当前位置:文档之家› 高中数学求函数解析式经典精讲精练

高中数学求函数解析式经典精讲精练

高中数学求函数解析式经典精讲精练
高中数学求函数解析式经典精讲精练

求函数解析式常用的方法 (一)

待定系数法

它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。

例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。

解析:设2

()f x ax bx c =++ (a ≠0),由(0)0,f =得c=0,由(1)()1f x f x x +=++ 得

22(1)(1)1

a x

b x

c ax bx c x ++++=++++,整理得

22(2)()1ax a b x a b c ax b c x c +++++=++++

得 2122111200

11

()22

a a

b b a b

c c b c c f x x x

?

=?+=+??

?

?++=+?=

????

=?=???

∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a ≠0);f(x)为反比例函数时,可设f(x)=

k

x

(k ≠0);f(x)为二次函数时,根据条件可设 ①一般式:f(x)=ax2+bx+c(a ≠0)②顶点式:f(x)=a(x-h)2+k(a ≠0)③双根式:f(x)=a(x-x1)(x-x2)(a ≠0)

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f

解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2

)()()]([

∴???=+=3

42b ab a ∴??????=-===3

21

2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 (二)换元法

用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。

例2

:已知1)1,f x =+求()f x 的解析式。

1视为t ,那左边就是一个关于t 的函数()f t ,

1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。

1t =22

20

1()(1)2(1)1()(1)

x t f t t t t

f x x x ≥∴≥∴=-+-+=∴=≥Q 小结:①已知f[g(x)]是关于x 的函数,

即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。

注意:换元后要确定新元t 的取值范围。

(三)配凑法

已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用配凑法时,要注意定义域的变化。

例3

:已知1)f x =+求()f x 的解析式。

分析:x +Q 可配凑成∴

可用配凑法,解:由2

1))1f x =+=-

,令

t =01

x t ≥∴≥Q

则2()1f t t =-, 即2

()1(1)f x x x =-≥,当然,上例也可直接使用换元法,

令t =

则1t =

得2

22

(1)()(1)2(1)1

x t f t t t t =-∴=-+-=-,即 2

()1(1)f x x x =-≥,由此可知,求函数解析式时,

可以用配凑法来解决的,有些也可直接用换元法来求解。 例4:已知2

2

11

(),f x x x

x -=+

求()f x . 解析:由222

111()()2f x x x x x

x

-=+=-+,令2110t x x tx x

=-?--=,由0?≥即2

40t +≥得

t R ∈2()2f t t ∴=+

即:2

()2()f x x x R =+∈

实质上,配凑法和换元法一样,最后结果要注明定义域。

例2 已知221

)1(x x x x f +=+

)0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x

x x x f Θ, 21≥+x x 2)(2

-=∴x x f )2(≥x

(四)消元法,此方法的实质是解函数方程组。

条件中,有若干复合函数与原函数()f x 混合运算,则要充分利用变量代换,然后联立方程组消去其余部分。

例5:设()f x 满足1

()2(),f x f x x

-=求()f x 的解析式。

分析:要求()f x 可消去1()f x ,为此,可根据题中的条件再找一个关于()f x 与1()f x

的等式,通过解方程组达到消元的目的。解析:Q 1()2()f x f x x

-=①,显然,0x ≠,将x 换成1x 得11

()2()f f x x x -=②由1

()2()11

()2()f x f x x f f x x x ?

-=????-=?? 消去1()f x ,得12()33f x x x

=-

- 例6 设)(x f 为偶函数,)(x g 为奇函数,又,1

1

)()(-=+x x g x f 试求)()(x g x f 和的解析式

解 )()(),()(x g x g x f x f -=-=-∴,又1

1

)()(-=

+x x g x f ① ,用x -替换x 得:

1

1)()(+-

=-+-x x g x f ,即11

)()(+-=-x x g x f ② ,解① ②联立的方程组,得

1

1)(2-=

x x f ,x x x g -=21)(

小结:消元法适用于自变量的对称规律。互为倒数,如f(x)、1

()f x

;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。

(五)赋值法

其方法:将适当变量取特殊值,使问题具体化、简单化,依据结构特点,从而找出一般规律,求出解析式。

例5:已知(0)1,()()(21),f f a b f a b a b =-=--+求()f x 。 解析:令0,a =

则2

()(0)(1)1f b f b b b b -=--=-+ 令b x -= 则2

()1f x x x =++

小结:①所给函数方程含有2个变量时,可对这2个变量交替用特殊值代入,或使这2个变量相等代入,再用已知条件,可求出未知的函数,至于取什么特殊值,根据题目特征而定。②通过取某些特殊值代入题设中等式,可使问题具体化、简单化,从而顺利地找出规律,求出函数的解析式。

