当前位置:文档之家› 大学物理(第四版)课后知识题及答案解析磁场

大学物理(第四版)课后知识题及答案解析磁场

大学物理(第四版)课后知识题及答案解析磁场
大学物理(第四版)课后知识题及答案解析磁场

习题

题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A,方

向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。题10.2:已知地球北极地磁场磁感强度B的大小为6.0 105 T。如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?

题10.3:如图所示,载流导线在平面内分布,电流为I,它在点O的磁感强度为多少?

题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。

题10.5:实验中常用所谓的亥姆霍兹线圈在

局部区域内获得一近似均匀的磁场,其装置简

图如图所示,一对完全相同、彼此平行的线圈,

它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=x

B

题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。

题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线

的夹角为α,求通过该半球面的磁通量。

题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。电流在导线横截面上均

匀分布。求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。

题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体

的磁性可不考虑。试计算以下各处的磁感强度:(1)r

r >R 3。画出B -r 图线。

题10.10:如图所示。N 匝线圈均匀密绕在截面为长方形的中空骨架上。求通入电流I 后,环

内外磁场的分布。

题10.11:设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反,如图所示,求:

(1)两载流平面之间的磁感强度;(2)两面之外空间的磁感强度。

题10.12:测定离子质量的质谱仪如图所示,离子源S 产生质量为m ,电荷为q 的离子,离子

的初速很小,可看作是静止的,经电势差U 加速后离子进入磁感强度为B 的均匀磁场,并沿一半圆形轨道到达离入口处距离为x 的感光底片上,试证明该离子的质量为

2

28x U

q B m =

题10.13:已知地面上空某处地磁场的磁感强度B = 0.4×10-4 T ,方向向北。若宇宙射线中有

一速率17s m 105.0-??=v 的质子,垂直地通过该处。如图所示,求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较。

题10.14:在一个显像管的电子束中,电子有eV 101.24?的能量,这个显像管安放的位置使电

子水平地由南向北运动。地球磁场的垂直分量5105.5-⊥?=B T ,并且方向向下,求:(1)电子束

偏转方向;(2)电子束在显像管内通过20 cm 到达屏面时光点的偏转间距。

题10.15:如图所示,设有一质量为m e 的电子射

入磁感强度为B 的均匀磁场中,当它位于点M 时,具有与磁场方向成α角的速度v ,它沿螺旋线运动一周到达点N ,试证M 、N 两点间的距离为

eB

α

v m MN cos π2e =

题10.16:利用霍耳元件可以测量磁场的磁感强度,设一霍耳元件用金属材料制成,其厚度为

0.15 mm ,载流子数密度为1.0×1024 m —3。将霍耳元件放入待测磁场中,测得霍耳电压为42V μ,电流为10 mA 。求此时待测磁场的磁感强度。

题10.17:试证明霍耳电场强度与稳恒电场强度之比

ρne B E E //C H =

这里ρ为材料电阻率,n 为载流子的数密度。

题10.18:载流子浓度是半导体材料的重要参数,工

艺上通过控制三价或五价掺杂原子的浓度,来控制p 型或n 型半导体的载流子浓度,利用霍耳效应可以测

量载流子的浓度和类型,如图所示一块半导体材料样品,均匀磁场垂直于样品表面,样品中通过的电流为I ,现测得霍耳电压为U H ,证明样品载流子浓度为

n =

H

edU IB

题10.19:一通有电流为I 的导线,弯成如图所示的形状,放在

磁感强度为B 的均匀磁场中,B 的方向垂直纸面向里,求此导线受到的安培力为多少?

题10.20:一直流变电站将电压为500 kV 的直流电,通过两条

截面不计的平行输电线输向远方,已知两输电导线间单位长度的电容为111103.0--??m F ,若导线间的静电力与安培力正好抵消,求:(1)通过输电线的电流;(2)输送的功率。

题10.21:将一电流均匀分布的无限大载流平面放入磁感强度为B 0的均匀磁场中,电流方向与磁场垂直,放入后,平面两侧磁场

的磁感强度分别为B 1和B 2(图),求该载流平面上单位面积所受的磁场力的大小和方向。

题10.22:在直径为1.0 cm 的铜棒上,切割下一个圆盘,设想

这个圆盘的厚度只有一个原子线度那么大,这样在圆盘上约有

6.2?1014个铜原子,每个铜原子有27个电子,每个电子的自旋磁矩为224e m A 109.3??=-μ,我们假设所有电子的自旋磁矩方向都相同,且平行于铜棒的轴线,求:(1)圆盘的磁矩;(2)如这磁矩是由圆盘上的电流产生的,那么圆盘边缘上需要有多大的电流。

