当前位置:文档之家› 用arcgis做高程坡度坡向分析(等高线)

用arcgis做高程坡度坡向分析(等高线)

用arcgis做高程坡度坡向分析(等高线)
用arcgis做高程坡度坡向分析(等高线)

用ArcMap9.x 做地形分析:高程、坡度、坡向来源:刘秀的日志

导入成功之后把cad文件图层下面的,除了Polyline,其他全部右键移除

打开创建TIN工具

在输入要素类,选PolyLine图层,选择Elevation字段,开始生成TIN

创建储存位置,确定

正在生成TIN

在图层上右击,属性,进行调整

汽车坡度怎么理解

"道路坡度"到底是什么意思 【卡车之家原创】前阵子论坛几个卡友因为“上坡”这个问题争辩了一下,而且有人自称自己的“座驾”能够爬越三四十度的陡坡,对于这种说法是否切合实际呢?那今天咱们就“坡度”的问题进行探讨,什么是坡度?坡度的表示又是如何? ●常用两方法看透坡度不在话下 关于道路坡度,这并不是我们通常理解的度数。实际上坡度是把坡面的铅直高度与水平长度的比叫做坡度(或叫做坡比),比如坡度为30%,事实上就是在水平距离前进100米的情况下,垂直高度又上升30米。

方法一百分比法:高度/水平距离 在实际情况下,道路的坡度一般用百分比显示或度数法两种方法表示。百分比法作为计量坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下:坡度= (高程差/水平距离)x100%。 方法二度数法:通常说的角度 另外一种是度数法,即用度数来表示坡度,利用反三角函数计算而得,其公式如下:坡度= 高程差/水平距离,再对照不同角度的正切及正弦坡度,最后查出度数。

在行车过程中的最大坡度为100%。换算成度数为45°,粗略折算,坡度*0.56=角度,不同角度的正切坡度对照5°≈9%、10°≈18%、30°≈58%。参照这两种方法,相信大家都会坡度这个概念熟悉了。 高速公路的坡度不能超过5% 在普通道路上,超过坡度10%就算比较大坡了,设计时速为120的高速,其坡度一般不能超过5%,而地下停车场的设计坡度也只是在15%左右。

世界上最陡峭的道路位于新西兰但尼丁市的鲍德温街其坡度为35%

图中坡度为60%,约合31° 一般的卡车能够轻松爬上10%的坡度,由于需要行驶各种路段,所以最大可爬升到30%即16.7°左右,而最好的4x4军用越野车最大可爬60%的坡。论坛里一时的争论,相信只是卡友对坡度概念不清楚,这次了解坡度后,相信下次大家都会明明白白了。(文/陈宏伟)

地形因子计算详解

第七章1、本章主题编号 2、本章内容概述 (1)概述 ●坡面因子的分类及提取方法 ●确定坡面因子提取的算法基础 ●提取坡面因子的常用分析窗口 (2)坡度、坡向 ●坡度的提取 ●坡向的提取

(3)坡形 ●宏观坡形因子 ●地面曲率因子 ●地面变率因子 (4)坡长 (5)坡位 (6)坡面复杂度因子 3、本章内容 3.1 概述 (1)坡面因子的分类及提取方法 ●坡面因子的分类 按照坡面因子所描述的空间区域范围,可以将坡面因子划分为微观坡面因子与宏观坡面因子两种基本类型。常用的微观坡面因子主要有:坡度、坡向、坡长、坡度变率、坡向变率、平面曲率、剖面曲率等。常用的宏观坡面因子主要有:地形粗糙度、地形起伏度、高程变异系数、地表切割深度,以及宏观坡形因子(直线形斜坡、凸形斜坡、凹形斜坡、台阶形斜坡)等。

按照提取坡面因子差分计算的阶数,可以将坡面因子分为一阶坡面因子、二阶坡面因子和高阶坡面因子。一阶坡面地形因子主要有坡度和坡向因子。二阶坡面因子主要有坡度变率、坡向变率、平面曲率、剖面曲率等因子。复合坡面因子有坡长、坡形因子、地形粗糙度、地形起伏度、高程变异系数和地表切割深度等。 按照坡面的形态特征,可将坡面因子进一步划分为:坡面姿态因子,坡形因子,坡位因子,坡长因子以及坡面复杂度因子五大类。 ●提取坡面因子的基本方法 首先将坡面的形态特征或各个坡面因子进行定量化描述,完成求导的数学模型,在此基础上,建立其以DEM为基本信息源进行提取的技术路线,并通过软件实现形成一套易于计算机操作的方法。 (2)确定坡面因子提取的算法基础 ●DEM格网数据的空间矢量表达(如图7.1) 图7.1 DEM格网数据的空间矢量模型

CAD地形在Arcgis中作坡度分析

CAD地形在Arcgis中作坡度分析/Sophia 【版本】 ArcGis10.5(安装时建议关闭防火墙及杀毒软件)) 【思路】 一提取等高线 二利用等高线生成TIN或DEM 三利用TIN或DEM作坡度及坡向分析 【详细步骤】 前置工作: 在CAD中绘制等高线:图层干净无杂线,等高线属性自带标高;导出DGX.dwg 在CAD中绘制范围线:图层干净无杂线,XY坐标与DGX.dwg对应;导出FWX.dwg (如已有CAD,将地形图层中的等高线选中复制- 新建CAD - 粘贴到原坐标- 新文件) 一提取等高线文件 1. 启动Arcmap,添加CAD数据文件 Layer(右键)- Add Data - DGX.dwg(无法找见文件时点look in右边+) 2. 只提取具有高程属性的等高线 ① Polyline图层(右键)- 属性- Drawing layer选项卡- 只勾选DGX图层,确定 ② 菜单Selection - Select by Attributes 弹出菜单layer中选择Polyline,属性列表找到Elevation属性,双击选择,编辑条件表达式“Elevation”>0 (筛除操作中失去高程的等高线)

