当前位置:文档之家› 量子阱和超晶格及其在光电子器件中的应用

量子阱和超晶格及其在光电子器件中的应用

量子阱和超晶格及其在光电子器件中的应用
量子阱和超晶格及其在光电子器件中的应用

维普资讯 https://www.doczj.com/doc/97788706.html,

光电子技术的应用和发展前景

光电子技术的应用和发展前景 姓名:曾倬 学号:14021050128 专业:电子信息科学与技术 指导老师:黄晓莉

摘要:光电子技术确切称为信息光电子技术,本文论述了一些新型光电子器件及其发展方向 20世纪60年代激光问世以来,最初应用于激光测距等少数应用,光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术。1962年半导体激光器的诞生是近代科学技术史上一个重大事件。经历十多年的初期探索,到70年代,由于有了室温下连续工作的半导体激光器和传输 损耗很低的光纤,光电子技术才迅速发展起来。现在全世界敷设的通信光纤总长超过1000万公里,主要用于建设宽带综合业务数字通信网。以光盘为代表的信息存储和激光打印机、复印机和发光二极管大屏幕现实为代表的信息显示技术称为市场最大的电子 产品。人们对光电神经网络计算机技术抱有很大希望,希望获得功耗的、响应带宽很大,噪音低的光电子技术。

目录 (一)光电子与光电子产业概况 (二)光电子的地位与作用 (三)二十一世纪信息光电子产业将成为支柱产业 (四)国际光电子领域的发展趋势 (五)光电子的应用

(一),光电子及光电子产业概况 光电子技术是一个比较庞大的体系,它包括信息传输,如光纤通信、空间和海底光通信等;信息处理,如计算机光互连、光计算、光交换等;信息获取,如光学传感和遥感、光纤传感等;信息存储,如光盘、全息存储技术等;信息显示,如大屏幕平板显示、激光打印和印刷等。其中信息光电子技术是光电子学领域中最为活跃的分支。在信息技术发展过程中,电子作为信息的载体作出了巨大的贡献。但它也在速率、容量和空间相容性等方面受到严峻的挑战。 采用光子作为信息的载体,其响应速度可达到飞秒量级、比电子快三个数量级以上,加之光子的高度并行处理能力,不存在电磁串扰和路径延迟等缺点,使其具有超出电子的信息容量与处理速度的潜力。充分地综合利用电子和光子两大微观信息载体各自的优点,必将大大改善电子通信设备、电子计算机和电子仪器的性能。 今天,光电子已不再局限传统意义上的用于光发射、光调制、光传输、光传感等的电子学的一

光电子器件与技术

《光电子器件与技术》课程教学大纲 Photoelectron Apparatus and Techniques 课程代码:26105420 课程性质:专业方向理论课(选修) 适用专业:电子信息科学与技术 开课学期:6 总学时数:32 总学分数:2.0 修订年月:2006年6月 执 笔:张学习 一、课程的性质和目的 本课程为电子信息科学与技术专业的专业方向选修课,是以应用为主的工程技术基础类课程。其任务是掌握光电子器件的基本原理以及一些典型的光电子器件的工作方式,使学生系统地掌握光电子器件与技术的基本原理和基础知识,培养学生使用和分析光电子器件的能力。 二、课程教学内容及学时分配 (一)光控器件的基础 1、光电器件的物理基础; 2、激光信号调制的理论基础; 3、波导器件的理论基础和波导器件传光的基本理论。 (二)电、磁光控器件 1、空间光调制器; 2、电光调制器; 3、磁光调制器和调制器件。 (三)典型的声光控制器件 1、声光器件的控制作用; 2、声光控制器件的类型与参数; 3、声光器件的应用。 (四)无源光波导控制器件 1、波导开关器件; 2、几何光学波导器件; 3、无源光波导调制器。 (五)半导体激光器件 1、半导体激光器的特性与分类; 2、典型的半导体激光器和半导体激光器目前的发展方向与途径。 (六) 固体激光器 1、固体激光器的基本结构、关键技术; 2、新型固体激光器的应用。 本章知识点为:固体激光器的基本结构,DPSSL的特性与关键技术。 (七) 高能激光器 1、高能激光器的特性; 2、高能化学激光器和自由电子激光器。 (八) 高速光电探测器件 1、光电二极管、分离探测器的应用; 2、多元探测器及其应用和发展。 (九) 电荷耦合固体成像器件 1、CCD电荷耦合器件的工作基本原理; 2、CCD器件的特性与应用。 总学时:32,其中:理论学时32。具体分配参见下表: 序号 课 程 内 容 理论学时

