当前位置:文档之家› 微生物产丁醇代谢

微生物产丁醇代谢

微生物产丁醇代谢
微生物产丁醇代谢

微生物的产丁醇代谢

摘要:丁醇作为一种传统工业原料,自二战前就开始被广泛应用,是印染、医药、香料等的重要原料。传统上用石油产品作为生产原料,如今,丁醇被赋予了新的用途,即汽车等燃料的替代品。为了节约成本,加强环保,各个实验室开展了生物法制丁醇的研究。本文介绍了微生物产丁醇的一些菌种,以及产丁醇代谢的过程,最后介绍了现在的应用状况以及前景。

关键词:丁醇厌氧发酵汽油梭菌

简介

丙酮丁醇是一种重要的有机溶剂和化工原料,广逆用于喷漆、炸药、塑料、制药、植物油提取及有机玻璃、合成橡胶等工业[2,3,4,11~17]。目前生产方法有化学合成和发酵法两种[13]:发酵法产丁醇曾经是世界上仅次于酒精发酵的第二大发酵产业[2,9],而现在常用的是石油产品进行化学合成。石油资源紧缺而导致的石油价格持续上涨已成为不可逆转的趋势[12],而丁醇作为一种替代的清洁性能源,其生物学制法越来越受到关注。

国内生产生物丁醇(ABE发酵)主要是以玉米为原料,利用丙酮丁醇梭菌(Clostridium acetobutylicum)发酵[7],而国外一般使用拜氏梭菌,用蜜糖为发酵原料[8]。梭菌属严格厌氧,能形成芽孢、厌氧生长的革兰氏阳性杆菌。因芽孢常比菌体大,致使菌体呈梭状而得名,又称厌氧芽孢杆菌属。现在已知的梭菌都是产生正丁醇的,近期,美国杜邦公司和加州大学发现一种使用藻类产生异丁醇的工艺,现在处于保密阶段。本文中如无特指,丁醇均是指正丁醇。

1. 发酵原理

丙酮丁醇发酵包括2个不同的时期:产酸期和产溶剂期。产酸阶段,细胞处于指数生长期,主要产生乙酸、丁酸、H2和CO2,有机酸的产生引起了发酵液pH 的下降;随着有机酸积累到一定阶段(pH 达到4 .3~4.5),发酵进入产溶剂期,此时细胞处于稳定期,产生的乙酸和丁酸在这一阶段转变为ABE,随着发酵的进行,丙酮丁醇梭菌开始衰老,活力下降,加上底物的消耗,溶剂的毒害作用,使菌体开始自溶或生成孢子,发酵逐渐由微弱最终达到静止结束[11]。

如图1,是整个产丁醇的反应的流程及相关酶类。

图1 产丁醇代谢流程及相关酶

如上图,梭菌中有几种特殊的酶,对产丁醇代谢起着关键的调节作用[11]。

在反应的整个代谢途径有3个重要的中间代谢产物:乙酰-CoA 、乙酰乙酰-CoA 和丁酰-CoA ,这3个产物引起了有机酸和溶剂的产生。因此,推动这三种物质产生的酶是整个反应的关键酶。通过基因沉默实验也验证了这一假设[9]。

2. 菌种筛选及产物的测定

2.1 菌种筛选

目前,丙酮-丁醇发酵主要的菌种选育手段是诱变育种。由于初筛得到的菌

种往往丁醇产率及耐受能力很差,需要经过诱变二次筛选才有实用价值。目前常用的方法为2-脱氧-D-葡萄糖平板筛选。通常使用的诱变剂为N+离子[3],亚硝酸亚硝基类[7]等。流程如图2。

图2 诱变育种流程图

原始菌种通过初筛得到,采用沼气池发酵液 、 牛粪、

土壤作为菌种来源。

通过富集培养——有大量气泡和醪盖的培养基进行气象色谱;以及分离纯化——稀释到10-8,滚管技术分离单菌落,TYA培养基(用于厌氧菌培养)培养就可以初步得到有产丁醇能力的菌种。

此外,还可以进行工程菌种的构建[11]。如E.Coli工程菌构建。近年来,人们利用基因工程技术对大肠杆菌的代谢途径进行加工改造,构建的大肠杆菌工程菌能够产生丙酮、丁醇。Bermejo等人构建丙酮的操纵子cet4(adc,ctlAB和th1)的质粒pACT,并成功转化大肠杆菌,首次在大肠杆菌中构建了产丙酮的工程菌,工程菌发酵后能够产生丙酮。另外,Atsumi、Inui等人分别克隆了丙酮丁醇梭菌中合成丁醇途径的关键基因thl、hbd、crt、bcd-etf、B-etfa、adhE,使其控制的硫解酶、3-羟基丁酰-CoA脱氢酶、巴豆酸酶、丁酰-CoA脱氢酶和醛/醇脱氢酶在大肠杆菌中成功表达,工程菌发酵后产生丁醇。

2.2 发酵工艺及产物测定

丙酮丁醇梭菌(C .acetobutylicum) 可产α淀粉酶,能利用淀粉质原料生产丁醇,α淀粉酶酶活与其产丁醇的能力之间存在一定相关性,丁醇抗性株C.acetobutylicum SA-1的丁醇产量提高是由于α淀粉酶酶活力提高。α淀粉酶酶活的提高可以加快C .acetobutylicum利用淀粉转化为丙酮丁醇,提高发酵法生产丙酮丁醇的产量[9]。葡萄糖和果糖可使延滞期缩短,但是抑制α淀粉酶活性[13]。

采用萃取发酵、气提发酵、膜分离发酵、吸附发酵等手段与丙酮、丁醇发酵工艺相耦合。丁醇发酵的主要产物测定是丁醇,但由于副产物像丙酮等对菌体生长有很大危害,因此也需要测定其含量。首先采用精馏法分离产物,然后利用气象色谱分析产物含量,如图3,是简略的流程图,用的是目前比较好的发酵与气提分离耦合工艺[2]。

图3 发酵与气提分离耦合工艺示意图

3. 应用状况及展望

3.1 生物制丁醇发展史

生物制丁醇由来已久:1861发现,到二战广泛应用;我国1954年以后开始兴起丁醇工业,由于石油工业的兴起,生物制丁醇在1996年衰落;至2005,美国对丁醇做汽车燃料进行了测试,紧接着2006杜邦公司宣布他们将与英国BP 公司合作开发生物丁醇燃料项目一期工程拟建设以甜菜为原料、年产3万吨生物丁醇燃料的生产装置,并在英国市场上用生物丁醇来替代汽油作为车用燃料。值得注意的是,根据美国相关部门统计,油价在3O~40美元/桶以上,发酵法制丁醇就具有竞争性[12]。

3.2 丁醇的新应用

传统丁醇多数应用于化学以及医药工业,但是,最新研究表明,丁醇作为一种优良的汽油替代品具有广阔的前景[1,10]。

丁醇作为燃料,有以下几个优势:

第一,丁醇与汽油的配伍性更好,能够与汽油达到更高的混合比。汽油C6-C8,乙醇与汽油混合比的极限为10%,而汽油中允许调入的丁醇可以达到20%[6]。

第二,丁醇具有较高的能量密度,具有较好的燃料经济性。

第三,丁醇亲水性弱,能与汽油以任意比例混合丁醇的蒸汽压力低,腐蚀性小、便于管道输送。

湖南大学的一个课题组对20%的丁醇-汽油混合燃料进行了初步实验研究[6],结果表明:

1)丁醇是一种非常有潜力的车用替代燃料;

2)体积掺混率达20%的丁醇一汽油混合燃料对发动机的动力性几乎不造

成影响;

3)由于丁醇热值低而密度大,因此导致燃料消耗率略有提高;