③ 导出等高线数据为.shp 文件 在Polyline 图层中:右键 - Data - Export Data 导出数据后提示是否添加进来,选择是

二利用等高线生成TIN或DEM 1. shp生成TIN文件 工具栏- 3D Analyst - 数据管理- TIN - Create TIN 【参数设置】 Input Feature Class:选择刚刚生成的shp文件 Height source: 选择“Elevation”;其他默认 生成TIN文件后,直接添加进来,方便后续操作;TIN右键属性即可调整颜色显示

地形因子

第七章 1、本章主题编号 2、本章内容概述 (1)概述 ● 坡面因子的分类及提取方法 ● 确定坡面因子提取的算法基础 ● 提取坡面因子的常用分析窗口 (2)坡度、坡向 ● 坡度的提取 ● 坡向的提取 (3)坡形 ● 宏观坡形因子 ● 地面曲率因子 ● 地面变率因子 (4)坡长 (5)坡位 (6)坡面复杂度因子 3、本章内容 3.1 概述 (1)坡面因子的分类及提取方法 ● 坡面因子的分类 按照坡面因子所描述的空间区域范围,可以将坡面因子划分为微观坡面因子与宏观坡面因子两种基本类型。常用的微观坡面因子主要有:坡度、坡向、坡长、坡度变率、坡向变率、平面曲率、剖面曲率等。常用的宏观坡面因子主要有:地形粗糙度、地形起伏度、高程变异系数、地表切割深度,以及宏观坡形因子(直线形斜坡、凸形斜坡、凹形斜坡、台阶形斜坡)等。 按照提取坡面因子差分计算的阶数,可以将坡面因子分为一阶坡面因子、二

阶坡面因子和高阶坡面因子。一阶坡面地形因子主要有坡度和坡向因子。二阶坡面因子主要有坡度变率、坡向变率、平面曲率、剖面曲率等因子。复合坡面因子有坡长、坡形因子、地形粗糙度、地形起伏度、高程变异系数和地表切割深度等。 按照坡面的形态特征,可将坡面因子进一步划分为:坡面姿态因子,坡形因子,坡位因子,坡长因子以及坡面复杂度因子五大类。 ● 提取坡面因子的基本方法 首先将坡面的形态特征或各个坡面因子进行定量化描述,完成求导的数学模型,在此基础上,建立其以DEM为基本信息源进行提取的技术路线,并通过软件实现形成一套易于计算机操作的方法。 (2)确定坡面因子提取的算法基础 ● DEM格网数据的空间矢量表达(如图7.1) 图7.1 DEM格网数据的空间矢量模型 ● 基于空间矢量模型的差分计算 算法主要有数值分析方法、局部曲面拟合算法、空间矢量法、快速傅立叶变换等。其中数值分析方法包含有简单差分算法、二阶差分、三阶差分(带权或不带权)和Frame差分;局部曲面拟合又有线性回归平面、二次曲面和不完全四次曲面(据刘学军,2002)。 (3)提取坡面因子的常用分析窗口 ● 窗口分析(领域分析)的基本原理是:对栅格数据系统中的一个、多个栅格点或全部数据,开辟一个有固定分析半径的分析窗口,并在该窗口内进行诸如极值、均值、标准差等一系列统计计算,或进行差分及与其它层面信息的复合分析等,实现栅格数据有效的水平方向扩展分析。 ● 在坡面信息提取中,按照分析窗口的形状,可以将分析窗口划分为以下几类: 矩形窗口:以目标栅格为中心,分别向周围八个方向扩展一层或多层栅格。 圆形窗口:以目标栅格为中心,向周围作一等距离搜索区,构成一圆形分析窗口。

坡度与坡比

一、教学目标 巩固用三角函数有关知识解决问题,学会解决坡度问题.逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.培养学生用数学的意识,渗透理论联系实际的观点. 二、教学重点、难点和疑点 1.重点:解决有关坡度的实际问题.2.难点:理解坡度的有关术语. 3.疑点对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视.三、教学步骤 (一)明确目标 1.讲评作业:将作业中学生普遍出现问题之处作一讲评. 2.创设情境,导入新课. 例 .同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m). (二)整体感知 通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决.但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义.(三)重点、难点的学习与目标完成过程 1.坡度与坡角 结合图6-34,教师讲述坡度概念,并板书:坡面的铅直高度h和水平宽度的比叫做坡度(或叫做坡比),一般用i表示。即i=, 把坡面与水平面的夹角α叫做坡角. 引导学生结合图形思考,坡度i与坡角α之间具有什么关系 答:i==tan 这一关系在实际问题中经常用到,教师不妨设置练习,加以巩固. 练习(1)一段坡面的坡角为60°,则坡度i=______; ______,坡角______度. 为了加深对坡度与坡角的理解,培养学生空间想象力,教师还可以提问: (1)坡面铅直高度一定,其坡角、坡度和坡面水平宽度有什么关系举例说明. (2)坡面水平宽度一定,铅直高度与坡度有何关系,举例说明. 答:(1) 如图,铅直高度AB一定,水平宽度BC增加,α将变小,坡度减小, 因为 tan=,AB不变,tan随BC增大而减小 (2) 与(1)相反,水平宽度BC不变,α将随铅直高度增大而增大,tanα 也随之增大,因为tan=不变时,tan随AB的增大而增大 2.讲授新课 引导学生分析例题,图中ABCD是梯形,若BE⊥AD,CF⊥AD,梯形就被分割成Rt△ABE,矩形BEFC和Rt△CFD,AD=AE+EF+FD,AE、DF可在△ABE和△CDF中通过坡度求出,EF=BC=6m,从而求出AD. 以上分析最好在学生充分思考后由学生完成,以培养学生逻辑思维能力及良好的学习习