光电材料与器件实验指导书

《光电材料与器件》实验指导书 何宁编 桂林电子科技大学信息与通信学院 2008年12月

实验一光电池及LED光源特性测试 一.实验目的 1 理解光电池的光电转换机理及主要特性参数。 2 理解LED光源的电光转换机理、驱动方式及主要特性参数。 3 掌握两种器件的应用及参数的测试方法。 二.实验内容 1 测量光电池的开路电压、短路电流和伏安特性。 2 测量LED光源的驱动特性及电光转换效率。 三.实验原理 光电池是由一个面积较大的PN结构成,它是一种直接将光能转换成电能的光电器件,这种器件是利用光生伏特效应,当光线照射到P-N结上时,就会在P-N结两端出现电动势(P区为正;N区为负),若负载接入PN结两端,光电池就有功率输出。光电池对不同的波长的光反映的灵敏度是不同的,按制作材料不同可分为硅光电池和硒光电池,光谱特性如图1所示。 图1 光谱特性图2 光电特性 图1中硅光电池的光谱响应范围是波长4000?——12000?,在波长为8000?时达到峰值,而硒光电池的峰值出现在5000 ?左右,波长的范围是3800——7500?,1埃=0.1nm。 图2中硅光电池的开路电压与光照是一种非线性关系,当光照强度在200勒克斯时就趋向饱和。而短路电流在很大的范围内与光照成线型关系,因此使用光电池作为测量元件使用时,应该把它当成电流源的形式来研究,因为短路电流与光强是线性的,处理起来比较方便,而不要当成电压源使用。需要说明的是这里说的短路电流与开路电压与平时意义上不同,它是指外负载电阻相对与内阻非常小时候的电流值,以及外负载很大时的端电压。实验时外负载电阻<15Ω时,就认为是短路电流,而>5.0K时,就认为是开路电压。经实验证明外负载越小线性度越好。 不同颜色的光有不同的波长,因此光电池的光照频率也不同,光电池的频率特性是指输出电流随调制光的频率变化的关系,图3分别表示硅光电池与硒光电池的频率响应曲线,可见硅光电池有较好的频率特性,而硒光电池则较差。太阳能辐射能量主要集中在1.3-32um的波长范围,表面温度近6000K的太阳能辐射出的能量95%以上的部分分布在波长小于2um的光谱范围。而对于温度为几百K的物体其辐

量子阱原理及应用

光子学原理课程期末论文 ——量子阱原理及其应用 信息科学与技术学院 08电子信息工程 杨晗 23120082203807

题目:量子阱原理及其应用 作者:杨晗 23120082203807 摘要:随着半导体量子阱材料的发展,量子阱器件广泛应用于各种领域.本文主 要介绍量子阱的基本特征,重点从量子阱材料、量子阱激光器、量子阱LED、等方面介绍量子阱理论在光电器件方面的发展及其应用。 关键词:量子阱量子约束激光器 量子阱是指由2种不同的半导体材料相间排列形成的、具有明显量子限制效应的电子或空穴的势阱。量子阱的最基本特征是,由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱,简单来说,就是由多个势阱构成的量子阱结构为多量子阱,简称为MQW(Multiple Quantum Well),而由一个势阱构成的量子阱结构为单量子阱,简称为SQW(Single Quantum Well)。 一量子阱最基本特征 由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱。如果势垒层很薄,相邻阱之间的耦合很强,原来在各量子阱中分立的能级将扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这样的多层结构称为超晶格。有超晶格特点的结构有时称为耦合的多量子阱。量子肼中的电子态、声子态 和其他元激发过程以及它们之间 的相互作用,与三维体状材料中的 情况有很大差别。在具有二维自由 度的量子阱中,电子和空穴的态密 度与能量的关系为台阶形状。而不 是象三维体材料那样的抛物线形 状[1]。 图1半导体超晶格的层状结构,白圈和灰圈代 表两种材料的原子

常用光电子器件介绍

主要光电子器件介绍 【内容摘要】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,本文从几种常见的光电子器件的介绍来展示光纤通信技术的发展。 【关键词】 光纤通信光电子器件 【正文】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。 将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。从宏观上来看,光纤通信主要包括光纤光缆、光电子器件及光通信系统设备等三个部分,本文主要介绍几种常见的光电子器件。 1、光有源器件 1)光检测器 常见的光检测器包括:PN光电二极管、PIN光电二极管和雪崩光电二极管(APD)。目前的光检测器基本能满足了光纤传输的要求,在实际的光接收机中,光纤传来的信号及其微弱,有时只有1mW左右。为了得到较大的信号电流,人们希望灵敏度尽可能的高。 光电检测器工作时,电信号完全不延迟是不可能的,但是必须限制在一个范围之内,否则光电检测器将不能工作。随着光纤通信系统的传输速率不断提高,超高速的传输对光电检测器的响应速度的要求越来越高,对其制造技术提出了更高的要求。 由于光电检测器是在极其微弱的信号条件下工作的,而且它又处于光接收机的最前端,如果在光电变换过程中引入的噪声过大,则会使信噪比降低,影响重现原来的信号。因此,光电检测器的噪声要求很小。 另外,要求检测器的主要性能尽可能不受或者少受外界温度变化和环境变化的影响。 2)光放大器 光放大器的出现使得我们可以省去传统的长途光纤传输系统中不可缺少的光-电-光的转换过程,使得电路变得比较简单,可靠性也变高。 早在1960年激光器发明不久,人们就开始了对光放大器的研究,但是真正开始实用化的研究是在1980年以后。随着半导体激光器特性的改善,首先出现了法布里-泊罗型半导体激光放大器,接着开始了对行波式半导体激光放大器的研究。另一方面,随着光纤技术的发展,出现了光纤拉曼放大器。80年代后期,掺稀土元素的光纤放大器脱颖而出,并很快达到实用水平,应用于越洋的长途光通信系统中。 目前能用于光纤通信的光放大器主要是半导体激光放大器和掺稀土金属光纤放大器,特别是掺饵光纤放大器(EDFA)倍受青睐。1985年英国南安普顿大学首次研制成掺饵光纤,1989年以后掺饵光纤放大器的研究工作不断取得重大