4)丁醇混合燃料的HC和CO排放得到明显改善。

3.3 丁醇相对乙醇的优势

1)总结国内外相关研究,发现作为燃料,丁醇比乙醇有很大优势。

2)丁醇碳链更长,与汽油更接近,相容性更好;

3)丁醇挥发性较乙醇低,便于储藏和使用;

4)丁醇对管道等的腐蚀性小于乙醇;

5)丁醇燃烧产生的能量多余乙醇,产生的废气同乙醇相差不大。

3.4 应用局限

尽管优势明显,但是生物法依然有许多不足,如使用玉米等粮食作为原料,菌种自身问题(产率、耐受性),环保(丁醇及其副产品有毒)等。在这里提出几种可能的解决方案:

1)原料替代(使用纤维素类作为替代原料)

2)菌种优化(增强产出率、提高耐受力、构建工程菌)

3)提取方法改良(气提、萃取、蒸馏)

4. 总结

木质茎、稻草、农业残余物、玉米纤维和外皮都含有大量的纤维素和部分木质素,这些木质纤维材料都可用于制造生物丁醇。丁醇被认为是一种优于乙醇的生物燃料,因为他的腐蚀性更小,热量值更高。如同乙醇一样,丁醇也可添加到汽油中。而随着石油资源的枯竭,石油价格的节节攀升.可再生农业生物质供应的相对充足以及生物丁醇以及丁醇生产菌种优化、产溶剂梭菌遗传操作系统的研究技术、发酵和下游产品提取技术的不断进步必将使得生物丁醇的成本大大降低,大规模生产燃料丁醇的时机即将到来。

参考文献

[1]严隽森. 把我国广大的沙化草原建设成为可再生的世界级特大的清洁能源生

产基地[J]. 中国工程科学2010 12(3):22~29

[2]童灿灿,杨立荣,吴坚平等.丙酮-丁醇发酵分离耦合技术的研究进展[J].化工

进展2008 27(11):1782~1788

[3]靳孝庆,周华,吴薛明等.丙酮-丁醇发酵生产菌的快速筛选方法[J]. 过程工

程学报2008.8 8(6):1185~1189

[4]李春利,刘艳稳,方静等.丙酮-丁醇精馏工艺中丁醇塔的优化模拟[J].石油化

工2008 38(2):154~157

[5]李小兵,钟运斌,龚红梅.粗粒盐酸土霉素生产中正丁醇的回收利用[J]. 江西

中医学院学报2005.8 17(4):59

[6]杨小龙,杨靖,林铁平.丁醇汽油对发动机性能影响的实验研究[J].湖南大学

学报2010.2 37(2):32~35

[7]裴建新,左文朴,庞浩.利用糖蜜发酵生产丁醇菌株的分离筛选及鉴定[J].酿

酒科技2010 5:32~35

[8]程意峰,李世杰,黄金鹏.利用甜高粱秸秆汁发酵生产丁醇、丙酮[J].农业工

程学报2008.10 24(10):177~180

[9]徐芳,顾秋亚,余晓斌.筛选具有高α-淀粉酶酶活的丙酮丁醇梭菌及C源对

其酶活的影响[J].生物加工过程2010.1 8(1):11~15

[10]丁峰.生物丁醇:新生代生物能源[J].产业纵横41~40

[11]何景昌,张正波,裘娟萍.生物丁醇合成途径中关键酶及其基因的研究进展[J].

食品与发酵工业2009 35(2):254~258

[12]刘力强,杨丽萍,李立强.生物丁醇燃料产业化制造中的问题及发展趋势[J].

生物产业技术2008.9 5:36~44

[13]马光庭,韦珂,李伏生.糖蜜发酵生产丙酮丁醇菌种筛选及其发酵条件的选择

[J].广西轻工业1999 1:24~27

[14]袁海荣,杨银生.盐酸四环素生产中废正丁醇回收工艺设计[J].西北药学杂志

2007.12 22(6):330~332

[15]马晓轩,李珊珊,范代娣等.厌氧发酵产氢细菌的分离和鉴定及产氢特性[J].

化学工程2010.3 38(3):68~71

[16]郑巧东,蒋志城,谢萍华等.厌氧微生物发酵产氢菌种筛选的研究[J].杭州化

工2008 38(2):27~29

[17]王术贵,熊万刚.直接利用玉米浸泡水发酵生产丁醇[J].发酵科技通讯2009.7

38(3):48~49

常见微生物检验项目及临床意义

细菌培养与其它检验项目的临床意义 卫生部规定接受抗菌药物治疗的住院患者微生物检验样本送检率不低于30%(卫办医政发〔2011〕56号)。特介绍微生物检验项目,方便统计与分析点评。细菌检验为感染性疾病诊断和治疗提供依据: 目标性治疗:提高微生物的送检率与检出率,有利于诊断与使用抗菌药。 经验治疗:根据本地区病原菌类型时间、区域、耐药谱等使用抗菌药。 调整治疗方案针对性用药:获得准确病原菌和细菌药敏结果。 细菌培养的临床意义 细菌培养与其它检验项目不同,由于其样本采集易受杂菌的干扰和培养条件的限制,因而造成检测结果有时与临床不完全一致,故在分析细菌培养报告时应明白:细菌培养阴性不代表无细菌感染、细菌培养阳性不代表该菌一定是病原菌,应结合患者具体情况而定。 1、血液和骨髓培养 目前血液培养仍然是菌血症和败血症的细菌学检验的基本方法,并且广泛地应用于伤寒、副伤寒及其它细菌引起的败血症的诊断。菌血症系病原菌一时性或间断地由局部进入血流,但并不在血中繁殖,无明显血液感染临床征象。常可发生在病灶感染或牙齿感染,尤以拔牙、扁桃体切除及脊髓炎手术后等多见。败血症是指病原菌侵入血流,并在其中大量生长繁殖,造成身体的严重损害,引起显著的全身症状(如不规则高热与全身中毒等症状),它多继发于组织器官感染,尤其是当机体免疫功能低下、广谱抗生素和激素的应用及烧伤等。 单次的血培养结果,对临床无鉴别指导意义,应多次多部位采集血液进行培养,才可判定检出菌究竟是病原菌还是污染菌。 抽血时应特别注意皮肤消毒和培养瓶口的灭菌。 2、脑脊液培养 正常人的脑脊液是无菌的,故在脑脊液中检出细菌(排除操作中的污染)应视为病原菌。引起脑膜炎的细菌种类不同,化脓性脑膜炎病原菌多为脑膜炎奈瑟菌,除此之外尚有肺炎链球菌、流感嗜血杆菌、金黄色葡萄球菌、大肠埃希菌、铜绿假单胞菌等。 3、尿液培养 尿液细菌培养对于膀胱和肾脏感染的及早发现和病原学诊断很有价值,对于尿道、前列腺以及内外生殖器的炎症也有一定价值。尿液中出现细菌通常称为菌尿症,如果尿液本身澄清但培养出细菌,一般为标本采集时未彻底消毒尿道口引起。如果细菌培养阳性同时伴有脓尿出现,则提示有尿路感染的可能(需指出轻度感染时可无脓尿出现)。泌尿系感染常见菌为大肠埃希菌、葡萄球菌、链球菌、变形杆菌等,除结核分枝支杆菌外,这些细菌又是尿道口常驻菌,极易引起标本留样污染,应注意鉴别。某些真菌疾病,如曲菌病在播散时也可造成肾脏感染,且尿中也能检查到。