题10.23:通有电流I 1 = 50 A 的无限长直导线,放在如图所示的弧形线圈的轴线上,线圈中的

电流I 2 = 20 A ,线圈高h = 7R /3。求作用在线圈上的力。

题10.24:如图所示,在一通有电流I 的长直导线附近,有一半径为R ,质量为m 的细小线圈,

细小线圈可绕通过其中心与直导线平行的轴转动,直导线与细小线圈中心相距为d ,设d >>R ,

通过小线圈的电流为I '。若开始时线圈是静止的,它的正法线矢量n e 的方向与纸面法线n

e '的方

向成0θ角。问线圈平面转至与屏幕面重叠时,其角速度的值为多大?

题10.25:如图所示,电阻率为ρ的金属圆环,其内外半径分别为R 1和R 2,厚度为d 。圆环放

入磁感强度为α的均匀磁场中,B 的方向与圆环平面垂直,将圆环内外边缘分别接在如图所示的电动势为ε的电源两极,圆环可绕通过环心垂直环面的轴转动,求圆环所受的磁力矩。

题10.26:如图所示,半径为R 的圆片均匀带电,电荷面密度为σ,令该圆片以角速度ω绕通

过其中心且垂直于圆平面的轴旋转。求轴线上距圆片中心为x 处的点P 的磁感强度和旋转圆片的磁矩。

题10.27:如图所示是一种正在研究中的电磁轨道炮的原理图。该装置可用于发射速度高达10

km.s -1的炮弹,炮弹置于两条平行轨道之间与轨道相接触,轨道是半径为r 的圆柱形导体,轨道间距为d 。炮弹沿轨道可以自由滑动。恒流电源ε、炮弹和轨道构成一闭合回路,回路中电流为I 。(1)证明作用在炮弹上的磁场力为

r

r

d I μF +=ln

)π(212

0 (2)假设I = 4 500 kA ,d = 120 mm ,r = 6.7 cm ,炮弹从静止起经过一段路程L = 4.0 m 加速后的速度为多大?(设炮弹质量m = 10.0 kg )

习 题 解 答

题10.1解:距离无限长直载流导线为r 处的磁感强度

R

I

μB B π2021=

= 磁感强度1B 和2B 的方向可以根据右手定则判定。

根据磁场叠加原理B = B 1+B 2,考虑到磁场

的对称性,点M 的磁感强度

00021M π2π2r I

μr I μB B B -=

-= = 0 点N 的磁感强度

T

100122π24πcos )(40021N -?=?=+=. r I μB B B

由右手定则可知N B 的方向沿水平向左。

题10.2解:设赤道电流为I ,则圆电流轴线上北极点的磁感强度

R

I μR R IR μB /24)(202

32220=

+=

因此赤道上的等效圆电流为

A 107312490

?==

.μRB

I 由于在地球内部,地磁场由南极指向北极,根据右手螺旋法则可以判断赤道圆电流应该是由西向东流,与地球自转方向一致。

题10.3解:将载流导线看作圆电流和长直电流,由叠加原理可得

R

I

μR I μB π22000-=

0B 的方向垂直屏幕向里。

题10.4解:现将半球面分割为无数薄圆盘片,则任一薄圆

盘片均可等效为一个圆电流,任一薄圆盘片中的电流为

I θR R

N

N I I ??=

=d π2d d 该圆电流在球心O 处激发的磁场为

I y x y μB /d )(2d 2

3222

0+=

球心O 处总的磁感强度B 为

θR R

N y x I y μ/d π2)(2B 2

/0

232220?+?=?

π 由图可知θR y R x sin cos ==;θ,将它们代入上式,得

R

NI

μR NI μB π/4d sin π0

220

0==?

θθ 磁感强度B 的方向由电流的流向根据右手定则确定。

题10.5证:取两线圈中心连线的中点为坐标原点O ,两线圈中心轴线为x 轴,在x 轴上任一点

的磁感强度

2

3222

02

3222

0])2([2])2([2//x d/R IR μx d/R IR μB +++

-+=

则当

0}]

)2([)

2(3)2()2(3{2d )(d 22220=+++--+-=x d/R x d/x d/R x d/IR μx x B 0=++-++-+--=}]

)2([)2(4])2([)2(4{23d )(d 2

7222

2722222022//x d/R R x d/x d/R R x d/IR μx x B 时,磁感强度在该点附近小区域内是均匀的,该小区域的磁场为均匀磁场。 由

0d )

(d =x

x B ,解得0=x 由

0d )

(d 0

2

2==x x x B ,解得R d =

这表明在d = R 时,中点(x = 0)附近区域的磁场可视为均匀磁场。

题10.6解:在矩形平面上取一矩形面元d S = I d x ,载流

长直导线的磁场穿过该面元的磁通量为

x l x

I

μΦd π2d d 0=

?=S B 矩形平面的总磁通量

?=

=ΦΦd ?