六、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2

x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点 则

?????=+'-=+'32

22y y x x ,解得:???-='--='y y x x 64 ,Θ点),(y x M '''在)(x g y =上,x x y '+'='∴2,

把???-='--='y

y x x 64代入得: )4()4(62--+--=-x x y ,整理得672---=x x y ,∴67)(2---=x x x g

七、递推法:

若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。

例8 设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有

ab b a f b f a f -+=+)()()(,求)(x f

解Θ +∈-+=+N b a ab b a f b f a f ,)()()(,,∴不妨令1,==b x a ,得:

x x f f x f -+=+)1()1()(,

又1)()1(,1)1(+=-+=x x f x f f 故 ①分别令①式中的1,21x n =-L 得:

(2)(1)2,(3)(2)3,()(1),

f f f f f n f n n -=-=--=L L

,将上述各式相加得:n f n f Λ++=-32)1()(,

2)1(321)(+=

+++=∴n n n n f Λ +∈+=∴N x x x x f ,2

1

21)(2

五、待定系数法

例5. 已知二次函数)x (f 的二次项系数为a ,且不等式x 2)x (f ->的解集为(1,3),方程0a 6)x (f =+有两个相等的实根,求)x (f 的解析式。

解:因为的0x 2)x (f >+解集为(1,3),设0a ),3x )(1x (a x 2)x (f <--=+且,所以

x 2)3x )(1x (a )x (f ---=

a 3x )a 42(ax 2++-= ①,由方程0a 6)x (f =+,得0a 9x )a 42(ax 2=++- ②,因为

方程②有两个相等的实根,

所以0a 9a 4)]a 42([2=?-+-=?,即,01a 4a 52

=--解得

5

1

a 1a -

==或,

51a ,0a -

=<所以,将51a -=①得53

x 56x 51)x (f 2---=。

六、函数性质法

利用函数的性质如奇偶性、单调性、周期性等求函数解析式的方法。

例6. 已知函数)x (f y =是R 上的奇函数,当

)x (f ,13)x (f ,0x x

求时-=≥的解析式。 解析:因为)x (f 是R 上的奇函数,所以)x (f )x (f ),x (f )x (f --=-=-即,当

0x ,0x >-<时,13)13

()x (f )x (f x

x

+-=--=--=--,所以?????<+-≥-=-0x ,130x ,13)x (f x

x

七、反函数法

利用反函数的定义求反函数的解析式的方法。 例7. 已知函数)0x (1x ln y >+=,求它的反函数。

解:因为0x >,1

y e x ,

1y x ln ,1x ln y R

1x ln y -=-=+=∈+=∴所以得由∴反函数为)R x (e

y 1

x ∈=-

八、“即时定义”法

给出一个“即时定义”函数,根据这个定义求函数解析式的方法。 例8. 对定义域分别是

g

f D D 、的函数)x (

g y ),x (f y ==,规定:函数

????

???∈??∈∈∈?=g f g f g

f d x D x ),x (

g ,

D x D x ),x (f D x D x ),x (g )x (f )x (h 且当且当且当

2

x )x (g ,1

x 1

)x (f =-=

,写出函数

)

x (h 的解析式。解:

???

??=+∞-∞∈-=1x ,1),,1()1,(x ,1

x x )x (h 2

Y

九、建模法

例9. 用长为90cm ,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图1),问该容器的高为多少时,容器的容积最大?最大容积是多少?

xcm

=--=)x 248)(x 290(x )x (V ,cm )x (V 3则)24x 0(x 4320x 276x 423<<+-。求)x (V 的导

0)x ('V ,>,那么)x (V 为增函数;当

0,24)内,函数)x (V 只

)cm (19600)2048()203

=-?-

待定系数法

()f x 22(2)f x -=(2)f x --设二次函数满足且图象在轴上的截距为1,在轴截得的线段长为,求的解析式。

x y ()f x 例题:

解法一、

1222x x a

?