初级代谢与次级代谢之间的关系

初级代谢 一般将微生物从外界吸收各种营养物质,通过分解代谢和合成代谢生成维持生命活动的物质和能量的过程,称为初级代谢。 如何区分初级代谢与次级代谢 初级代谢产物是指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,如氨基酸、核苷酸、多糖、脂类、维生素等。在不同种类的微生物细胞中,初级代谢产物的种类基本相同。此外,初级代谢产物的合成在不停的进行着,任何一种产物的合成发生障碍都会影响微生物正常的生命活动,甚至导致死亡。 为许多主物都具有的主物化学反应,例如能量代谢及氨基酸、蛋白质、核酸的合成等,均称为初级代谢(primary metabolism)。与此不同,只在一定范围内主物的特异的代谢,则为次级代谢。在次级代谢的产物中,对维持生命占有重要地位的并不少,但另一方面,各种动植物和微生物所大量积累的生物碱、类萜(ferpenoid)、酚类、抗菌物质、色素等,其生理意义并不完全清楚。次级代谢产物许多是在胚胎发育的特定时期以及其他特定组织中产生的,所以产物在经济效益上以及对生物体性状表现的调节在研究上都被看成是重要的。 第三节微生物初级代谢和次级代谢的关系 微生物代谢产物的利用。 利用微生物代谢过程中产生的众多代谢产物生产各种发酵产品。 按照积累产物类型:初级代谢产物,如氨基酸、核苷类,以及酶或辅酶; 次级代谢产物,抗生素、激素、生物碱、毒素及维生素等。 按照发酵类型:自然发酵:酒精、乳酸等; 终端产物,赖氨酸、鸟苷酸、腺苷酸等;

中间产物,柠檬酸、α-酮戊二酸、琥珀酸、高丝氨酸、肌苷酸、黄苷酸等; 一、初级代谢与次级代谢产物 微生物的初级代谢:初级代谢是指微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活 动所需要的物质和能量的过程。这一 过程的产物,如糖、氨基酸、脂肪酸、 核苷酸以及由这些化合物聚合而成 的高分子化合物(如多糖、蛋白质、 酯类和核酸等),即为初级代谢产物。 由于初级代谢产物都是微生物营养性生长所必需,因此,除了遗传上有缺陷的菌株外,活细胞中初级代谢途径是普遍存在的,也就是说它们的合成代谢流普遍存在。在这途径上酶的特异性比次级代谢的酶要高。因为初级代谢产物合成的差错会导致细胞死亡。微生物细胞的代谢调节方式很多,例如通过酶的定位以限制它与相应底物的接近,以及调节代谢流等可调节营养物透过细胞膜而进入细胞的能力。其中调节代谢流的方式最为重要,它包括两个方面:一是调节酶的活性,调节的是已有酶分子的活性,是在酶化学 水平上发生的;二是调节酶的合成,调节 的是酶分子的合成量,这是在遗传学水平 上发生的。在细胞内这两者往往密切配合、 协调进行,以达到最佳调节效果。

微生物遗传学习题及答案(第二章)

遗传的物质基础 1、解词 多组分基因组(segmented genome):在一些RNA病毒中,RNA分子的容量有限,如果要增加遗传信息量,则需将病毒的基因组分段保存在2个或多个RNA片段中,以在病毒粒子中形成2个或多个RNA分子,此类病毒中的这些遗传物质称为多组分基因组。 多分体:在不同病毒粒子中含有不同的RNA片段,只有几种含有基因组中不同RNA 片段的病毒粒子同时存在时才能表现有效的侵染,在某些植物RNA病毒中存在这种多分体现象。 类病毒:一种小分子单链环状RNA分子,无蛋白质外壳保护,结构和化学组成比普通病毒简单,不需要辅助病毒便可侵入敏感的宿主细胞内进行自我复制,并使宿主致病或死亡。 朊病毒(Protein infection,Prion):一类侵染动物并在寄主细胞内复制的小分子无免疫性的疏水蛋白质,这类蛋白质能与寄主脑组织中的核酸相互作用,使脑组织海绵状损伤,引起动物的亚急性海绵样脑病。 重叠基因:具有部分公用核苷酸序列的基因,即同一段DNA携带了两种或两种以上不同蛋白质的编码信息。重叠的部分可在调控区或结构基因区,常见于病毒和噬菌体基因组中。 串珠结构:60bp的间隔线状DNA双链作为连接丝,将许多核小体串联起来并盘绕形成的染色质纤维细丝,呈念珠状,即为染色质的串珠结构。 核小体(nucleosome):由H2A、H2B、H3、H4四种组蛋白各以两个分子组成的八聚体核心和一分子组蛋白H1以及大约200bp的DNA缠绕而组成,直径一般为10nm。2、问题 Ⅰ、简述病毒、原核生物和真核生物遗传物质的特点。 病毒:核酸类型有DNA和RNA之分;核酸分子有单链和双链之分;空间结构有开放型和闭合型之分;基因组有多组份型和单组份型;有多分体现象;能够指导蛋白质合成;能够产生可遗传变异。 原核生物:原核微生物遗传物质分子量较病毒大而比真核微生物小,DNA与微量的组蛋白相结合,形成超螺旋脚手架结构;某些细菌只有一条环状双链DNA,某些拥有两个环状DNA,有些则一条环状、一条线状DNA;能够指导蛋白质合成;能够产生可遗传变异;一般情况下,一个细菌细胞只有一套基因组,其DNA含量在细胞间期十分稳定;能够自我复制,使亲子代之间保持连续性;基因组在DNA上一般是连续排列。 真核生物:真核微生物遗传物质主要存在于细胞核,细胞核有核膜包裹,核内存在多条线状dsDNA;DNA和组蛋白组成核小体,线状DNA双链缠绕在核小体上形成串珠状染色质;每一染色体只含有一条线状双链DNA;分子结构相对稳定,能够自我复制,使亲子代之间保持连续性;能够指导蛋白质合成;能够产生可遗传变异;基因组含有大量的重复序列。 Ⅱ、原核生物和真核生物染色体外遗传物质。 答:染色体外遗传物质是细胞的非固定成分,也能影响细胞的代谢活动,但它们不是细胞生存必不可少的组成部分,包括附加体和共生体。含有DNA的细胞质颗粒,即附加体,既能以完全自主的状态存在,也能组入到染色体上,成为染色体的一部分。进入细胞,与细胞建立起特殊的共生关系的一类物质即共生体。 原核生物的染色体外遗传物质:附加体如R质粒(抗性因子,使E. coli.抗一定浓度的抗菌素)、F因子(决定性别,有F因子的E. coli.为雄性------供体)等;共生体如

微生物的代谢及其调控

微生物的代谢及其调控

1微生物的代谢 微生物代谢包括微生物物质代谢和能量代谢。 1.1微生物物质代谢 微生物物质代谢是指发生在微生物活细胞中的各种分解代谢与合成代谢的总和。 1.1.1分解代谢 分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。—般可将分解代谢分为TP。三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更为简单的乙酰辅酶A、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH及FADH2;第三阶段是通过三羧酸循环将第二阶段产物完全降解生成CO2,并产生ATP、NADH 及FADH2。第二和第三阶段产生的ATP、NADH及FADH2通过电子传递链被氧化,可产生大量的ATP。 1.1.1.1大分子有机物的分解 (1)淀粉的分解 淀粉是许多种微生物用作碳源的原料。它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。直链淀粉为α一l、4糖苷键组成的直链分子;支链淀粉只是在支点处由α—1、6糖苷键连接而成。 微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。淀粉酶是一类水解淀粉糖苷键酶的总称。它的种类很多,作用方式及产物也不尽相同,主要有液化型淀粉酶、糖化型淀粉酶(包括β—淀粉酶、糖化酶、异淀粉酶)。 以液化型淀粉酶为例,这种酶可以任意分解淀粉的。α-l、4糖苷键,而不能分解α-1、6糖苷键。淀粉经该酶作用以后,黏度很快下降,液化后变为糊精,最终产物为糊精、麦芽糖和少量葡萄糖。由于这种酶能使淀粉表现为液化,淀