量子阱半导体激光器

量子阱半导体激光器 :本文主要叙述了量子阱半导体激光器发展背景、基本理论、主要应用与发展现状。一、发展背景 1962年后期,美国研制成功GaAs同质结半导体激光器,第一代半导体激光器产生。但 这一代激光器只能在液氮温度下脉冲工作,无实用价值。直到1967年人们使用液相外延的方法制成了单异质结激光器,实现了在室温下脉冲工作的半导体激光器。1970年,贝尔实验室有一举实现了双异质结构的在室温下连续工作的半导体激光器。至此之后,半导体激光 器得到了突飞猛进的发展。半导体激光器具有许多突出的优点:转换效率高、覆盖波段范围 广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。其发展速度之快、 应用范围之广、潜力之大是其它激光器所无法比拟的。但是,由于应用的需要,半导体激光 器的性能有待进一步提高。 80年代,量子阱结构的出现使半导体激光器出现了大的飞跃。量子阱结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料 后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电 子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完

全不同的形状与结构。在此基础上,根据需要,通过改变超薄层的应变量使能带结构发生变 化,发展起来了应变量子阱结构。这种所谓“能带工程”赋予半导体激光器以新的生命力, 其器件性能出现大的飞跃。具有量子阱结构的量子阱半导体激光器与双异质结半导体激光器 (DH)相比,具有阈值电流密度低、量子效应好、温度特性好、输出功率大、动态特性好、 寿命长、激射波长可以更短等等优点。目前,量子阱已成为人们公认的半导体激光器发展的 根本动力。 其发展历程大概为:1976年,人们用GaInAsP/InP实现了长波长激光器。对于激光腔 结构,Kogelnik和Shank提出了分布反馈结构,它能以单片形式形成谐振腔。Nakamura用实验证明了用光泵浦的GaAs材料形成的分布反馈激光器(DBR)。Suematsu提出了用于光通信的动态单模激光概念,并用整体激光器验证了这种想法。1977年,人们提出了所谓的面 发射激光器,并于1979年做出了第一个器件。目前,垂直腔面发射激光器(VECSEL)已用于千兆位以太网的高速网络。自从Nakamura实现了GaInN/GaN蓝光激光器,可见光半导体激 光器在光盘系统中得到了广泛应用,如CD播放器、DVD系统和高密度光存储器。1994年,一种具有全新机理的波长可变、可调谐的量子级联激光器研制成功,且最近,在此又基础上

(完整word版)量子点LED

量子点LED专题报告 一、什么是量子点LED? 量子点LED是把有机材料或者LED芯片和高效发光无机纳米晶体结合在一起而产生的具有新型结构的量子点有机发光器件。相对于传统的有机荧光粉,量子点具有发光波长可调(可覆盖可见和近红外波段)、荧光量子效率高(可大于90%)、颗粒尺寸小、色彩饱和度高、可 低价溶液加工、稳定性高等优点,尤其值得注意的是高色纯度的发光使得其色域已经可以超过HDTV标准色三角。因此基于量子点的发 光二极管,有望应用于下一代平板显示和照明。

表征量子点的光电参数: 1、光致发光谱(PL谱):光致发光谱反映的是发射光波长与发光强度的关系。从PL谱上可以得到发光颜色的单色性、复合发光的机制、量子点的颗粒尺寸大小及分布均匀性、本征发射峰波长等基本光学信息。量子点光致发光谱的半高宽越窄,说明量子点的发光单色性越好,器件的缺陷和杂质复合发光越少。 2、紫外可见吸收谱:量子点的紫外可见吸收谱反映的是量子点对不同波长光的吸收程度,从谱中吸收峰的位置可计算出量子点的禁带宽度。量子点吸收谱的第一吸收峰与光致发光谱的发射峰的偏移是斯托