-=

=2248b ac a ∴-=21

()21

2f x x x ∴=++1

c =又1

,2,12a b c =

==解得2

()(0)f x ax bx c a =++≠设(2)(2)f x f x -=--由40

a b -=得

解法二、

(0)1f =Q 41

a k ∴+=1

2

22x x

-=Q

222

k a

-∴=1

,12

a k ∴=

=-221

()(2)121

212

f x x x x ∴=

+-=++()y f x =2

x =-得的对称轴为

(2)(2)f x f x -=--由∴2()(2)f x a x k

=++设换元法

()

f x 211

(1)(1)1

f x x

+=-22

11

(2)()f x x x x

+=+例题:根据条件,分别求出函数的解析式

三【配凑法(整体代换法)】

若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由(g )(x f 的式子。

22()(1)12f t t t t

∴=--=-1

1t

x

+=(1)解:令1

1t x

=-1t ≠则

且2

()2f x x x

=-(1)

x ≠即换元法

2()2f x x ∴=-(2)

x ≥凑配法

x

1x x

+

替代式中的

1

2x x

+

≥又考虑到211

()()2f x x x x

+

=+-(2)解:

【例题】已知f(x-1)= 2

x -4x ,解方程f(x+1)=0

解1:f(x-1)==2

)1(-x -2(x-1)-3,∴f(x)=2x -2x-3f(x+1)=2)1(+x -2(x+1)-3=2

x -4,∴

2x -4=0,x=±2

解2:f(x-1)=2x -4x ,∴f(x+1)=f[(x+2)-1]=2)2(+x -4(x+2)=2x -4,∴2

x -4=0,x=±2 解3:令x-1=t+1,则x=t+2,∴f(t+1)=2

)2(+t -4(t+2)=2

t -4

解函数方程组法

1

3()2()f x f x x

+=(0)

x ≠()f x 例题:已知,

求13()2()113()2()f x f x x

f f x x x

?

+=???

?+=??

解:由32()55x f x x

=

-(0)

x ≠解得代入法

1

()f

x x x

=+

1C 1C (2,1)A 2C 2C ()g x 例题:设函数的图象为,关于点对称的图象为,

求对应的函数的表达式。

()y g x =(,)x y (2,1)A (4,2)x y --()y f x =设图象上任一点,则关于对称点为在上,

解:1

244y x x -=-+

-即1

24

y x x =-+

-即1

()24

g x x x =-+

-(4)x ≠故

题5.若)()()(y f x f y x f ?=+,且(f 练习5.设)(x f 是定义在*

N 上的函数,且式.

六.利用给定的特性求解析式.

题6.设)(x f 是偶函数,当x >0时, x

e x e x

f +?=2

)(,求当x <0时,)(x f 的表达式.

练习6.对x ∈R , )(x f 满足)1()(+-=x f x f ,且当x ∈[-1,0]时, x

x x f 2)(2

+=求当x ∈[9,10]时)(x f 的表达式. 七.归纳递推法 题7.设1

1

)(+-=x x x f ,记{})]([)(x f f f x f n Λ=,求)(2004x f . 八.相关点法

题8.已知函数1

2

)(+=x x f ,当点P(x ,y)在y=)(x f 的图象上运动时,点Q(3

,2x y -

)在y=g(x)的图象上,求函数g(x).

九.构造函数法

题9.若)(x f 表示x 的n 次多项式,且当k=0,1,2,…,n 时, 1

)(+=k k

k f ,求)(x f . 训练例题

(4)已知3

311()f x x x

x +=+

,求()f x ;(5)已知2(1)lg f x x

+=,求()f x ; 解:(4)∵3

331111()()3()f x x x x x x x x

+=+=+-+,

∴3

()3f x x x =-(2x ≥或2x ≤-). (5)令

21t x +=(1t >),则21x t =-,∴2()lg 1f t t =-,∴2

()lg (1)1

f x x x =>-.

(8)甲地到乙地的高速公路长1500公里,现有一辆汽车以100公里/小时的速度从甲地到乙地,写出汽车离开甲地的距离S (公里)表示成时间t (小时)的函数。

解:∵汽车在甲乙两地匀速行驶,∴S =100t ,∵汽车行驶速度为100公里/小时,两地距离为1500公里,∴从甲地到乙地所用时间为t =100

1500

小时答:所求函数为:S =100t t ∈[0,15]

(9)某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x 年后若人均一年占有y 千克粮食.求出函数y 关于x 的解析式。 解:设现在某乡镇人口为A ,则1年后此乡镇的人口数为A (1+1.2%),2年后的此乡镇人口数为A (1+1.2%)2…

经过x 年后此乡镇人口数为A (1+1.2%)x 。再设现在某乡镇粮食产量为B ,则1年后此乡镇的粮食产量为B (1+4%),

2年后的此乡镇粮食产量为B (1+4%)2…,经过x 年后此乡镇粮食产量为B (1+4%)x ,因某乡镇现在人均一年占有粮食为360 kg ,即

A

B

=360,所以x 年后的人均一年占有粮食为y ,即y =x

x

x x A B %)

2.11(%)41(360%)2.11(%)41(++=++(x ∈N *)