第六章-微生物代谢习题及答案

第六章微生物的代谢习题及参考答案 一、名词解释 1.发酵 2.呼吸作用 3.有氧呼吸 4.无氧呼吸 5.异型乳酸发酵 6.生物固氮 7.硝化细菌 8.光合细菌 9.生物氧化 10.初级代谢产物: 11.次级代谢产物: 12.巴斯德效应: 13.Stickland反应: 14.氧化磷酸化 二、填空题 1.微生物的4种糖酵解途径中,是存在于大多数生物体内的一条主流代谢途径;是存在于某些缺乏完整EMP途径的微生物中的一种替代途径,为微生物所特有;是产生4碳、5碳等中间产物,为生物合成提供多种前体物质的途

径。 2.同型乳酸发酵是指葡萄糖经 途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的 作用下被NADH 还原为乳酸。异型乳酸发酵经 、 和 途径分 解葡萄糖。代谢终产物除乳酸外,还有 。 3.微生物在糖酵解生成丙酮酸基础上进行的其他种类的发酵有丁二醇发酵、混合酸发 酵、 发酵和 发酵等。丁二醇发酵的主要产物是 , 发 酵的主要产物是乳酸、乙酸、甲酸、乙醇。 4.产能代谢中,微生物通过 磷酸化和 磷酸化将某种物质氧化而释放 的能量储存在ATP 等高能分子中;光合微生物则通过 磷酸化将光能转变成为化学 能储存在ATP 中。 磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。 5.呼吸作用与发酵作用的根本区别是呼吸作用中电子载体不是将电子直接传递给底物 降解的中间产物,而是交给 系统,逐步释放出能量后再交给 。 6.巴斯德效应是发生在很多微生物中的现象,当微生物从 转换到 下, 糖代谢速率 ,这是因为 比发酵作用更加有效地获得能量。 7.无氧呼吸的最终电子受体不是氧,而是外源电子受体,像 22322423、CO O 、S 、SO 、NO NO ----等无机化合物,或 等有机化合物。 8.化能自养微生物氧化 而获得能量和还原力。能量的产生是通过 磷酸化形式,电子受体通常是O 2。电子供体是 、 、 和 , 还原力的获得是逆呼吸链的方向进行传递, 能量。 9.微生物将空气中的N 2还原为NH 3的过程称为 。该过程中根据微生物和其

常见微生物检验项目与临床意义

微生物检验项目与临床意义 卫生部规定接受抗菌药物治疗的住院患者微生物检验样本送检率不低于30%(卫办医政发〔2011〕56号)。特介绍微生物检验项目,方便统计与分析点评。细菌检验为感染性疾病诊断和治疗提供依据:目标性治疗:提高微生物的送检率与检出率,有利于诊断与使用抗菌药。 经验治疗:根据本地区病原菌类型时间、区域、耐药谱等使用抗菌药。 调整治疗方案针对性用药:获得准确病原菌和细菌药敏结果。 细菌培养的临床意义 细菌培养与其它检验项目不同,由于其样本采集易受杂菌的干扰和培养条件的限制,因而造成检测结果有时与临床不完全一致,故在分析细菌培养报告时应明白:细菌培养阴性不代表无细菌感染、细菌培养阳性不代表该菌一定是病原菌,应结合患者具体情况而定。 1、血液和骨髓培养 目前血液培养仍然是菌血症和败血症的细菌学检验的基本方法,并且广泛地应用于伤寒、副伤寒及其它细菌引起的败血症的诊断。菌血症系病原菌一时性或间断地由局部进入血流,但并不在血中繁殖,无明显血液感染临床征象。常可发生在病灶感染或牙齿感染,尤以拔牙、扁桃体切除及脊髓炎手术后等多见。败血症是指病原菌侵入血流,并在其中大量生长繁殖,造成身体的严重损害,引起显著的全身症状(如不规则高热与全身中毒等症状),它多继发于组织器官感染,尤其是当机体免疫功能低下、广谱抗生素和激素的应用及烧伤等。 单次的血培养结果,对临床无鉴别指导意义,应多次多部位采集血液进行培养,才可判定检出菌究竟是病原菌还是污染菌。 抽血时应特别注意皮肤消毒和培养瓶口的灭菌。 2、脑脊液培养 正常人的脑脊液是无菌的,故在脑脊液中检出细菌(排除操作中的污染)应视为病原菌。引起脑膜炎的细菌种类不同,化脓性脑膜炎病原菌多为脑膜炎奈瑟菌,除此之外尚有肺炎链球菌、流感嗜血杆菌、金黄色葡萄球菌、大肠埃希菌、铜绿假单胞菌等。 3、尿液培养 尿液细菌培养对于膀胱和肾脏感染的及早发现和病原学诊断很有价值,对于尿道、前列腺以及内外生殖器的炎症也有一定价值。尿液中出现细菌通常称为菌尿症,如果尿液本身澄清但培养出细菌,一般为标本采集时未彻底消毒尿道口引起。如果细菌培养阳性同时伴有脓尿出现,则提示有尿路感染的可能(需指出轻度感染时可无脓尿出现)。泌尿系感染常见菌为大肠埃希菌、葡萄球菌、链球菌、变形杆菌等,除结核分枝支杆菌外,这些细菌又是尿道口常驻菌,极易引起标本留样污染,应注意鉴别。某些真菌疾病,如曲菌病在播散时也可造成肾脏感染,且尿中也能检查到。 尿液的细菌学培养具有重要的诊断意义,但培养阴性并不能否定泌尿道感染,一般应注意病程、采样的时机、方法以及其它原因的影响。 尿道口的消毒是中段尿细菌培养的关键步骤,是引起假阳性的最主要因素,故尿液细菌培养阳性要注意排除留样污染,如果检出菌的数量大于10万CFU/ml,则基本可认为是病原菌。 4、痰液和咽拭子标本的培养 痰液及支气管分泌物的细菌学检验对于呼吸道疾病的诊断、治疗具有一定的意义。对无法咳痰的患者,用咳嗽后的咽拭子做培养检查,仍是发现致病菌的主要依据。

微生物生理学实验指导圈起来的不做

微生物生理学实验 ―――铜绿假单胞菌fabI基因的克隆及功能鉴定 目录 实验〇铜绿假单胞菌fabI基因鉴定的原理 实验一细菌总DNA的提取与检测 实验二铜绿假单胞菌fabI基因PCR扩增 实验三铜绿假单胞菌pafabI基因表达载体构建 实验四质粒的提取与检测 实验五大肠杆菌感受态细胞的制备及DNA转化 实验六遗传互补大肠杆菌fabI温度敏感突变菌株 实验七铜绿假单胞菌烯酯酰ACP还原酶的原核表达 实验八铜绿假单胞菌烯酯酰ACP还原酶纯化 实验九体外鉴定烯酯酰ACP还原酶的酶活性 实验十构建铜绿假单胞菌fabI突变菌株 实验十一菌落PCR筛选重组子 实验十二铜绿假单胞菌脂肪酸合成分析 实验报告