=21

1

200ln π2d π2d d d d

l I μx l x I μ 题10.7解:由磁场的高斯定理?=?,0d S B 穿过半球面的磁感线全部穿过圆面S ,因此有

αcos π2B R Φ=?=S B

题10.8解:(1)围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路

定理,有

?∑=?=?I r B 0

π2d μl B

在导线内∑==<222

2ππR Ir r R I I R r ,,因而

2

0π2R r I μB =

在导线外∑=>,I I R r ,因而

r

I

μB π20=

(2)在导线表面磁感强度连续,由3101.78/π A,50-?===S R I m ,得

T 1065π2300-?==

.R

I

μB 题10.9解:由安培环路定理?∑=?I 0d μl B ,得

1R r < 22

1

1πππ2r R I

μr B =? 2

101π2R Ir

μB =

R 1

B 2 =

r

μπ2I

0 R 2

r B π23?=]π2

2232

220I )

R π(R )

R (r I ---[μ B 3 =

22

232230 π2R R r

R r I --?μ

r >R 3 r B π24?=μo (I

I ) = 0

B 4 = 0

磁感强度B(r )的分布曲线如图。

题10.10解:由安培环路定理,有

r B π2?=μ0∑I

R

B 1 = 0

R 2>r >R 1 r B π22?=μ0NI

B 2 =

r

NI

μπ20 r >R 2 r B π23?= 0

B 3 = 0

在螺线管内磁感强度B 沿圆周,与电流成右手螺旋,若R 2-R 1<

2

1

(R 1+R 2),则环内的磁感强度近似为 B R

NI

μπ20≈

题10.11解:由安培环路定理,可求得单块无限大载流平

面在两侧的磁感强度大小为2/0j μ,方向如图所示,根据磁场的叠加原理可得

(1)取垂直于屏幕向里为x 轴正向,合磁场为

B =

i i i j μj

μj μ0002

2=+ (2)两导体载流平面之外,合磁场的磁感强度

B =

02

2

00=-

i i j

j

μμ

题10.12证:由离子源产生的离子在电势差为U 的电场中加速,根据动能定理,有

qU mv =22

1

(1) 离子以速率v 进入磁场后,在洛伦兹力的作用下作圆周运动,其动力学方程为

qvB = m 2

/2

x v

由上述两式可得2

28x U

q B m =

题10.13解:(1)依照F L = q v ?B 可知洛伦兹力F L 方向为B v ?的方向,

(2)因v ⊥B ,质子所受的洛伦兹力

F L = qvB = 3.2?10

16 N

在地球表面质子所受的万有引力

G = m p g = 1.64?1026 N

因而,有F L /G = 1.95?1010,即质子所受的洛伦兹力远大于重力

题10.14解:(1)如图所示,由洛伦兹力

F = q v ?B

可以判断电子束将偏向东侧

(2)在如图所示的坐标中,电子在洛伦兹力作用下,沿圆周运动,其轨道半径R 为

R =

m 6.712k ==eB

mE eB

mv

由题知y = 20cm ,并由图中的几何关系可得电子束偏向东侧的距离

m 102.98322-?=--=?y R R x

即显示屏上的图像将整体向东平移近3 mm ,这种平移并不会影响整幅图像的质量

题10.15证:将入射电子的速度沿磁场方向和垂直磁场方向分解⊥v 和v //,在磁场方向前进一螺距MN 所需的时间

T =

α

cos //v MN

v MN =

(1) 在垂直磁场方向的平面内,电子作匀速圆周运动的周期

T =

eB

v R e

m π2π2=

⊥ (2) 由式(1)和式(2),可得

eB

v m MN α

cos π2e =

题10.16解:由霍耳效应中霍耳电压与电流、磁感强度的关系,有

B =

T 010H H H .nq I

d

U I R d U == 题10.17证:由欧姆定律的微分形式知,在导体内稳恒电场强度为

v j ne E c ρρ==

由霍耳效应,霍耳电场强度

E H =B v ?-

因载流子定向运动方向与磁感强度正交,故E H = vB ,因而

ρ

ρρne B

nev vB j vB E E =

==C H 题10.18证:通电半导体的载流子在洛伦兹力的作用下,逐渐积聚在相距为b 的导体两侧,形成霍

耳电压

U H = vBb

而流经导体横截面S (S = bd )的电流

I = jbd = nevbd

由此可解得载流子浓度

n =