测设设计高程方法

测设设计高程方法

测设设计高程方法: (1)在桩顶位置测量,以桩顶为基准,进行上下调整 (2)标尺紧贴桩号,在桩上下移动,知道测设出设计高程时,划下痕迹此方法需通过后视求出前视标尺上读数 地下坑道施工,坑顶桩号高程测量: (1)标尺倒立,如下图所示 B a b A -高程点在顶部的测 Ha+a=Hb-b (2)坑底桩号测量与地面一样 (3)已知点较高,待测点较低,高差相差较大的时候,采用下图方法测设

a1Ⅰb1 A A Ⅱ a2b2 B B -测设建筑基底高 由于HB=HA+a-(b1-a2)-b2,则可以计算出B点处标尺的读数b2=HA+a-(b1-a2)-HB。 (4)相反,已知点低待测点高,采用如下图方法测设 b2Ⅱa2 B B b1Ⅰa1 A

已知坡度线的测设 (试用版) ? 已知坡度线的测设就是在地面上定出一条直线,其坡度值等于已给定的设计坡度。在交通线路工程、排水管道施工和敷设地下管线等项工作中经常涉及到该问题。 ? 如图11-15所示,设地面上A 点的高程为HA ,AB 两点之间的水平距离为D ,要求从A 点沿AB 方向测设一条设计坡度为δ的直线AB ,即在AB 方向上定出1、2、3、4、B 各桩点,使其各个桩顶面连线的坡度等于设计坡度δ。 ? 具体测设时,先根据设计坡度δ和水平距离D 计算出B 点的高程。 ? HB=HA-δ×D ? 计算B 点高程时,注意坡度δ的正、负,在图10-15中δ应取负值。 ? 然后,按照前面10-3节所述测设已知高程的方法,把B 点的设计高程测设到木桩上,则AB 两点的连线的坡度等于已知设 i δ 倾斜视 A 设计坡 D 已知坡度线测设

ArcGIS实验-Ex22-坡向变率(SOA)

第十二章空间分析建模 练习2:坡向变率(SOA) 一、背景 平面曲率即地面坡向变率,是指在地表的坡向提取基础之上,进行对坡向变化率值的二次提取,亦即坡向之坡度(Slope of Aspect,SOA)。地面坡向变率是一个反映等高线弯曲程度的指标,可以反映出地表所有的山脊线、山谷线。 值得注意的是:SOA在提取过程中在不同的坡面上将会有误差的产生,即在坡面的南北两侧,北面坡由于在坡向算法将会有误差产生,所以要对北坡的SOA结果进行纠正,因为从理论上讲SOA在地表北坡上将产生误差,北坡上坡向值范围为0-90°和270°-360°,在正北方向附近,15°和345°之间坡向差值只是30°,而在计算中却是差了330°,所以要利用反地形将北坡地区的坡向变率误差进行纠正。 二、目的 通过纠正平面曲率的例子,使读者了解如何在模型中调用用户自定义的模型,明晰模型嵌套的过程。 三、要求 为了得到纠正后的SOA,必须得到正地形的SOA1和反地形的SOA2,修正的公式为((SOA1+ SOA2) - (SOA1-SOA2).abs)/2。其数据流如图7所示。 四、数据 DEM栅格数据。 五、操作步骤 1、建立生成SOA的模型 (1) 打开ArcMap,启动ArcToolbox。 (2) 右键ArcToolbox,选择new toolbox,生成toolbox2,如图1。 (3) 右键toolbox2,在new中选择model,,则生成model1,如图2。 图1 选择new toolbox 图2 选择model (4) 右键图标,选择rename命令,输入generate SOA。 (5) 在模型窗口右键,选择create variable命令,在数据类型选择框中选中raster dataset,如图3所示。