实验〇铜绿假单胞菌fabI基因鉴定的原理脂肪酸的生物合成是一种细胞生物体重要的基础代谢。生物体脂肪酸合成系统(FAS)为磷脂和类脂等生物质膜组分提供重要的前体物质,同时生物体内一些重要的化合物如硫辛酸、生物素以及细菌群体感应的信号分子等也都需要以脂肪酸合成代谢中的中间产物为前体物质合成。 在不同生物体内,脂肪酸的生物合成过程的基本原理是相似的,但是催化反应的蛋白序列和结构则有着很大的差异。根据合成酶系统的这种差异,人们将脂肪酸生物合成系统分为I型脂肪酸合成酶系(FASI)和II型脂肪酸合成酶系(FAS II)(Cronan, 2006)。I型脂肪酸合成酶系主要分布在哺乳动物和真菌等生物中,该种脂肪酸合成由一个(或两个)分子量较大的多功能酶蛋白催化。这种多功能酶蛋白有多个不同功能的结构域,脂肪酸延伸循环中的各个反应分别在酶蛋白的不同结构域进行(Heath et al, 2002a; White et al, 2005)。II型脂肪酸合成酶系主要分布在细菌,植物和原生动物中,该类生物的脂肪酸合成由一组独立存在的酶催化完成,该系统中各个独立的酶蛋白分别行使一种功能(Cronan, 2006; White et al, 2005)。细菌脂肪酸的合成过程中,酰基链通过硫脂键连接在酰基载体蛋白(ACP)上。ACP是一种小分子量蛋白,一般由70-80个氨基酸残基组成,是FAS II的核心成员之一。 以大肠杆菌为例,说明脂肪酸合成的路径。 1. 脂肪酸合成的起始:脂肪酸合成的起始反应是以细菌体内的乙酰辅酶A 合成起初的四碳的短链脂肪酸的过程,该四碳的短链脂肪酸(acyl-CoA)及CO 2 产物是酰基链延长反应的基础(Revill et al, 2001; White et al, 2005)。此过程通过羧化、转移、缩合三步来完成:第一步,羧化:乙酰CoA在乙酰辅酶A 羧化酶(ACC)作用下转化为丙二酸单酰辅酶A(Mal-CoA)。ACC有4个独立的蛋白构成(AccA,AccB,AccC,AccD),其中AccB的行使功能需要生物素作为共价结合的辅因子(Cronan et al, 2002)。第二步,转移:Mal-CoA在丙二酰转酰基酶(FabD)的作用下将丙二酸单酰基团转移至ACP上,形成Mal –ACP(Jackowski et al, 1987)。第三步,缩合:在β酮脂酰ACP合成酶III(KAS III,FabH)的作用下将乙酰CoA所携带的酰基链合缩合到Mal-ACP上,生成β酮丁酰ACP,起始新的酰基链的生成(Revill et al, 2001)。

微生物代谢产物生产食品综述

微生物代谢产物生产食品综述 摘要:微生物代谢产物的种类很多,已知的有37个大类,其中16类属于药物,如氨基酸、核并酸、蛋白质、核酸、糖类、抗生素、生物碱、细菌毒素等。利用微生物的代谢产物可以生产十分丰富的食品。本文介绍了发酵生产食品的一般过程,并以谷氨酸为例详细说明。 关键词:微生物代谢产物食品谷氨酸发酵 正文: 微生物代谢产物的种类很多,已知的有37个大类,其中16类属于药物。在菌体对数生长期所产生的产物,如氨基酸、核并酸、蛋白质、核酸、糖类等,是菌体生长繁殖所必需的。这些产物叫做初级代谢产物,许多初级代谢产物在经济上具有相当的重要性,分别形成了各种不同的发酵工业。在菌体生长静止期,某些菌体能合成一些具有特定功能的产物,如抗生素、生物碱、细菌毒素等。这些产物与菌体生长繁殖无明显关系,叫做次级代谢产物。次级代谢产物多为低分子量化合物,但其化学结构类型多种多样,据不完全统计多达47类,其中抗生素的结构类型,按相似性来分,也有14类。由于抗生素不仅具有广泛的抗菌作用,而且还有抗病毒、抗癌和其他生理活性,因而得到了大力发展,已成为发酵工业的重要支柱。 利用微生物的代谢产物可以生产十分丰富的食品。以下举例说明: 1、食醋:食醋是人们日常生活所必需的调味品,也是最古老的利用微生物生产的食品之一。食醋生产是利用醋酸菌在充分供氧的条件下将乙醇氧化为醋酸。能用于食醋生产的醋酸菌有纹膜醋酸菌、许氏醋酸菌、恶臭醋酸菌和巴氏醋酸菌等。不同原料还需加入不同的微生物。以淀粉为原料时加入霉菌和酵母菌,糖类为原料时加入酵母菌。获得风味迥异的食醋品种。 2 .酒类:酒类的发酵生产主要是利用酵母菌在厌氧条件下将葡萄糖发酵为酒精的过程。不同酒类的发酵工艺不同:不同的酒类酿造所选用的酵母菌不同。所选用的原料、水质、甚至环境都会影响酒类的品质和风味。纯净的矿泉水往往较河水和自来水好。有人发现,贵州茅台酒之所以具有其独特的芬芳风味,与其酿酒厂环境中存在的微生物区系有关。 3 、发酵生产乳制品:利用乳酸细菌进行发酵,使成为具有独特风味的食品很多。如酸制奶油、干酪、酸牛乳、嗜酸菌乳(活性乳)、马奶酒、面包格瓦斯以及酸泡菜、乳黄瓜等等。这些乳制品不仅具有良好而独特的风味,而且由于易于吸收而提高了其营养价值。发酵乳制品的主要乳酸菌有干酪乳杆菌、保加利亚乳杆菌、嗜酸乳杆菌、植物乳杆菌、瑞士乳杆菌、乳酸乳杆菌、乳链球菌、乳脂链球菌、嗜热链球菌、噬柠檬酸链球菌、副柠檬酸链球菌等许多种。嗜柠檬酸链球菌还可以把柠檬酸代谢为具有香味的丁二酮等,使乳制品具有芳香味。 4 、发酵生产酱油:酱油是包括霉菌、酵母菌和细菌等多种微生物参与原料物质转化的混合作用的结果。对发酵速度、成品色泽、味道鲜美程度影响最大的是米曲霉和酱油曲霉,而影响其风味的是酵母菌和乳酸菌。米曲霉含有丰富的蛋白酶、淀粉酶、谷氨酸胺酶和果胶酶、半纤维素酶、酯酶等。涉及酱油发酵的酵母菌有 7 个属的 23 个种,其中影响最大的是鲁氏酵母,易变圆酵母等。 5 、腐乳的发酵生产:腐乳是大豆制品经多种微生物及其产生的酶,将蛋白质分解为胨、多肽和氨基酸类物质以及一些有机酸,有机醇和酯类而制成的具有特殊色香味的豆制品。涉及的微生物主要是毛霉中的腐乳毛霉、鲁氏毛霉、五通