克斯位移,斯托克斯位移越大,量子点的自吸收越弱,量子点的荧光强度越高。 3、光致发光量子产率:量子点溶液的光致发光量子产率是通过与标准荧光物质(一般用罗丹明6G)的荧光强度对比而测出。量子点高的量子产率能有效提升器件的发光效率,但纯核量子点沉积成薄膜后量子产率将比在溶液中的量子产率下降1到2个数量级。量子点也存在荧光自淬灭现象,这是由存在于不均匀尺寸分布的量子点中的激子通过福斯特能量转移到非发光点进行非辐射复合所引起。 二、量子点LED在照明显示中的应用方案 量子点的发射峰窄、发光波长可调、荧光效率高、色彩饱和度好,非常适合用于显示器件的发光材料。量子点LED在照明显示领域中的应用方案主要包括两个方面:a、基于量子点光致发光特性的量子点背光源技术(QD-BLU,即光致量子点白光LED);b、基于量子点电致发光特性的量子点发光二极管技术(QLED)。

石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。 关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体; 1、前言 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。 目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 2、石墨烯的基本性质 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。 在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。 在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。 石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 3、基于石墨烯的光调制器 3.1 直波导结构石墨烯光调制器 光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

光电子材料与器件 课后习题答案

3.在未加偏置电压的条件下,由于截流子的扩散运动,p 区和n 区之间的pn 结附近会形成没有电子和空穴分布的耗尽区。在pn 结附近,由于没有电子和空穴,无法通过电子-空穴对的复合产生光辐射。加上正向偏置电压,驱动电流通过器件时,p 区空穴向n 区扩散,在pn 结附近形成电子和空穴同时存在的区域。电子和空穴在该区通过辐射复合,并辐射能量约为Eg 的光子,复合掉的电子和空穴由外电路产生的电流补充。 5要满足以下条件a 满足粒子数反转条件,即半导体材料的导带与价带的准费米能级之差不小于禁带宽度即B.满足阈值条件,半导体由于粒子数产生的增益需要能够补偿工作物质的吸收、散射造成的损耗,以及谐振腔两个反射面上的透射、衍射等原因产生的损耗。即 第二章课后习题 1、工作物质、谐振腔、泵浦源 2、粒子数反转分布 5a.激光介质选择b.泵浦方式选择c 、冷却方式选择d 、腔结构的选择e 、模式的选择f 、整体结构的选择 第三章课后习题 10.要求:对正向入射光的插入损耗值越小越好,对反向反射光的隔离度值越大越好。原理:这种光隔离器是由起偏器与检偏器以及旋转在它们之间的法拉第旋转器组成。起偏器将输入光起偏在一定方向,当偏振光通过法拉第旋转器后其偏振方向将被旋转45度。检偏器偏振方向正好与起偏器成45度,因而由法拉第旋转器出射的光很容易通过它。当反射光回到隔离器时,首先经过起偏器的光是偏振方向与之一至的部分,随后这些这些光的偏振方向又被法拉第旋转器旋转45度,而且与入射光偏振方向的旋转在同一方向上,因而经过法拉第旋转器后的光其偏振方向与起偏器成90度,这样,反射光就被起偏器所隔离,而不能返回到入射光一端。 15.优点:A 、采用光纤耦合方向,其耦合效率高;纤芯走私小,使其易于达到高功率密度,这使得激光器具有低的阈值和高的转换效率。B 、可采用单模工作方式,输出光束质量高、线宽窄。C 、可具有高的比表面,因而散热好,只需简单风冷即可连续工作。D 、具有较多的可调参数,从而可获得宽的调谐范围和多种波长的选择。E 、光纤柔性好,从而使光辉器使用方便、灵巧。 由作为光增益介质的掺杂光纤、光学谐振腔、抽运光源及将抽运光耦合输入的光纤耦合器等组成。 原理:当泵浦激光束通过光纤中的稀土离子时,稀土离子吸收泵浦光,使稀土原子的电子激励到较高激发态能级,从而实现粒子数反转。反转后的粒子以辐射跃迁形式从高能级转移到基态。 g v c E F F 211ln 21R R L g g i th

《光电子技术》狄红卫版..