地理信息系统技术与土地坡度分析统计

地理信息系统技术与土地坡度分析统计 摘要:耕地的坡度、坡向、高程是决定耕地质量的重要因素,及时准确地提供坡耕地的分布情况,对于退耕还林工作的规划是很有必要的。本文以ARC/INFO 软件为例,着重就如何在地理信息技术条件下,通过建立数字地面模型,进行地形地表分析,解决土地坡度、坡向的分布统计进行讨论。 关键词:ARC/INFODEM(数字地面模型) 土地坡度面积统计 一、引言 根据国家退耕还林有关政策,积极治理现有坡耕地,对25度以上的坡耕地实行有计划地退耕还林还草,不但有利于中西部的环境保护,而且对调整农业结构、提高农民收入有积极意义。因此能否为各地、市、县准确提供辖区内各种坡度的土地分布以及土地坡向情况,是能否客观制定该区域农业规划和退耕还林还草计划的关键;然而传统的手工圈绘和主观的’估计’水份太多,实地丈量不但劳民伤财而且精度低下。 我市广大的测绘工作者多年来为铜仁的国民经济建设做了大量前期性、基础性的工作,他们测制的1:25万、1:5万、1:1万的基本地形图为解决这一难题提供了物资基础;特别是近年来GIS(地理信息系统)技术的发展,使得这些可贵的资料在数字化处理之后日见增值,为准确、快速、低成本地获取地表的各种统计数据提供可靠的依据。 铜仁市城北办事处为市政府制作的《铜仁综合市情地理信息系统(9202工程)》之西部大开发专题中,使用美国ESRI公司生产的GIS软件――ARC/INFO 软件为川硐、漾头,制作了数字地面模型,进行三维地形表面分析和坡度量算统计,取得了准确客观的成果。 二、工作流程 在ARC/INFO中,管理、组织、存储数据最基本的单位是图层(coverage),一个图层相当于一个专题图,包含了地物的空间位置信息和属性信息。利用ARC/INFO 进行土地坡度坡向高程的分布统计的工作流程如下: 1、利用国土资源调查结果,提取耕地信息,在ARC/INFO中生成耕地图层,给不同耕地分类赋予不同的属性; 2、获取该地区的DEM数据(DEM即数字高程模型,就是在一个地区范围内,用规则格网点的平面坐标(x,y)及其高程(z)描述地貌形态的数据集); 3、分别生成坡度分布图层、坡向分布图层和高程带分布图层; 4、将耕地图层与坡度图层、坡向图层、高程带图层分别叠加分析,得到耕地的坡度、坡向、高程属性; 5、进行面积统计,叠加河流、行政区划、道路、居民点等基础地理信息生成专题图。 6、坡度、坡向和高层带分布图生成

DEM内插算法对坡度坡向的影响

第15卷第6期2008年12月 水土保持研究 Research of Soil and Water Conservation Vol.15,No.6 Dec.,2008   D EM内插算法对坡度坡向的影响3 陈吉龙1,武伟2,刘洪斌1 (1.西南大学资源环境学院,重庆400716;2.西南大学计算机与信息科学学院,重庆400716) 摘 要:虽然DEM的应用越来越广泛,但是在实际研究运用中获取DEM的方式主要是利用各种矢量高程信息通过插值而来,不同的插值算法必然会影响DEM分析的结果;以南方丘陵地区为研究区域,利用样区的1∶10000的矢量地形图为数据源,通过对不同算法生成不同分辨率的DEM坡度、坡向的对比研究发现:在坡度小于30°时,不同的算法对坡度具有显著的影响,而大于30°时分辨率和算法均不会对坡度产生显著影响;研究表明:在具有大量平坦区域的地区,尽管ANUDEM算法生成的DEM总体上的精度最高,但是不会产生平坦区域,所以并不适合于这类地区的地形分析。 关键词:DEM;坡度;坡向;地形分析 中图分类号:S157;TP79 文献标识码:A 文章编号:100523409(2008)0620014204 E ffect of DEM Interpolation on the Slope and Aspect C H EN Ji2long1,WU Wei2,L IU Hong2bin1 (1.College of Resource and Envi ronment,S outhwest Universit y,Chongqing400716,Chi na;2.College of Com puter and I nf ormation Science,S outhw est Universit y,Chongqing400716,China) Abstract:In many cases of the research and application,digital elevation data may be the only source for DEM generation with algorithms,which are available or affordable.It is known that the analytic result f rom the DEM can vary in quality depending on their algorithms.Taking hilly region in southern China as research region,using the digital contour with the scale of1∶10000as the source,this paper compared the slope,aspect f rom the DEM generated with five algorithms,the results showed that there were significant effect on the slope among the algorithms when the slope<30°,but there were no significant effect on the slope among the algorithms and resolution when the slope>30°.Furthermore,the result also showed that DEM interpola2 ted with ANUDEM is the most precise,however,there was no flat area in the result f rom the terrain analysis in the region with extensive flat area,so it can’t be suitable for performing terrain in such region. K ey w ords:DEM;slope degree;slope direction;terrain analysis 1 引言 自从DEM理论形成以来,不同的学者就对DEM做过大量的研究,研究领域侧重于利用DEM来进行地形分析、水文分析、DEM精度评价、地形描述误差、数学模拟方法以及探索新的DEM算法[1];其中地形分析是DEM研究的重要内容,是地质地貌研究的重要手段;虽然地形分析中所采用的DEM建立方法多种多样,但是当前乃至今后一段时期内DEM的生产依然是利用各种矢量高程信息通过构建TIN建立DEM;然而该方法的缺点是仅利用等高线生成DEM不能很好地反映河流和流域边界等重要地貌特征[2]; Hutchinson于20世纪80年代提出的ANUDEM插值算法[3],大量的研究也表明ANUDEM算法生成的DEM能更加精确地描述地貌特征[4],其质量较现有基于TIN方法建立的DEM有明显提高[5],因而在全球范围内得到广泛应用[627],然而国内对于ANUDEMS算法的应用很少见;在地形分析中,虽然众多学者对相同数据源生成的DEM的不同分辨率对地形分析结果的影响进行了研究[729],然而其中很多的分辨率太低,忽略了地形描述精度,使分析结果受到严重的影响;本文对不同算法生成的不同分辨率的DEM提取的坡度、坡向进行对比分析,以期为地形分析中DEM的建立和分辨率的选择及相关的研究提供参考。 2 材料与方法 2.1 研究区概况 研究区地处长江上游,重庆市西南边缘,位于重庆江津市,介于东经106°10′45″-106°23′42″和北纬29°22′50″-29°31′17″,面积79.36km2;地势中高西低,中部低山呈东北走向,东西以丘陵为住,最高海拔765.58m,最低海拔255.34 m,相对高差达510.24m。 3收稿日期:2008204218  基金项目:重庆市科委重点攻关项目(2006AB1015);重庆市教委科技资助项目(0182)  作者简介:陈吉龙(1983-),男,重庆巫山人,硕士研究生,从事3S应用研究。E2mial:cjl47168@https://www.doczj.com/doc/998795377.html, 通信作者:刘洪斌(1966-),男,重庆梁平人,研究员,从事3S应用研究。E2mial:lqb2000@https://www.doczj.com/doc/998795377.html,