赵立平和他的肠道微生物

赵立平:我和我的肠道菌群 1987 年,赵立平跟刘英结婚。两年不到,他们有了一个女儿,赵立平还完成了他的博士学位。新的压力加上美食——藉刘英做得一手好菜——我们的微生物学家长胖了。到 1990 年,体重从60 公斤增至 80 公斤。后来,在美国康乃尔大学读博士后期间,他又长胖了 10 公斤。1995 年腰围量110 厘米,整个人的健康状况也极为糟糕。赵立平认为,调节肠道菌群是他减肥成功的关键。 进入平台期的科研 转机2004 年,他读到一篇论文。论文的主要作者戈登,是美国华盛顿大学医学院的微生物学家。用实验表明,肥胖症和小鼠肠道中的菌群存有关联。 2006 年,他开始了一种饮食疗法,食谱中包括山药和苦瓜,同时对自己的体重以及肠道中的菌群进行监测。山药和苦瓜里面含有益生元,可以被肠道细菌发酵利用,据说有调节人体肠道菌群生长的功效。再加上以粗粮为主的饮食,在两年内减掉了 20 公斤。他的血压、心率和胆固醇水平也都降了下来。 抗炎细菌Faecalibacterium prausnitzii的数量大幅增加,从最开始根本检测不到,到后来增加为他肠道细菌总量的 14.5%。这些变化使赵立平决定,集中研究微生物在他身体状况转变中所发挥的影响。从小鼠身上做起的实验,赵立平把它扩展到了人的身上。 寻找新的启发 有一天,一位兽医学的同事问他要一些芽孢杆菌的菌株,说是这种细菌能缓解猪和鸡的腹泻。赵立平意识到,自己研究的菌株里面,很可能就有能抗植物感染,甚至抗人类感染功效的。 20 世纪 90 年代,赵立平涉足猪的微生物研究,试图探究用菌株来控制猪身上的感染这一设想,但无法获得资金。在此期间,他家人的健康状况每况愈下。本来就偏胖的父亲胆固醇水平激增,还得遭遇了两次中风。赵立平的两个弟弟也都成了大胖子。几年后,赵立平看到了戈登的论文,对他来说,这是“肠道菌群可以调节宿主的基因的首个证据”。于是,赵立平拿自己当小白鼠,试图找出体重增加可能跟哪些微生物有关。要从生活在人体肠道内上百种不同的微生物中,找出让体重增加的那一种,确实是个棘手的大难。 低热量饮食结合剧烈运动的减肥方法,在他看来完全说不通。“从营养上讲,你的身体是在压力状态下的,”赵立平说,“然后你再加上生理上的压力。也许这样你是能减肥,但同时也减掉了你的健康。” 腰围变小之后,他开始在动物身上进行实验,试图筛选出与肥胖有关的细菌。今年 4 月,赵立平《国际微生物生态学会会刊》上发表了一项研究,他们将小鼠从正常饮食转换到高脂肪饮食,然后再换回到正常饮食上来,期间每两周监测一

常见微生物的代谢方式

常见微生物的代谢方式 马丽甘肃省临夏回民中学(731100) 微生物种类繁多,代谢方式多样,本文将一些常见微生物的代谢方式归纳如下。所涉及生物中,除特别标注外,其它均为原核生物。 1、光能自养需氧型 这类微生物以光为能源,以CO2为主要碳源,适合生存于有氧环境,如:蓝藻、衣藻(原生生物)。 2、化能自养需氧型 这类微生物以无机化学能为能源,以CO2为主要碳源,适合生存于有氧环境,如:铁细菌、无色硫细菌、硝化细菌。 3、光能自养厌氧型 这类微生物如:绿硫菌,以光为能源,以CO2为主要主要碳源;有光合色素,进行光合作用获取生长所需要的能量;以无机物如H2、H2S、S等作为供氢体或电子供体,使CO2还原为细胞物质。适合生存于无氧环境。 4、化能异养需氧型 这类微生物的能源和碳源均来自于有机物,适合生存于有氧环境,真菌和绝大多数的细菌都是这一类型,常见的有:霉菌(真核生物)、草履虫及变形虫(原生生物)、放线菌、根瘤菌、圆褐固氮菌、肺炎双球菌、结核杆菌、霍乱弧菌、炭疽杆菌、麻风杆菌、黄色短杆菌、土壤农杆菌、枯草芽孢杆菌、苏云金芽孢杆菌、谷氨酸棒状杆菌等。 5、化能异养厌氧型 这类微生物的能源和碳源也是均来自于有机物,但是只有在缺氧的条件下才能很好的生长,如:乳酸菌、甲烷杆菌、反硝化细菌、破伤风杆菌、幽门螺旋杆菌。 6、化能异养兼性厌氧型 这类微生物的能源和碳源也是均来自于有机物,在有氧和无氧的条件下均能生长,如:大肠杆菌、酵母菌(真核生物)、金黄色葡萄糖球菌、支原体、酿脓链球菌。 7、兼性营养需氧型 这类微生物比较少见,如:裸藻,又叫眼虫(原生生物),适合生存于有氧环境,它在含有有机物的水中,能够靠细胞膜吸取水里的有机物“食物”,过着动物式的化能异养生活。但是同时,眼虫的细胞中具有含叶绿素的叶绿体,在无有机物的情况下,能够自己制造营养物质进行光合作用。因此兼有光能自养和化能异养的代谢方式。 8、兼性营养兼性厌氧型 这类微生物也是比较少见,如:红螺菌,它的同化方式是兼性营养型,以光为能源,以二氧化碳为主要碳源,以水或其他无机物作为供氢体,进行光合作用,还原CO2合成有机物。属于光能自养;或者以光为能源,以有机物为主要碳源,并且以有机物作为供氢体进行光合作用,同化有机物形成自身物质,属于光能异养。而它的异化方式也是兼性的,在湖泊、池塘的淤泥中进行厌氧呼吸;而在废水处理体系中却是需氧的。

第五章微生物代谢 答案

第五章微生物能量代谢 一、选择题(只选一项,将选项的的字母填在括号内) 1.下列哪种微生物能分解纤维素?( B ) A金黄色葡萄球菌B青霉C大肠杆菌D枯草杆菌 2.下列哪种产能方式其氧化基质、最终电子受体及最终产物都是有机物?( A ) A发酵B有氧呼吸C无氧呼吸D光合磷酸化 3.硝化细菌的产能方式是( D ) A发酵B有氧呼吸C无氧呼吸D无机物氧化 4.微生物在发酵过程中电子的最终受体是(A) A有机物B有机氧化物C无机氧化物D.分子氧 5.乳酸发酵过程中电子最终受体是( B ) A乙醛B丙酮 C O2 D NO3ˉ 6.硝酸盐还原菌在厌氧条件下同时又有硝酸盐存在时,其产能的主要方式是( C ) A发酵B有氧呼吸C无氧呼吸D无机物氧化 7.下列哪些不是培养固氮菌所需要的条件?( A ) A培养基中含有丰富的氮源B厌氧条件C提供A TP D提供[H] 8.目前认为具有固氮作用的微生物都是( D ) A真菌B蓝细菌C厌氧菌D原核生物 9.代谢中如发生还原反应时,( C )。 A从底物分子丢失电子B通常获得大量的能量 C 电子加到底物分子上D底物分子被氧化 10.当进行糖酵解化学反应时,( D )。 (a)糖类转变为蛋白质 (b)酶不起作用 (c)从二氧化碳分子产生糖类分子 (d)从一个单个葡萄糖分子产生两个丙酮酸分子 11.微生物中从糖酵解途径获得( A )ATP分子。 (a)2个 (b)4个 (c)36个 (d)38个 12.下面的叙述( A )可应用于发酵。 (a)在无氧条件下发生发酵 (b)发酵过程发生时需要DNA (c)发酵的一个产物是淀粉分子 (d)发酵可在大多数微生物细胞中发生 13.进入三羧酸循环进一步代谢的化学底物是( C )。 (a)乙醇 (b)丙酮酸 (c)乙酰CoA (d)三磷酸腺苷 14.下面所有特征适合于三羧酸循环,除了( D )之外。 分子以废物释放 (b)循环时形成柠檬酸 (a)C0 2 (c)所有的反应都要酶催化 (d)反应导致葡苟糖合成 15.电子传递链中( A )。 (a)氧用作末端受体 (b)细胞色素分子不参加电子转移 (c)转移的一个可能结果是发酵 (d)电子转移的电子来源是NADH 16.化学渗透假说解释( C )。 (a)氨基酸转变为糖类分子 (b)糖酵解过程淀粉分子分解为葡萄糖分子 (c)捕获的能量在ATP分子中 (d)用光作为能源合成葡萄糖分子 17.当一个NADH分子被代谢和它的电子通过电子传递链传递时,( C )。 (a)形成六个氨基酸分子 (b)产生一个单个葡萄糖分子 (c)合成三个ATP分子 (d)形成一个甘油三酯和两个甘油二酯 18.己糖单磷酸支路和ED途径是进行( C )替换的一个机制。