光电子技术又是一个非常宽泛的概念,它围绕着光信号的产生、传输、处理和接收,涵盖了新材料(新型发光感光材料,非线性光学材料,衬底材料、传输材料和人工材料的微结构等)、微加工和微机电、器件和系统集成等一系列从基础到应用的各个领域。光电子技术科学是光电信息产业的支柱与基础,涉及光电子学、光学、电子学、计算机技术等前沿学科理论,是多学科相互渗透、相互交叉而形成的高新技术学科。 光子学也可称光电子学,它是研究以光子作为信息载体和能量载体的科学,主要研究光子是如何产生及其运动和转化的规律。所谓光子技术,主要是研究光子的产生、传输、控制和探测的科学技术。现在光子学和光子技术在信息、能源、材料、航空航天、生命科学和环境科学技术中的广泛应用,必将促进光子产业的迅猛发展。光电子学是指光波波段,即红外线、可见光、紫外线和软X射线(频率范围3×1011Hz~3×1016Hz或波长范围1mm~10nm)波段的电子学。光电子技术在经过80年代与其相关技术相互交叉渗透之后,90年代,其技术和应用取得了飞速发展,在社会信息化中起着越来越重要的作用。光电子技术研究热点是在光通信领域,这对全球的信息高速公路的建设以及国家经济和科技持续发展起着举足轻重的推动作用。国内外正掀起一股光子学和光子产业的热潮。 1.1可见光的波长、频率和光子的能量范围分别是多少? 波长:380~780nm 400~760nm 频率:385T~790THz 400T~750THz 能量:1.6~3.2eV 1.2辐射度量与光度量的根本区别是什么?为什么量子流速率的计算公式中不能出现光度量? 为了定量分析光与物质相互作用所产生的光电效应,分析光电敏感器件的光电特性,以及用光电敏感器件进行光谱、光度的定量计算,常需要对光辐射给出相应的计量参数和量纲。辐射度量与光度量是光辐射的两种不同的度量方法。根本区别在于:前者是物理(或客观)的计量方法,称为辐射度量学计量方法或辐射度参数,它适用于整个电磁辐射谱区,对辐射量进行物理的计量;后者是生理(或主观)的计量方法,是以人眼所能看见的光对大脑的刺激程度来对光进行计算,称为光度参数。因为光度参数只适用于0.38~0.78um的可见光谱区域,是对光强度的主观评价,超过这个谱区,光度参数没有任何意义。而量子流是在整个电磁辐射,所以量子流速率的计算公式中不能出现光度量.光源在给定波长λ处,将λ~λ+d λ范围内发射的辐射通量dΦe,除以该波长λ的光子能量hν,就得到光源在λ处每秒发射的光子数,称为光谱量子流速率。 1.3一只白炽灯,假设各向发光均匀,悬挂在离地面1.5m的高处,用照度计测得正下方地面的照度为30lx,求出该灯的光通量。 Φ=L*4πR^2=30*4*3.14*1.5^2=848.23lx 1.4一支氦-氖激光器(波长为63 2.8nm)发出激光的功率为2mW。该激光束的平面发散角为1mrad,激光器的放电毛细管为1mm。 求出该激光束的光通量、发光强度、光亮度、光出射度。 若激光束投射在10m远的白色漫反射屏上,该漫反射屏的发射比为0.85,求该屏上的光亮度。

半导体量子点及其应用概述_李世国答辩

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

光电子与微电子器件及集成重点专项2019年度项目申报指南

附件4 “光电子与微电子器件及集成”重点专项 2019年度项目申报指南 为落实《国家中长期科学和技术发展规划纲要(2006—2020年)》《2006—2020年国家信息化发展战略》提出的任务,国家重点研发计划启动实施“光电子与微电子器件及集成”重点专项(以下简称“本重点专项”)。根据本重点专项实施方案的部署,现提出2019年度项目申报指南。 本重点专项的总体目标是:发展信息传输、处理与感知的光电子与微电子集成芯片、器件与模块技术,构建全链条光电子与微电子器件研发体系,推动信息领域中的核心芯片与器件研发取得重大突破,支撑通信网络、高性能计算、物联网等应用领域的快速发展,满足国家发展战略需求。 本重点专项按照硅基光子集成技术、混合光子集成技术、微波光子集成技术、集成电路与系统芯片、集成电路设计方法学和器件工艺技术6个创新链(技术方向),共部署49个重点研究任务。专项实施周期为5年(2018—2022年)。 2019年度项目申报指南在核心光电子芯片、光电子芯片共性支撑技术、集成电路与系统芯片、集成电路设计方法学和器件工 —1—

艺技术5个技术方向启动19个研究任务,拟安排国拨总经费概算6.75亿元。凡企业牵头的项目须自筹配套经费,配套经费总额与专项经费总额比例不低于1:1。 各研究任务要求以项目为单元整体组织申报,项目须覆盖所申报指南方向二级标题(例如:1.1)下的所有研究内容并实现对应的研究目标。除特殊说明外,拟支持项目数均为1~2项。指南任务方向“1.核心光电子芯片”和“2.光电子芯片共性支撑技术”所属任务的项目实施周期不超过3年;指南任务方向“3.集成电路与系统芯片”、“4.集成电路设计方法学”和“5.器件与工艺技术”所属任务的项目实施周期为4年。基础研究类项目,下设课题数不超过4个,参研单位总数不超过6个;共性关键技术类和应用示范类项目,下设课题数不超过5个,参与单位总数不超过10个。项目设1名项目负责人,项目中每个课题设1名课题负责人。 指南中“拟支持项目数为1~2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评分评价相近、技术路线明显不同的情况时,可同时支持这2个项目。2个项目将采取分两个阶段支持的方式。建立动态调整机制,第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。 1.核心光电子芯片 1.1多层交叉结构的光子集成芯片(基础研究类) 研究内容:聚焦基于硅基多维度交叉结构的光子集成芯片,—2—