地形图中坡度陡缓的判读和计算

地形图中坡度陡缓的判读和计算(原创) 1、在同一幅地形图上坡度陡缓的判读 同一幅等高线地形图上,比例尺、等高距相同,等高线稀疏的地方坡度较缓;等高线密度大的地方坡度较陡。等高线上稀下密表示凸形坡,视线易被遮挡,通视条件差;等高线上密下稀表示凹形坡,视线不易被遮挡,通视条件好。 例1、读图1所示的地形图,完成(1)~(2)题 (1)甲、乙、丙、丁四地段中平均坡度最大的是() A.甲 B.乙 C.丙 D.丁 (2)在作战中,地形的通视情况对观察、射击和隐蔽等有很大影响。为了选择观察所、射击阵地和判定敌我可以利用的隐蔽接近地等,常根据等高线地图来判定通视情况。我军某狙击手准备在①、②、③④四处选一合适位置,射击行走到公路H处的敌军指挥官,最佳射击位置是( ) A. ① B. ② C. ③丙 D. ④ 〔点拨〕(1)在同一幅地图上,单位距离的等高线越稀疏(等高线条

数少),表示的坡度越缓,反之越陡;丁穿越陡崖,共5条等高线;(2)等高线上密下稀表示凹形坡,通视情况良好,也可做四个观察点到H的地形剖面图加以判定。 〔答案〕(1)D. (2)A 2、在不同的地形图上坡度陡缓的判读 1. 根据等高线疏密判断 比例尺和等高距相同的等高线地形图上,在相同的水平距离上等高线越密集,坡度越大;等高线越稀疏,坡度越小。 例2.图2中四幅等高线图(单位:米)的比例尺相同,则坡度由大到小的顺序是() A. 甲>乙>丙>丁 B. 丙>甲>丁>乙 C. 乙>丁>甲>丙 D. 丙>丁>乙>甲 〔点拨〕注意显性条件是比例尺相同,其实图中的等高距也相同,都是100米 〔答案〕B. 2. 根据等高距的大小判断 比例尺相同、等高距不同的等高线地形图上,在相同的水平范围内等高距越大,坡度越大;等高距越小,坡度越小。 3. 根据比例尺判断 在等高线稀疏程度相同,等高距相同的情况下,比例尺越大,坡度越大;反之,比例尺越小,坡度越小。 例3.图3为四幅等高线分布图,等高线数值a>b>c,完成(1)~(2)题。

坡度,坡向,提取等高线

?工具/原料 DEM的应用DEM的应用包括:坡度:Slope、坡向:Aspect、提取等高线、算地形坡度:Slope、坡向:Aspect、提取等高线、算地形表面的阴影图、可视性分析、地形剖面、水文分析表面的阴影图、可视性分析、地形剖面、水文分析等,其中涉及的知识点有: a)对TIN建立过程的原理、方法的认识; b)掌握ArcGIS中建立DEM、TIN的技术方法。 (对于这两步的教程本人之前有做过,下面教程不会再重复) c)掌握根据DEM  计算坡度、坡向的方法。 d)理解基于DEM数据进行水文分析的基本原理。 e)利用ArcGIS的提供的水文分析工具进行水文分析的基本方法和步骤。下面开始教程: 软件准备:ArcGIS   Desktop  10.0---ArcMap(3D  Analyst模块和spatial  a nalyst模块) 数据:DEM和TIN(使用由本人前面的教程【ArcGIS地形分析--TIN及DE M的生成,TIN的显示】得到的结果数据。 原始数据下载:https://www.doczj.com/doc/998795377.html,/s/1GGzT2

1 1

执行后,得到坡度栅格Slope_tingri1:坡度栅格中,栅格单元的值在[ 2 0  -82]  度间变化

3

【下面计算剖面曲率】 4 [3D  Analyst工具]——[栅格表面]在【ArcToolbox】中,执行命令[3D  Analyst工具]——[栅格表面] 到剖面曲率栅格:[————[坡度]  。按如下所示,指定各参数。得到剖面曲率栅格:[————[坡度] Slope  _Slope] 如图

