技术最新发展的综合运用,HCS的出现彻底改变了以细胞为基础的靶目标的确认、二次筛选、前导化合物优化和结构活性分析的传统方法引。随着科技的发展,HTS/HCS技术将不断向着微型化、自动化、高效化、低廉化和微量化方向发展。

高效液相色谱测定法标准操作规程

标准操作规程 1目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2适用围:适用于高效液相色谱测定法检验操作全过程。 3责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1.色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分

离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在 2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2或大于8 的流动相。 4.1.2.检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应。结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定围呈线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 4.1.3.流动相 反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则易导致柱效下降、色谱系统不稳定。 正相色谱系统的流动相常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。 品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适用性试验的要求。调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变围为0.7X?1.3X;当X大于33%时,允许改变围为X—10%?X+10% 。

半干旱地区地表能量特征数据资料和计算方法

半干旱地区地表能量特征数据资料和计算方法 1.1 数据资料[13] SACOL站观测的主要项目包括:近地层基本气象要素、地表辐射系统、土壤温湿度和热通量、近地层的物质和能量通量、气溶胶光学特性、空气环境质量监测系统、温湿度垂直廓线仪和天空云的状况等。我们采用了SACOL站2007年到2012年连续六年的观测资料,包括空气温度、土壤湿度、降水量、风速、水汽压差、土壤热通量、净辐射量、太阳长短波辐射的月平均变化值、辐射通量等。常规气象要素(风速、温度、相对湿度)由观测场中32.4m的高度塔观测,观测高度分别为1、2、4、8、12、16和32 m共7层。辐射观测系统为四辐射分量系统,包括向上、向下太阳辐射以及长波辐射;土壤含水量的观测层次分别为地表以下0.05、0.10、0.20、0.40和0.80m;土壤热通量的观测层次分别为地表以下0.05和0.10 m;地面观测还包括地表温度、大气压、雨量和蒸发量。除湍流通量数据资料为10 Hz的以外,其他数据资料频率均采用半小时制。 表1.1 SACOL站观测仪器简介 观测项目安装高度/深度(m)仪器型号厂家 空气温度1,2,4,8,12,16和32 HMP45C-L Vaisalla, 芬兰 空气湿度1,2,4,8,12,16和32 HMP45C-L Vaisalla, 芬兰风速1,2,4,8,12,16和32 014AL Met One, 美国 风向8.0 034B_L Met One, 美国 向下/向上短波辐射 1.50 CM21 Kipp&Zonen, 荷兰 向下/向上长波辐射 1.50 CG4 Kipp&Zonen, 荷兰 STP01-L50 Hukseflux, 荷兰土壤温度0.02, 0.05, 0.10, 0.20, 0.50,0.80 土壤湿度0.05, 0.10, 0.20, CS616-L Campbell, 美国 0.40, 0.80 气压8.0 CS105 Vaisala, 芬兰 降水0.50 TE525MM-L R. M Young, 美国 CO2通量 2.88 CSAT 3和Campbell, 美国

高通量筛选

高通量筛选简介 高通量筛选(High throughput screening,HTS)技术是指以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行试验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机分析处理实验数据,在同一时间检测数以千万的样品,并以得到的相应数据库支持运转的技术体系,它具有微量、快速、灵敏和准确等特点。简言之就是可以通过一次实验获得大量的信息,并从中找到有价值的信息。高通量筛选技术 高通量筛选特点 高通量筛选时每天要对数以千万的样品进行检测,工作枯燥,步骤单一,操作人员容易疲劳、出错。自动化操作系统由计算机及其操作软件、自动化加样设备、温孵离心设备和堆栈4个部分组成。自动化操作系统代替人工操作显然有诸多优势,它利用计算机通过操作软件控制整个实验过程,编程过程简洁明了。高通量筛选的应用 高通量筛选技术将化学、基因组研究、生物信息,以及自动化仪器等先进技术,有机组合成一个高程序、高自动化的新模式,并以此为模型创造了发现新药的新程序。高通量筛选技术的研究 发展中的高通量筛选技术 高通量筛选的实验方法高通量筛选的实验方法分子水平和细胞水平的实验方法(或称筛选模型)是实现药物高通量筛选的技术基础。由于药物高通量筛选要求同时处理大量样品,实验体系必须微量化,而这些微量化的实验方法应根据新的科研成果来建立。第四军医大学周四元研究认为,药物高通量筛选模型的实验方法,根据其生物学特点,可分为以下几类:受体结合分析法;酶活性测定法;细胞分子测定法;细胞活性测定法;代谢物质测定法;基因产物测定法。这些实验方法,均已广泛用于药物高通量筛选中。高通量筛选的特色效用高通量筛选的特色效用高通量筛选技术是将多种技术方法有机结合而形成的一种新技术体系,它以微板形式作为实验工具载体,以自动化操作系统执行实验过程,以灵敏快速的检测仪器采集实验数据,以计算机对数以千计的样品数据进行分析处理,从而得出科学准确的实验结果和特色效用。英国学者AlanD研究提示,一个实验室采用传统的方法,借助20余种药物作用靶位,1年内仅能筛选75000个样品;1997年高通量筛选技术发展初期,采用100余种靶位,每年可筛选100万个样品;1999年高通量筛选技术进一步完善后,每天的筛选量就高达10万种化合物。高通量筛选技术检测方法光学测定技术近年来,美、英两国研究人员在高通量筛选检测中,努力进行了光学测定方法的研究,建立了大量的非同位素标记测定法,如用分光光度检测法筛选蛋白酪氨酸激酶抑制剂、组织纤溶酶原激活剂等,均获得成功。放射性检测技术美国学者GanieSM在高通量药物筛选研究中,应用放射性测定法,特别是亲和闪烁(SPA)检测方法,使在96孔板上进行的样本量实验得到发展。该方法灵敏度高,特异性强,促进了高通量药物筛选的实现,但存在环境污染问题。荧光检测技术美国学者GiulianokA研究认为,采用FLIPR(fluorometricimagingreadet)荧光检测法,可在短时间内同时测定荧光的强度和变化,对测定细胞内钙离子流及测定细胞内pH和细胞内钠离子流等,是非常理想的一种高效检测方法。多功能微板检测系统由西安交通大学药学院研制的1536孔板高通量多功能微板检测系统,是目前国际上先进的高通量检测系统,它可使筛选量进一步提高,现已在该院投入使用。我国高通量筛选技术的进展

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

相关主题
相关文档 最新文档