量子阱半导体激光器简述

上海大学2016~2017 学年秋季学期研究生课程考试 (论文) 课程名称:半导体材料(Semiconductor Materials) 课程编号:101101911 论文题目: 量子阱及量子阱半导体激光器简述 研究生姓名: 陈卓学号: 16722180 论文评语: (选题文献综述实验方案结论合理性撰写规范性不足之处) 任课教师: 张兆春评阅日期: 课程考核成绩

量子阱及量子阱半导体激光器简述 陈卓 (上海大学材料科学与工程学院电子信息材料系,上海200444) 摘要: 本文接续课堂所讲的半导体激光二极管进行展开。对量子阱结构及其特性以及量子阱激光器的结构特点进行阐释。最后列举了近些年对量子阱激光器的相关研究,包括阱层设计优化、外部环境的影响(粒子辐射)、电子阻挡层的设计、生长工艺优化等。 关键词:量子阱量子尺寸效应量子阱激光器工艺优化

一、引言 半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用[1],它具有许多突出的优点:转换效率高、覆盖波段范围广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也进一步得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。 20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。[2]制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE)、金属有机化合物化学气相淀积(MOCVD)、化学束外延(CBE)和原子束外延等。[3]我国早在1974年就开始设计和制造分子束外延(MBE)设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS)使用国产的MBE设备制成的GRIN-SCH InGaAs/GaAs应变多量子阱激光器室温下阈值电流为1.55mA,连续输出功率大于30mW,输出波长为1026nm。[4] 量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC)和光电子集成(OEIC)的核心器件。 减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL)以及在三维都使电子受限的所谓量子点(QD)将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。 二、量子阱的结构与特性 1、态密度、量子尺寸效应与能带 量子阱由交替生长两种半导体材料薄层组成的半导体超晶格产生。超晶格结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完全不同的形状与结构。1970年首次在GaAs半导体上制成了超晶格结构。江崎(Esaki)等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2。

光电子技术题库

选择题 1.光通量的单位是( B ). A.坎德拉 B.流明 C.熙提 D.勒克斯 2. 辐射通量φe的单位是( B ) A 焦耳 (J) B 瓦特 (W) C每球面度 (W/Sr) D坎德拉(cd) 3.发光强度的单位是( A ). A.坎德拉 B.流明 C.熙提 D.勒克斯 4.光照度的单位是( D ). A.坎德拉 B.流明 C.熙提 D.勒克斯 5.激光器的构成一般由( A )组成 A.激励能源、谐振腔和工作物质 B.固体激光器、液体激光器和气体激光器 C.半导体材料、金属半导体材料和PN结材料 D. 电子、载流子和光子 6. 硅光二极管在适当偏置时,其光电流与入射辐射通量有良好的线性关系,且 动态范围较大。适当偏置是(D) A 恒流 B 自偏置 C 零伏偏置 D 反向偏置 7.2009年10月6日授予华人高锟诺贝尔物理学奖,提到光纤以SiO2为材料的主要是由于( A ) A.传输损耗低 B.可实现任何光传输 C.不出现瑞利散射 D.空间相干性好

8.下列哪个不属于激光调制器的是( D ) A.电光调制器 B.声光调制器 C.磁光调制器 D.压光调制器 9.电光晶体的非线性电光效应主要与( C )有关 A.内加电场 B.激光波长 C.晶体性质 D.晶体折射率变化量 10.激光调制按其调制的性质有( C ) A.连续调制 B.脉冲调制 C.相位调制 D.光伏调制 11.不属于光电探测器的是( D ) A.光电导探测器 B.光伏探测器 C.光磁电探测器 D.热电探测元件 https://www.doczj.com/doc/97788706.html,D 摄像器件的信息是靠( B )存储 A.载流子 B.电荷 C.电子 D.声子 13.LCD显示器,可以分为( ABCD ) A. TN型 B. STN型 C. TFT型 D. DSTN型 14.掺杂型探测器是由( D )之间的电子-空穴对符合产生的,激励过程是使半导体中的载流子从平衡状态激发到非平衡状态的激发态。 A.禁带 B.分子 C.粒子 D.能带