第七章 坡面地形因子提取

1、本章主题编号 2、本章内容概述 (1)概述 ● 坡面因子的分类及提取方法 ● 确定坡面因子提取的算法基础 ● 提取坡面因子的常用分析窗口 (2)坡度、坡向 ● 坡度的提取 ● 坡向的提取 (3)坡形 ● 宏观坡形因子 ● 地面曲率因子 ● 地面变率因子 (4)坡长 (5)坡位 (6)坡面复杂度因子 3、本章内容 3.1 概述 (1)坡面因子的分类及提取方法 ● 坡面因子的分类 按照坡面因子所描述的空间区域范围,可以将坡面因子划分为微观坡面因子与宏观坡面因子两种基本类型。常用的微观坡面因子主要有:坡度、坡向、坡长、坡度变率、坡向变率、平面曲率、剖面曲率等。常用的宏观坡面因子主要有:地形粗糙度、地形起伏度、高程变异系数、地表切割深度,以及宏观坡形因子(直线形斜坡、凸形斜坡、凹形斜坡、台阶形斜坡)等。 按照提取坡面因子差分计算的阶数,可以将坡面因子分为一阶坡面因子、二阶坡面因子和高阶坡面因子。一阶坡面地形因子主要有坡度和坡向因子。二阶

坡面因子主要有坡度变率、坡向变率、平面曲率、剖面曲率等因子。复合坡面因子有坡长、坡形因子、地形粗糙度、地形起伏度、高程变异系数和地表切割深度等。 按照坡面的形态特征,可将坡面因子进一步划分为:坡面姿态因子,坡形因子,坡位因子,坡长因子以及坡面复杂度因子五大类。 ● 提取坡面因子的基本方法 首先将坡面的形态特征或各个坡面因子进行定量化描述,完成求导的数学模型,在此基础上,建立其以DEM为基本信息源进行提取的技术路线,并通过软件实现形成一套易于计算机操作的方法。 (2)确定坡面因子提取的算法基础 ● DEM格网数据的空间矢量表达(如图7.1) 图7.1 DEM格网数据的空间矢量模型 ● 基于空间矢量模型的差分计算 算法主要有数值分析方法、局部曲面拟合算法、空间矢量法、快速傅立叶变换等。其中数值分析方法包含有简单差分算法、二阶差分、三阶差分(带权或不带权)和Frame差分;局部曲面拟合又有线性回归平面、二次曲面和不完全四次曲面(据刘学军,2002)。 (3)提取坡面因子的常用分析窗口 ● 窗口分析(领域分析)的基本原理是:对栅格数据系统中的一个、多个栅格点或全部数据,开辟一个有固定分析半径的分析窗口,并在该窗口内进行诸如极值、均值、标准差等一系列统计计算,或进行差分及与其它层面信息的复合分析等,实现栅格数据有效的水平方向扩展分析。 ● 在坡面信息提取中,按照分析窗口的形状,可以将分析窗口划分为以下几类: 矩形窗口:以目标栅格为中心,分别向周围八个方向扩展一层或多层栅格。 圆形窗口:以目标栅格为中心,向周围作一等距离搜索区,构成一圆形分析窗口。

景观设计坡度规范大全

一些关于坡度的资料 来源:徐姝妮的日志 道路 8.0.3 居住区内道路纵坡规定,应符合下列规定: 8.0.3.1 居住区内道路纵坡控制指标应符合表8.0.3规定; 居住区内道路纵坡控制指标(%)表8.0.3 道路类别最小纵坡最大纵坡多雪严寒地区最大纵坡 机动车道≥0.3 ≤8.0 L≤200m ≤5 L≤600m 非机动车道≥0.3 ≤3.0 L≤50m ≤2 L≤100m 步行道≥0.5 ≤8.0 ≤4 注:L为坡长(m)。 8.0.3.2机动车与非机动车混行的道路,其纵坡宜按非机动车道要求,或分段按非机动车道要求控制。 8.0.4 山区和丘陵地区的道路系统规划设计,应遵循下列原则: 8.0.4.1 车行与人行宜分开设置自成系统; 8.0.4.2 路网格式应因地制宜; 8.0.4.3 主要道路宜平缓; 8.0.4.4路面可酌情缩窄,但应安排必要的排水边沟和会车位,并应符合当地城市规划管理部门的有关规定。 8.0.5居住区内道路设置,应符合下列规定: 8.0.5.1小区内主要道路至少应有两个出入口;居住区内主要道路至少应有两个方向与外围道路相连;机动车道对外出入口数应控制,其出入口间距不应小于150m。 沿街建筑物长度超过160m时,应设不小于4m×4m消防车通道。人行出口间距不宜超过80m,当建筑物长度超过80m时,应在底层加设人行通道; 8.0.5.2居住区内道路与城市道路相接时,其交角不宜小于75 ;当居住区内道路坡度较大时,应设缓冲段与城市道路相接; 8.0.5.3进入组团的道路,既应方便居民出行和利于消防车、救护车的通行,又应维护院落的完整性和利于治安保卫; 8.0.5.4在居住区内公共活动中心,应设置为残疾人通行的无障碍通道。通行轮椅车的坡道宽度不应小于2.5m,纵坡不应大于2.5%; 8.0.5.5居住区内尽端式道路的长度不宜大于120m,并应设不小于12m×12m的回车场地; 8.0.5.6当居住区内用地坡度大于8%时,应辅以梯步解决竖向交通,并宜在梯步旁附设推行自行车的坡道; 8.0.5.7在多雪严寒的山坡地区,居住区内道路路面应考虑防滑措施;在地震设防地区,居住区内的主要道路,宜采用柔性路面; 8.0.5.8 居住区内道路边缘至建筑物、构筑物的最小距离,应符合表8.0.5规定; 道路边缘至建、构筑物量小距离(m)表8.0.5 道路级别与建、构筑物关系居住区道路小区路组团路及宅间小路建筑物面向道路无出入口高层5 多层3 3 3 2 2 有出入口- 5 2.5 建筑物山墙面向道路高层4 多层2 2 2 1.5 1.5 围墙面向道路1.5 1.5 1.5 注:居住区道路的边缘指红线;小区路、组团路及宅间小路的边缘指路面边线。当小区路设有人行便道时,其道路边缘指便道边线。 8.0.5.9 居住区内宜考虑居民小汽车和单位通勤车的停放。 九竖向 9.0.1居住区的竖向规划,应包括地形地貌的利用、确定道路控制高程和地面排水规划等内容。