H

edU IB 题10.19解:由对称性可知,半圆弧所受安培力F 1的水平

分量相互抵消为零,故有

F 1 =??==π

BIR BIR F 0

y 12d sin d θθ

两段直线部分所受安培力大小相等,但方向相反,当导体形

状不变时,该两力平衡,因而,整个导线所受安培力

F = 2BIR j

题10.20解:(1)单位长度导线所受的安培力和静电力分别为

f B = BI =d I μπ22

f E = E λ=d

U C 02

2π2ε

由f B +f E = 0可得

d

U C d I 02

22

0π2π2εμ=

解得 I =

A 105.430

0?=μεCU

(2)输出功率

N = IU = 2.25?109 W

题10.21解:无限大载流平面两侧为均匀磁场,磁感强度大小为

j 02

1

μ,则 B 1 = B 0j 2

μ- (1)

B 2 = B 0+

j 2

μ (2) 由式(1)、(2)解得

B 0 = )(2

1

21B B + )(1

120

B B j -=

μ

外磁场B 0作用在单位面积载流平面上的安培力

)(21d d d d d d 21220

00B B μjB y x yB x j S F -=== 依照右手定则可知磁场力的方向为水平指向左侧。

题10.22解:(1)因为所有电子的磁矩方向相同,则圆盘的磁矩

27e m A 10651--??==.N μm

(2)由磁矩的定义,可得圆盘边缘等效电流

I = m /S = 2.0?10-3 A

题10.23解:建立如图坐标,将闭合线圈分解为圆弧?bc 和?

da ,直线ab 和cd 四段,由安培力B ?=l F d d I 可知圆弧线所受磁力为零,直线ab 和cd 上I 1激发的磁感强度大小均为B =

R

I μπ21

0,则直线ab 和cd 所受磁力大小均为F 0 =i IlB -,其合力F = 2F 0 =

2I 2lB i = -9.33?10-4i N 。

题10.24解:小线圈在任意位置受到的磁力矩 B m M ?=0

则 M = θμsin π2π02

d

I

R I '

根据转动惯量的定义,由图可求得小线圈绕OO ′轴转动的转动惯量

J = ??

==πββ

20

22222

1

d π2sin d mR m R m r 式中m 为圆环的质量,由于磁力矩方向和角位移方向相反,由动能定理有

?

-=

?0θ20

02

1

d J ωθM ?

='-0θ22020

4

1

d sin 2ωmR θθd I μR I 积分后即可解得

1/2

00)cos (12?

?

????-'=θmd I I μω

题10.25解:若在金属环上取如图所示的微元,该微元沿径

向的电阻

d R =rd

r π2d ρ

积分可得金属圆环的径向电阻

R =?

=2

1

1

2ln π2π2d R R R R d ρ

rd r ρ

径向电流

I =

)

/R (R ρd

R ε12ln π2ε=

将圆环径向电流分割为线电流θI

I d 2π

d =

,线电流元受到的磁力为,d d d rB I F =方向沿圆周切向,该力对轴的磁力矩大小为

r I rB F r M d d d d ==

圆环面上电流元对轴的磁力矩方向相同,为垂直屏幕沿转轴向外,因而金属圆环所受的磁力矩

??=I r rB M d d

=

??

-=

2

1

)()

/ln(πd d )/ln(212

212π20

12R R

R R R R d B r r R R Bd

ρεθρω

磁力矩方向垂直屏幕沿轴线向外

题10.26解:旋转的带电圆盘可以等效为一组同心圆电流,如图所示,在圆盘面上取宽度为d r

的细圆环,其等效圆电流

T

r

r σI d π2d ?=

此圆电流在轴线上点P 处激发的磁感强度的大小为

3/2

2220)(d 2d x r I r μB +=

积分,得 ???

?

????-++=

+=?x R x x R μx r r μB R

222

)(dr 22

2

22 0

03/22230σω

σω 圆片的磁矩m 的大小为

?==R R σr r m 043π41

d πωσω

B 和m 的方向均沿Ox 轴正向

题10.27解:取对称轴线为x 轴,由题意,炮弹处的磁感强度可近似当作两根半无限长的载流

圆柱在该点激发的磁感强度之和

y)

d/r I

μy)d/r I μB -++

++=

2(π42(π400 炮弹所受磁场力的大小为

?

-=d/2d/2

d y BI F =

y y)

d/(r y)d/(r I μd/d/d ]21

21[π422

20?