异质结在光电子器件中的应用

异质结在光电子器件中的应用 在实际的光电子器件中,往往包含一个或多个异质结。这是因为异质结是由具有不同的电学性质和光学性质的半导体组成的,还可以通过适当的晶体生长技术控制异质结势垒的性状,因此异质结在扩大光电子器件的使用范围,提高光电子器件性能,控制某些特殊用途的器件等方面起到了突出的作用。在光纤通信、光信息处理等方面的具体应用如下: 1异质结光电二极管 光电二极管是利用光生伏打效应工作的器件,工作时要加上反向偏压,光照使结的空间电荷区和扩散区内产生大量的非平和载流子,这些非平衡载流子被内建电场和反向偏压电场漂移,就会形成很大的光电流。其工作特性曲线如下图所示: 图2.1 光电二极管的工作特性曲线 光电二极管往往作为光电探测器使用,此时希望它有宽的光谱响应范围和高的光电转化率。在包含有异质结的光电二极管中,宽带隙半导体成为窄带隙半导体的入射窗口,利用此窗口效应,可以使光电二极管的光谱响应范围加宽。图2.2(a)画的是由宽带隙E g1和窄带隙E g2两种半导体组成的异质结,在入射光子能量满足E g1>hv> E g2的条件下,入射光就能透过半导体1而被半导体2吸收。显然,透过谱与吸收谱的曲线重叠部分是该光电探测器的工作波段范围。图2.2(b)是同质结光电探测器响应的情况,

显然同质结的工作波段范围是很窄的。 光子能量/ev 12 E =E 入射光光子能量/ev 12E >E 入射光 (a )(b ) 图2.2 异质结光带二极管和同质结光电二极管的光谱特性 2异质结光电晶体管 图2.3分别是InP/InGaAs 异质结光电晶体管的典型结构图和能带图。发射区由宽禁带的n 型InP 材料做成,基区和收集区由窄禁带的InGaAs 材料做成。光电晶体管工作时一般采用基区浮置的方式,以减少引线分布电容。在集电极和发射极之间加电压,使发射极对基区正向偏置,而集电极对基区反向偏置。入射光子流照在宽带发射区上,当光的波长合适时发射区基本是透明的,光在窄带区中靠近宽带一侧被吸收而产生电子-空穴对。电子被发射结的自建电场所吸引从基区向发射区漂移,而空穴将流向基区。如果光在宽带区中也部分吸收的话,电子和空穴的流动方向也是这样的。因为基区是浮置的,电子和空穴这样的流动将促使发射极的电位更负,而基区的电位更正。这相当于发射结的p-n 正向偏置更加强。也就是说,光的吸收和光生载流子的流动等效于在光电晶体管的发射结上加了一个正向的信号。从而是发射区向基区注入更多的电子。这些电子以扩散的方式通过基区到达基区和集电区的边界,被方向偏置的集电极收集成为集电极电流,从而完成放大的目的。所以,光电晶体管不但能用于检测光信号,还能将光信号转换成的电信号放大。

光电子材料与器件题库

《光电子材料与器件》题库 选择题: 1. 如下图所示的两个原子轨道沿z轴方向接近时,形成的分子轨道类型为( A ) (A) *σ(B) σ(C) π(D) *π 2. 基于分子的对称性考虑,属于下列点群的分子中不可能具有偶极矩的为(C)(A)C n(B)C n v(C)C2h(D)C s 3. 随着温度的升高,光敏电阻的光谱特性曲线的变化规律为(B)。 (A)光谱响应的峰值将向长波方向移动 (B)光谱响应的峰值将向短波方向移动 (C)光生电流减弱 (D)光生电流增强 4. 利用某一CCD来读取图像信息时,图像积分后每个CCD像元积聚的信号在同一时刻先转移到遮光的并行读出CCD中,而后再转移输出。则该CCD的类型为(B ) (A)帧转移型CCD (B)线阵CCD (C)全帧转移型CCD (D)行间转移CCD 5. 对于白光LED器件,当LED基片发射蓝光时,其对应的荧光粉的发光颜色应该为(D) (A)绿光(B)紫光(C)红光(D)黄光 6. 在制造高效率太阳能电池所采取的技术和工艺中,下列不属于光学设计的为(C) (A)在电池表面铺上减反射膜; (B)表面制绒; (C)把金属电极镀到激光形成槽内; (D)增加电池的厚度以提高吸收 7. 电子在原子能级之间跃迁需满足光谱选择定则,下列有关跃迁允许的表述中,不正确的是(B ): (A)总角量子数之差为1 (B)主量子数必须相同 (C)总自旋量子数不变