坡度坡向的提取算法

(向下为y轴正方向,向右为x轴正方向)三阶反距离平方权 差分 [dz/dx] = ((c + 2f + i) - (a + 2d + g) / (8 * x_cell_size) [dz/dy] = ((g + 2h + i) - (a + 2b + c)) / (8 * y_cell_size) slope_radians = ATAN ( √ ( [dz/dx]2 + [dz/dy]2 ) ) slope_degrees = A TAN ( √ ( [dz/dx]2 + [dz/dy]2 ) ) * 57.29578 rise_run = √ ( [dz/dx]2 + [dz/dy]2 ] if aspect < 0 cell = 90.0 - aspect else if aspect > 90.0 cell = 360.0 - aspect + 90.0 else cell = 90.0 - aspect 1.加载ArcTutor>Spatial文件夹中的elevation; 2.利用Spatial Analyst>Surface Analysis>Slope计算elevation数据的坡度,为避免求反正切函数,可选择Percent; 3.利用Spatial Analyst>Surface Analysis>Aspect计算elevation数据的坡向; 4.利用绘图工具在数据视图中画一包含3*3个像元的窗口,将其高程数据依次输入Excel中; 5.按照坡度坡向的求取公式求坡度坡向; 6.验证ArcGIS的坡度坡向求取算法。 坡度(Percent)=rise_run*100; aspect = 57.29578 * atan2 (-[dz/dx],[dz/dy])

坡度分析步骤

Arcgis 10.2坡度分析 1.为确保操作成功,先将路径改为英文名,然后新建一个personal geodatabase.gdb 2.如果直接做坡度分析,那么最后只会出现0-89.9度,89.9-90度两种坡度分布,正确的做法是先将原始dem进行坐标投影处理,也就是转为投影坐标系,步骤如下: arctoolbox-->data management tools-->projections and transformation-->raster-->project raster 打开project raster,input raster输入原始dem;Output raster dataset输入新文件的路径及名称,例如dem_prj;Output coordinate system选择投影坐标系,例如Projected Coordinate Systems中的WGS_1984_World_Mercator,最后点确定。 3.投影成功后,然后再进行坡度分析,步骤如下: 3D Analyst Tools-->raster surface-->slope,或者Spacial Analyst Tools-->Surface-->slope,打开slope,input raster是投影后的新文件,即dem_prj。 3.刚生成的坡度文件的坡度值都是有效数字很长的格式,为了方便观察,应该把坡度值设为小数点后保留两位。双击或者右击dem_slope,打开Properties,选择classified,点击color ramp下面的Label,然后选择format labels,如下图:

ArcGIS中坡度、破向的计算过程

地理信息系统作业报告 一、作业内容概述 使用课程文档中提供的DEM数据,进行以下分析: 1.计算坡度,并按照坡度的划分标准进行分级(请查阅坡度分级标准)。统计各坡度分级所占的面积比例 2.计算坡向,并根据坡向划分结果,统计阴坡、阳坡、半阴坡、半阳坡所占的面积比例 3.统计各海拔区段中(以1000m间隔为分段)的各坡度及坡向级别所占的面积比例。 二、工作方法及技术流程 工作方法: 打开ArcGIS软件,导入课程文档中提供的DEM数据,将其地理坐标转换为投影坐标;进行坡度计算,并根据坡度分级标准进行重分类,统计各坡度分级所占的面积比例;进行坡向计算,并根据坡向划分标准进行重分类,统计阴坡、阳坡、半阴坡、半阳坡所占的面积比例;对投影转换后的DEM数据按照0-1000、1000-2000、2000-3000米的标准进行重分类;把DEM重分类数据与坡度重分类数据进行地图代数相加运算;把DEM重分类数据与坡向重分类数据进行地图代数相加运算,统计各海拔区段中(以1000m间隔为分段)的各坡度及坡向级别所占的面积比例。 技术流程: 第一步:打开ArcMap软件,导入gis_121数据,将原有的地理坐标体系转换为投影坐标体系;

第二步:根据投影坐标转换后的DEM数据进行Slope坡度计算;

第三步:将坡度计算结果进行重分类,共分为六级,微坡0°-5°,较缓坡5°-8°,缓坡8°-15°,较陡坡15°-25°,陡坡25°-35°,急陡坡>35°;

第四步:根据投影坐标转换后的DEM数据进行Aspect坡向计算;

第五步:将坡向计算结果进行重分类,共分为八级,平面-1为NoData,阴坡0-45为1,半阴坡45-90为2,半阳坡90-135为3,阳坡135-225为4,半阴坡225-270为2,半阳坡270-315为3,阴坡315-360为1; 第六步:将投影坐标转换后的DEM数据进行重分类,分为三级,间隔为1000m