--++++ = r

r

d I μ+ln

π220 炮弹出口时的速率

132

120s m 10821ln π2-??=?

?

????+==.r r d m I L μaL v

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

最新大学物理活页作业答案及解析((全套))

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-== ?? sin cos 2

t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin 9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 3 2 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2020 2 121ky v C --= )(22 22y y k v v o o -+=

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理上册答案详解

大学物理上册答案详解 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=, 12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中 dt dv 就是加速度的切向分量.

(t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加 速度时,有人先求出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而求 得结果;又有人 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 222 22d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标 系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v == 其二,可能是将22d d d d t r t r 与误作速度与加速度的模。在1-1题中已说明 t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速

大学物理力学题库及答案

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为 x = 3t-5t 3 + 6 (SI),则该质点作 2、一质点沿x 轴作直线运动,其v t 曲 线如图所示,如t=0时,质点位于坐标原点, 则t=4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) 2 m . (E) 5 m. [ b ] pc 的上端点,一质点从p 开始分 到达各弦的下端所用的时间相比 6、一运动质点在某瞬时位于矢径 r x, y 的端点处,其速度大小为 7、 质点沿半径为R 的圆周作匀速率运动,每 T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 (A) 2 R/T , 2 R/T . (B) 0,2 R/T (C) 0,0. (D) 2 R/T , 0. [ b ] 8 以下五种运动形式中,a 保持不变的运动是 4、 一质点作直线运动,某时刻的瞬时速度 v 2 m/s ,瞬时加速度a 2m/s , 则一秒钟后质点的速度 (B)等于 2 m/s . (D)不能确定. [ d ] (A)等于零. (C)等于 2 m/s . 5 、 一质点在平面上运动, 已知质点位置矢量的表示式为 r at i bt 2j (其中 a 、 b 为常量),则该质点作 (A)匀速直线运动. (B)变速直线运动. (C)抛物线运动. (D) 一般曲线运 动. [ b ] [d ] (A) 匀加速直线运动,加速度沿 x 轴正方向. (B) 匀加速直线运动,加速度沿 x 轴负方向. (C) 变加速直线运动,加速度沿 x 轴正方向. (D) 变加速直线运动,加速度沿 x 轴负方向. 3、图中p 是一圆的竖直直径 别沿不同的弦无摩擦下滑时, 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. (A) d r dt (C) d r dt (B) (D) d r dt dx 2 .dt 2 d y dt [d ] a

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理考试题库完整

普通物理Ⅲ 试卷( A 卷) 一、单项选择题 1、运动质点在某瞬时位于位矢r 的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)dt r d ; (3)t s d d ; (4)22d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 2、一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变 3、如图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( ) (A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ 4、对质点组有以下几种说法: (1) 质点组总动量的改变与内力无关; (2) 质点组总动能的改变与内力无关; (3) 质点组机械能的改变与保守内力无关. 下列对上述说法判断正确的是( ) (A) 只有(1)是正确的 (B) (1) (2)是正确的 (C) (1) (3)是正确的 (D) (2) (3)是正确的 5、静电场中高斯面上各点的电场强度是由:( ) (A) 高斯面内的电荷决定的 (B) 高斯面外的电荷决定的 (C) 空间所有电荷决定的 (D) 高斯面内的电荷的代数和决定的 6、一带电粒子垂直射入均匀磁场中,如果粒子的质量增加为原来的2倍,入射速度也增加为原来的2倍,而磁场的磁感应强度增大为原来的4倍,则通过粒子运动轨道所围面积的磁通量增大为原来的:( ) (A) 2倍 (B) 4倍 (C) 0.5倍 (D) 1倍 7、一个电流元Idl 位于直角坐标系原点 ,电流沿z 轴方向,点P (x ,y ,z )的磁感强度沿 x 轴的分量 是: ( )

大学物理教程 上 课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 或1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 位移的大小 r ==r V (3) 2x dx v t dt = = 2x x dv a dt = =, 2y y dv a dt == 当2t s =时,速度和加速度分别为 22a i j =+r r r m/s 2 1-4 设质点的运动方程为 cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 (2)质点的速率为 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34,

2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作 用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的 阻力(空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 即 dv k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等 于地球半径的2倍(即2R ),试以,m R 和引力恒量G 及地球的质量M 表示出: (1) 卫星的动能; (2) 卫星在地球引力场中的引力势能. 解 (1) 人造卫星绕地球做圆周运动,地球引力作为向心力,有 卫星的动能为 212 6k GMm E mv R == (2)卫星的引力势能为 2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以 500/m s 的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后 停止。求: (1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少。

相关主题
文本预览
相关文档 最新文档