(D)内量子数之差不大于2 8. 物质吸收一定波长的光达到激发态之后,又跃迁回基态或低能态,发射出的荧光波长小于激发光波长,称为(B)。 (A)斯托克斯荧光(B)反斯托克斯荧光(C)共振荧光(D)热助线荧光9. 根据H2+分子轨道理论,决定H原子能否形成分子的主要因素为H原子轨道的(A ) (A)交换积分(B)库仑积分(C)重叠积分(D)置换积分 10. 下列轨道中,属于分子轨道的是(C) (A)非键轨道(B)s轨道(C)反键轨道(D)p 轨道 11. N2的化学性质非常稳定,其原因是由于分子中存在(D ) (A)强σ 键(B)两个π键(C)离域的π键(D)N N≡三键12. 测试得到某分子的光谱处于远红外范围,则该光谱反映的是分子的(B )能级特性。 (A)振动(B)转动(C)电子运动(D)电声子耦合 13.下列的对称元素中,所对应的对称操作属于虚动作的是(C ) (A)C3 (B)E(C)σh(D)C6 14. 某晶体的特征对称元素为两个相互垂直的镜面,则其所处的晶系为(C)(A)四方晶系(B)立方晶系(C)正交晶系(D)单斜晶系 15. 砷化镓是III-V族化合物半导体,它的晶体结构是(D)。 (A)NaCl 结构(B)纤锌矿结构(C)钙钛矿结构(D)闪锌矿结构16. 原子轨道经杂化形成分子轨道时,会发生等性杂化或非等性杂化。下列物质中化学键属于不等性杂化的是(B)。 (A)CH4(B)H2O (C)石墨烯(D)金刚石 17. 关于金属的特性,特鲁德模型不能成功解释的是(A ) (A)比热(B)欧姆定律(C)电子的弛豫时间(D)电子的平均自由程18. 下列有关半导体与绝缘体在能带上的说法中,正确的是(B )。 (A)在绝缘体中,电子填满了所有的能带 (B)在0 K下,半导体中能带的填充情况与绝缘体是相同的 (C)半导体中禁带宽度比较大 (D)绝缘体的禁带宽度比较小 19. 在非本征半导体中,载流子(电子和空穴)的激发方式为(B)? (A)电(B)热(C)磁(D)掺杂 20.在P型半导体材料中,杂质能级被称之为(C)。 (A)施主能级(B)深陷阱能级(C)受主能级(D)浅陷阱能级

量子阱半导体激光器

量子阱半导体激光器的原理及应用 刘欣卓(06009406) (东南大学电子科学与工程学院南京 210096) 光电调制器偏置控制电路主要补偿了激光调制器的温漂效应,同时兼顾了激光器输出功率的变化。链路采用的激光器带有反馈PD,输出对应的电压信号。该信号经过放大后直接作为控制系统的输入,将两者的电压相减控制稳定后再放大。反馈光信号经过光电转换和滤波放大两个环节。最后一节采用低通滤波器排除射频信号的影响。放大环节有两个作用。其一:补偿采样过程中1%的比例;其二:通过微调放大倍数实现可调的偏置。偏 置控制主要是一个比例积分环节,输出作为调制器的偏置。 关键词:光电调制器;模拟偏置法;误差 High-speed Optical Modulator Bias Control LIU XinZhuo 2) (06009406) (1)Department of Electronic Engineering, Southeast University, Nanjing, 210096 Abstract: The optical modulator bias control circuit compensates for the drift of the laser modulator effect. It also takes into account the changes in the laser output power. Link uses the laser with feedback PD and the output corresponds to voltage signal. The signal after amplification is acted as the input of the control system. After the two voltage signals reduction and stability, the output may be amplified. The feedback optical signal includes photoelectric conversion and filtering amplification. The last part of circuit excludes the influence of the RF signal through a low pass filter. We know that enlarge areas have two roles. First: it can compensate for sampling ratio of 1%of the process; Second: it can realize adjustable bias by fine-tune magnification. The bias control is a proportional integral part of the output of the modulator bias. Abstract: Specific charge of electron; magnetic focusing; magnetic control tube; Zeeman effects; error 作者的个人学术信息: 刘欣卓,1991年,女,南京市。大学本科,电 子科学与工程学院。liuxinzhuo@https://www.doczj.com/doc/97788706.html,. 1.量子阱半导体激光器的发展历程 1.1激光器研制的现状 随着光子技术的发展,光子器件及其集成技术在各领域的应用前景越来越广阔,尤其在一些数据处理速率要求极高的领域,光子器件正逐步取代电子器件。可以预见,不久的将来,光子器件及光子集成线路在各行业所占的比重将不亚于目前集成电路在各领域的地位及作用。而激光器作为光子器件的核心之一,对其新型结构的研制更是早就提上了日程,并取得了一定的进展。 为了研制出阈值电流低、量子效率高、工作于室温环境、短波长、长寿命和光束质量好等要求的半导体激光器, 研究人员致力于寻找新工作原理、新材料、新结构以及各种新的技术。在此,半导体激光器(LD),特别是量子阱半导体激光器(QWLD)正逐步作为光通信和光互连中的重要光源。 1. 2半导体激光器 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,较常规激光器而言,产生激光的具体过程比较特殊。 半导体激光器工作物质的种类有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)

相关主题
文本预览
相关文档 最新文档