如何利用ArcGIS10.0通过cad数据制作地表高程、坡度、坡向分析图

如何利用ArcGIS10.0软件通过cad 数据制作高程、坡度、坡向分析图

Arcgis的应用 ----地表高程、坡度、坡向分析 如今科技高速发展,而3S技术也正在我们的规划设计中发挥着它巨大的力量,本文以遂平县嵖岈山温泉小镇农业观光园的规划为例,利用arcgis软件,通过对测量数据的处理,来制作地表高程、坡度、坡向分析,使所规划场地的地形现状直观地呈现在我们面前。 1.打开cad原始数据,用qselect命令,选择我们需要的ZDH图层,并复制

2.在湘源控规里利用地形命令,通过字转高程,把输入的点文本,转为点数据,这时候,点击任意一个点,可以看到它已经具有标高,把数据另存文件 3.打开Arcmap10,通过添加数据把cad数据导入 4.把图层里除了Polygon以外的其他数据移除,并将数据右键导出

5.打开导出的数据,用ArcTool Box→数据管理工具Data Management→投影和变换→定义投影→选择Projected Coordinate Systems文件下Gauss Kruger→Xian1980→114E坐标系 6.由于现在数据要素都是以面域形式出现,所以需要用ArcTool Box→数据管理工具Data Management→要素→要素转点。 7.利用刚得到的数据创建TIN,生成tin数据

8.右键tin数据,点击属性,在符号系统里,添加显示内容(以表面高程为例) 9.调整色带颜色,并定义分类,这里采用定义的间隔分类方法,间隔大小为2米。

10.调整到布局视图,调整打印页面局部和页面大小,插入图例,编辑图例和标题,调整比例尺和指北针,然后导出地图,形成图纸文件(保存BMP位图) 11.符号分类里分别显示坡度、坡向,然后布局视图,插入标题、图例,比例尺,指北针。后附遂平县嵖岈山温泉小镇农业观光园高程、坡度、坡向分析图。

坡度与坡角教案

24.4解直角三角形 -----坡度坡角问题 教学目标知识与技能:巩固用三角函数有关知识解决问题,学会解决坡度问题。 过程与方法:掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度有关的实际问题。 情感、态度与价值观:培养学生用数学的意识,渗透数形结合的数学思想和方法。 教学重点理解坡度和坡角的概念。 教学难点利用坡度和坡角等条件,解决有关的实际问题。对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。 教学过程一.引入 通过回顾之前几节课对解直角三角形的学习,直接引入。 二、出示学习目标。 1、理解坡角、坡度的概念; 2、运用解直角三角形有关知识解决与坡角、坡度有关的实际问题; 3、注意数形结合的数学思想和方法。 三、自学指导。 1.坡度的概念,坡度与坡角的关系。 (1)、h:铅垂高度。 (2)、l:水平长度。 (3)、坡角α:坡面与水平面的夹角。 (4)、坡度(坡比):坡面的铅垂高度h和水平长度l的比。 记作:i。即:α tan = = l h i 注意: α tan 1 1 = = = = m h l l h i 显然,坡度i越大,坡角α就越大,坡面就越陡。

练习: 1、斜坡的坡度是 ,则坡角α=______度。 2、斜坡的坡角是o 45,则坡比是 _______。 3、斜坡长是12米,坡高6米,则坡比是_______。 2.例题讲解。 例1.水库大坝的横断面是梯形,坝顶宽6m ,坝高23m ,斜坡AB 的坡度i=1∶3,斜坡CD 的坡度i=1∶2.5,求: (1)坝底AD 与斜坡AB 的长度。(精确到0.1m ) (2) 斜坡CD 的坡角α。(精确到0.1m ) 四、巩固练习 课件练习题 五、总结与扩展 引导学生回忆前述例题,进行总结,以培养学生的概括能力。 1.弄清坡度、坡角、水平距离、垂直距离、等概念的意义,明确各术语与示意图中的什么元素对应,只有明确这些概念,才能恰当地把实际问题转化为数学问题。 2.认真分析题意、画图并找出要求的直角三角形,或通过添加辅助线构造直角三角形来解决问题。 3.选择合适的边角关系式,使计算尽可能简单,且不易出错。 4. 按照题中的精确度进行计算,注明单位。 六、布置作业 P116页 练习 3:1

DEM做坡度(详细步骤)及常见问题解决方法

如何DEM数据做坡度图(详细步骤) 一、添加数据,并加以处理(如果有必要) 1、首先添加DEM数据: 2、如下图显示,全黑,是由于存在坏点,可使用Calculate Statistics处理一下

3、点击下图中红色按钮,显示ArcToolbox(可能已经打开) 4、如下图依次展开ArcToolbox——Data Management Tools——Raster——Raster Properties ——Calculate Statistics

5、点击Calculate Statistics,打开出现下图选择所要处理的那个数据 6、点击上图中的ok,出现下图,表示正确,正在计算

7、计算完成,出现下图 二、坐标转换 这很重要,是关键。因为下载的数据是WGS-1984坐标系,XY坐标单位是度分秒,必须将其单位转换为米,否则将导致所得坡度不正确,坡度平均会在80-90度(如下图)。故将其转换成以米为单位的坐标系北京1954坐标系。

1、在ArcToolbox底部点Index索引查询如下图, 2、输入Project Raster,点击Project Raster(Management),用此工具转换坐标

3、点击后出现如下对话框,选择所要处理的那个数据,出现下图 3、在Out Coordinate System 中,点击后面的按钮,出现Spatial Reference Properties对话框在XY Coordinate System选项卡中(默认)点击Select,然后单击选择Projected Coordinate System。如图

相关主题
文本预览
相关文档 最新文档