(完整版)微生物学第七章生长与控制

第十六授课单元 一、教学目的 此章为本课程的重点内容之一,使学生掌握微生物生长发育的规律及生长条件的控制,掌握生长的测定方法,学会同步培养和连续培养的方法,了解物理因素、化学因素对微生物生长发育的影响及实际应用,掌握消毒和灭菌的原理和方法等 本教学单元注重使学生了解微生物生长的测定:重点介绍单细胞微生物的典型生长曲线,并了解丝状真菌的生长曲线;介绍同步培养的方法(机械筛选法和环境条件控制法);恒浊连续培养和恒化连续培养的原理、控制方法和应用。 二、教学内容 第七章微生物的生长及其控制 第一节个体细胞生长概述 第二节微生物的群体生长 一、单细胞微生物的生长曲线 二、丝状真菌的生长曲线 三、同步培养 四、连续培养 第三节微生物生长的测定 一、计数法 二、质量法 三、生理指标法 三、教学重点、难点及处理方法 重点: 1. 单细胞微生物的典型生长曲线, 在介绍单细胞微生物的生长曲线之前让学生了解微生物生长测定的方法. 根据对于微生物生长的测定, 重点介绍单细胞微生物的典型生长曲线, 说明各个时期微生物生长的特点, 并结合实践说明微生物生长曲线对于生产有何指导意义. 2. 同步培养的方法(机械筛选法和环境条件控制法);恒浊连续培养和恒化连续培养的原理、控制方法和应用. 连续培养的原理来自于典型生长曲线, 使微生物保持一定比生长速率进行生长. 在一个恒定体积的培养物中, 通过不断地移出营养物质和以同样速率移走培养物的方法来得以实现. 难点: 1. 单细胞微生物的典型生长曲线对于单细胞微生物生长曲线中的指数期的三个重要参数例如: 繁殖代数, 代时和生长速率常数的意义及其相互关系及计算方法应说明清楚. 并将生长曲线各个时期对于实践的指导意义举例加以说明. 以加深对于生长曲线的理解. 分析微生物的生长曲线, 有重要的实际意义. 首先在扩大培养各级种子时就必须选择适宜的菌龄和接种量.其次为了获得大量菌体或代谢产物, 需经常设法延长细胞的对数生长阶段. 这就是连续培养的根据. 2. 恒浊连续培养和恒化连续培养的原理、控制方法和应用. 恒浊连续培养和恒化连续培养的原理比较复杂, 应用画图的方法加以说明, 主要通过多媒体, 为学生展示恒浊连续培养主要是通过不断调节流速使培养液浊度保持不变, 从而使微生物保持一定比生长速率进行生长. 而此生长速率一般是微生物生长曲线中的最高生长速率. 但是恒化连续培养中, 细菌的生长速率取决于限制性因子的浓度, 并低于最高生长速率. 营养物质浓度对微生物有影响, 一般认为营养物质适当时, 并不影响微生物的生长速率, 而低浓度时, 则会影响. 而且在一定范围内生长速率与营养浓度成正比关系. 恒化培养所用的培养基成分中, 要将一种必须营养物质控制在较低浓度, 以作为限制生长因子, 其它营养均可过量, 这样细胞的生长速率将

微生物初级代谢与次级代谢的关系

议微生物初级代谢与次级代谢的关系 摘要: 微生物的代谢,指微生物在存活期间的代谢活动。微生物在代谢过程中,会产生多种多样的代谢产物。根据代谢产物与微生物生长繁殖的关系,可以分为初级代谢产物和次级代谢产物两类。初级代谢产物是指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质。在不同种类的微生物细胞中,初级代谢产物的种类基本相同。此外,初级代谢产物的合成在不停地进行着,任何一种产物的合成发生障碍都会影响微生物正常的生命活动,甚至导致死亡。次级代谢产物是指微生物生长到一定阶段才产生的化学结构十分复杂、对该微生物无明显生理功能,或并非是微生物生长和繁殖所必需的物质,如抗生素。毒素、激素、色素等。不同种类的微生物所产生的次级代谢产物不相同,它们可能积累在细胞内,也可能排到外环境中。其中,抗生素是一类具有特异性抑菌和杀菌作用的有机化合物,种类很多 关键词:微生物初次级代谢初次级代谢产物 一、初级代谢与初级代谢产物 微生物的初级代谢:初级代谢是指微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动所需要的物质和能量的过程。这一过程的产物,如糖、氨基酸、脂肪酸、核苷酸以及由这些化合物聚合而成的高分子化合物(如多糖、蛋白质、酯类和核酸等),即为初级代谢产物。 由于初级代谢产物都是微生物营养性生长所必需,因此,除了遗传上有缺陷的菌株外,活细胞中初级代谢途径是普遍存在的,也就是说它们的合成代谢流普遍存在。在这途径上酶的特异性比次级代谢的酶要高。因为初级代谢产物合成的差错会导致细胞死亡。微生物细胞的代谢调节方式很多,例如通过酶的定位以限制它与相应底物的接近,以及调节代谢流等可调节营养物透过细胞膜而进入细胞的能力。其中调节代谢流的方式最为重要,它包括两个方面:一是调节酶的活性,调节的是已有酶分子的活性,是在酶化学水平上发生的;二是调节酶的合成,调节的是酶分子的合成量,这是在遗传学水平上发生的。在细胞内这两者往往密切配合、协调进行,以达到最佳调节效果。 一般将微生物通过代谢活动所产生的自身繁殖所必需的物质和能量的过程,称为初级代谢,该过程所产生的产物即为初级代谢产物,如氨基酸、核苷类,以及酶或辅酶等。 二、次级代谢与次级代谢产物 一般将微生物与外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动的物质和能量的过程,称为初级代谢。次级代谢是相对于初级代谢而提出的一个概念。一般

微生物解答

第一章 1.试述革兰氏染色机制:结晶紫液初染和碘液媒染:在细菌的细胞膜内可形成不溶于水的结晶紫与碘的复合物。乙醇脱色:G+细胞壁较厚、肽聚糖网层次多和交联致密且不含类脂,把结晶紫与碘的复合物牢牢留在壁内,使其保持紫色;G-细胞壁薄、外膜层类脂含量高、肽聚糖层薄和文联度差,结晶紫与碘复合物的溶出,细胞退成无色。复染: G-细菌呈现红色,而G+细菌则仍保留最初的紫色。 2.渗透调节皮层膨胀学说是如何解释芽孢的耐热机制的? 芽孢的耐热在于芽孢衣对多价阳离子和水分的渗透很差以及皮层的离子强度很高,这就使皮层产生了极高的渗透压去夺取芽孢核欣中的水分,其结果造成皮层的充分膨胀和核心的高度失水,正是这种失水的核心才赋予了芽孢极强的耐热性。 3.何为“栓菌”试验? 即设法把单毛菌鞭毛的游离端用相应抗体牢固地“栓”在载玻片上,然后在光镜下观察该菌细胞的行为,结果发现,该菌只能在载玻片上不断打转而未作伸缩“挥动”,因而肯定了“旋转论”的正确性 4.对细菌细胞一般构造和特殊构造设计表解。 一般构造:包括细胞壁、细胞质膜、拟核、细胞质。特殊构造:糖被、鞭毛芽孢 第二章 2.试对酵母菌的方式作一表解 酵母菌的繁殖方式: (一)无性:①芽殖②裂殖③产无性孢子(节孢子、掷孢子、后垣孢子) (二)有性(产子囊孢子) 3.试图示酿酒酵母的生活史,并对其中各主要过程作一简述 1.子囊孢子在合适的条件下发芽产生的单倍体营养细胞 2.单倍体营养细胞,不断地进行出芽繁殖 3.两个性别不同的营养细胞彼此接合,在质配后即发生核配,形成二倍体营养细胞 4.二倍体营养细胞不进行核分裂,而是不断进行出芽繁殖 5在以醋酸盐为唯一或主要碳源,同时又缺乏氮源等特定条件下 6子囊经自然或人为破壁后,可释放出其中的子囊孢子 4.试以表解法介绍霉菌的营养菌丝和气生菌丝各可分化成哪些特化构造,并简要说明它们的功能吸取养料假根 吸器 附着:附着胞、附着枝 菌核 特化的营养菌丝休眠(或休眠及蔓延) 菌索 延伸:匍匐枝

07海绵共附生微生物次级代谢产物的研究进展_朱伟明

综 述 海绵共附生微生物次级代谢产物的研究进展 朱伟明,张 敏,方玉春,朱天骄,顾谦群 (中国海洋大学教育部海洋药物重点实验室,海洋药物与食品研究所,山东青岛266003) 摘 要: 海绵独特的摄食、滤食系统使其体内体表富集了大量的微生物,这些微生物能够产生多种结构新颖的生物活性物质, 对海绵共附生微生物的研究正在成为开发海洋药物资源的重要内容之一。本文按化合物的生源途径及其结构类型简要介绍近几年来海绵共附生微生物次级代谢产物及其生物活性的研究进展。关键词: 海绵;共附生微生物;次级代谢产物 中图法分类号: S917.1;R282.77 文献标识码: A 文章编号: 1672-5174(2007)03-377-08 海绵属于多孔动物门,是最原始的低等多细胞海 洋动物,全世界约有10000~15000种,我国也有5000种左右。海绵的固着生活方式,缺乏有效的物理性防御,在生存竞争中,海绵积聚或分泌许多对其他生物具有威慑性、攻击性、甚至毒害性的次级代谢产物,这些次级代谢产物往往具有显著的生物活性,包括抗菌、抗肿瘤、抗真菌、抗病毒、抗炎、抗心血管疾病等活性,尤其是具有细胞毒活性的化合物超过10%,明显高于 其他海洋动物(2%)、陆生植物(<1%)[1] 。然而,海绵采集困难、有效成分含量低等因素,制约着开发利用。近年,国外对海绵中次级代谢产物及其生态学作了探讨性研究,结果发现,某些活性物质实际上可能是由与其共附生的微生物产生的,并从海绵共附生微生物中发现许多与其宿主相同或相关的结构新颖、活性独特的次级代谢产物[2-4]。这些发现对运用海洋微生物的发酵工程、基因工程等技术在解决天然海绵资源及活性天然化合物药源问题具有重要意义。因此,对海绵共附生微生物活性次级代谢产物的研究成为国内外研究者的热点。已从海绵共附生微生物次级代谢产物中 发现了含氮化合物(肽类、生物碱类、神经酰胺等)、内酯类、醌类、酮类、聚醚类、萜烯类及甾体等。 作者所在课题组从2003年开始研究海绵共附生微生物及其具有细胞毒活性的次级代谢产物,已从黄渤海及南海海绵中分离获得9株具有细胞周期抑制、细胞凋亡诱导及细胞毒活性的微生物。对其中2株具有强细胞毒活性的微生物的次级代谢产物进行了活性跟踪分离,获得化合物15个(其中新活性化合物3个、高活性化合物2个),结构类型涉及生物碱、甾体、芳香类化合物等。本文将结合本实验室的工作,就近几年来海绵共附生微生物次级代谢产物的研究进展作一综述。 1 含氮类化合物 含氮类化合物主要包括肽类、生物碱,它们大多具有显著的生物活性。 Alteramide A (1),1个新的有细胞毒活性的四环生物碱,是从与海绵Halichondria okadai 共附生的细菌Alteromonas sp .中分离获得的[5]。 从冲绳海绵Halichondria altum 中分离的细菌Vibrio sp .代谢产生1个新的有3个吲哚环聚合的有抗 菌活性的化合物trisindoline (2)[6]。 从采自大西洋的海绵Isodictya setifera 中获得的 通讯作者:guqianq @ouc .edu .cn 基金项目:山东省自然科学基金项目(Z2006C13);国家高技术研究发展计划项目(2003AA624020)资助 收稿日期:2006-07-14;修订日期:2006-11-09 作者简介:朱伟明(1965-),男,教授,博导。E -mail :weimingzhu @ouc .edu .cn   第37卷 第3期 2007年5月  中国海洋大学学报 PE RIODICAL OF OCEAN UNIVERSIT Y OF CHINA 37(3):377~384M ay ,2007

微生物的能量代谢

微生物的能量代谢 微生物进行生命活动需要能量,这些能量的来源主要是化学能和光能。那么自然界的能量是怎样转变成微生物可利用的形式?能量是如何被利用的?这些都是微生物能量代谢的基本问题。 一、细胞中的氧化还原反应与能量产生 物质失去电子称为氧化,含有氢的物质在失去电子的同时伴随着脱氢或加氧。物质获得电子称为原,在获得电子的同时可能伴随着加氢或脱氧。可见氧化和还原是两个相反而偶联的反应,二者不能分开独立完成,即一物质的氧化必然伴随着另一物质的还原,称为氧化还原反应,可以表示为: AH2→2H++2e+A(氧化) B+2H++2e→BH2(还原) AH2+B←→ A+BH2(氧化还原) 在氧化还原反应中,凡是失去电子的物质称为电子供体;得到电子的物质称为电子受体。如还伴随有氢的转移时则称为供氢体和受氢体。上式中AH2就是电子供体(或供氢体),B是电子受体(或受氢体)。实际上,生物体内发生的许多反应都是氧化还原反应。生物氧化是物质在生物体内经过一系列连续的氧化还原反应逐步分解并放出能量的过程。其中有机化合物的氧化还原反应是生物氧化的主要形式,在此过程中都包含有氢和电子的转移,称为脱氢作用。 各种基质给出电子而被氧化和接受电子而被还原的趋势是不同的,这种趋势称为基质的还原势(reductionpotential),用E0',表示,以伏(V)或毫伏(mV)为单位。在电化学上还原势以基质H2作参比而测定,因而各种物质的还原势可以相互比较。按规定还原剂(电子供体)写在反应式的左边。在pH:7时,氢和氧的还原势分别为: 2H++2e→H2 E0'=-421mV 1/2O2+2H++2e- → H2O E0'=+816mV 在细胞内进行的氧化还原反应中,电子从最初供体转移到最终受体,一般都需经由中间载体(电子传递体) 全反应过程的净能量变化决定于最初供体和最终受体之间还原势之差。 表2-3列出了生物的一些常见氧化还原系统中电子载体的标准电位E0'值。在分解代谢中,电子供体一般就是指能源,当电子供体与电子受体偶联起来发生氧化还原反应时能释放出能量,两个相偶联(氧化一还原分子对,或称O--R对)的反应之间还原势相差愈大,释放的能量就愈多。 中间电子载体有两类:一类是游离的,一类是牢固地结合在细胞膜中的辅酶上。表中所列辅酶NAD+(烟酰胺腺嘌呤二核苷酸)和NADP+(烟酰胺腺嘌呤二核苷酸磷酸)就是细胞中常见的游离电子载体,它们是氢原子载体,能携带一个质子和两个电子,在反应中另一个质子(H+)来自溶液。NAD+ +2e-+2H+产生NADH+H+,为简略起见一般将NADH+H+书写为NADH。尽管NAD+和NADP+具有相同还原势(—320mV),但在细胞中前者直接用于产能反应(分解代谢),

相关主题
文本预览
相关文档 最新文档