(10)我国是水资源比较贫乏的国家之一,各地采取价格调控等手段来达到节约用水的目的,某地用水收费的方法是:水费=基本费+超额费+损耗费.若每月用水量不超过最低限量a 3

m 时,只付基本费8元和每月每户的定额损耗费c 元;若用水量超过a 3

m 时,除了付

同上的基本费和定额损耗费外,超过部分每3

m 付b 元的超额费。已知每户每月的定额损耗费不超过5元。

该市一家庭今年第一季度的用水量和支付费如下表所示:

根据上表中的数据,求a 、b 、c 。

解:设每月用水量为x 3

m ,支付费用为y 元,则有8,0(1)8(),(2)

c x a

y b x a c x a

+≤≤?=?

+-+>?

由表知第二、第三月份的水费均大于13元,故用水量153

m ,223

m 均大于最低限量a 3

m ,于是就有198(15)338(22)b a c

b a c

=+-+??

=+-+?,解之得2b =,从而219 (3)a c =+

再考虑一月份的用水量是否超过最低限量a 3

m ,不妨设9a >,将9x =代入(2)式,得

982(9)a c =+-+,即217a c =+,这与(3)矛盾。∴9a ≤。

从而可知一月份的付款方式应选(1)式,因此,就有89c +=,得1c =。

(11)已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数.又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-。①证明:(1)(4)0f f +=;②求(),[1,4]y f x x =∈的解析式;③求

()y f x =在[4,9]上的解析式。

①证明:∵()f x 是以5为周期的周期函数,∴(4)(45)(1)f f f =-=-, 又∵()(11)y f x x =-≤≤是奇函数,∴(1)(1)(4)f f f =--=-, ∴(1)(4)0f f +=.

②解:当[1,4]x ∈时,由题意可设2

()(2) 5 (0)f x a x a =-->,

由(1)(4)0f f +=得2

2

(12)5(42)50a a --+--=,∴2a =,

∴2

()2(2)5(14)f x x x =--≤≤.

③解:∵()(11)y f x x =-≤≤是奇函数,∴(0)0f =,

又知()y f x =在[0,1]上是一次函数,∴可设()(01)f x kx x =≤≤,而

2(1)2(12)53f =--=-,

∴3k =-,∴当01x ≤≤时,()3f x x =-,

从而当10x -≤<时,()()3f x f x x =--=-,故11x -≤≤时,()3f x x =- ∴当46x ≤≤时,有151x -≤-≤,∴()(5)3(5)315f x f x x x =-=--=-+. 当69x <≤时,154x <-≤,∴2

2

()(5)2[(5)2]52(7)5f x f x x x =-=---=--

∴2

315,

46

()2(7)5,

69

x x f x x x -+≤≤?=?

--<≤?

欢迎各位同学老师家长关注微信公众号:高中学习帮

在这里可以免费下载高中各科全套教学视频(语数外理化生政史地),有新东方 学而思 黄冈 101网校,非常全面,绝不收费,还即将开免费直播网络课程,高中各科知识点总结和习题资料,高考资源,非常好的公众号,微信扫描上面的二维码或者微信搜索公众号:高中学习帮即可!

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学知识点精讲精析 不等关系

13.1 不等关系 (一)不等关系与不等式 1. 用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些不等号的式子叫做不等式。 2. 数轴上的任意两点中,右边点对应的实数比左边点对应的实数大。 3. 对于任意两个实数a 和b ,在三种关系中有且只有一种关系成立。 4. 这组关系告诉我们比较两个实数的大小,可以通过判断它们的差 的符号来确定。 5. 若a 、b ∈R +,则 这组关系告诉我们比较两个正实数的大小,可以通 过判断它们的商与“1”的大小关系来确定。 (二)不等式的性质 不等式的性质是证明不等式和解不等式的基础,证明这些性质必须是严格的,不能盲目地乱用。保证每一步推理都有理论根据,否则可能导致推理错误。 1. 等式两边同乘以同一个数仍为等式,但不等式两边同乘以同一个数a (或代数式),结果有三种: (1)当a >0时,得同向不等式。 (2)当a =0时,得等式。 (3)当 a <0时,得异向不等式。 a b,a b,a b =><

2. 不等式性质,有同向不等式相加,得同向不等式,并无相减。若 或.这个结论常用,不妨记为:“大数减小数大于 小数减大数。” 3. 不等式性质,有均为正数的同向不等式相乘,得同向不等式,并无相除。若 ,这个结论也常用。不妨记为:“大正数除以小正 数大于小正数除以大正数。” 4. 不等式性质有 .不能忽略a 、b 均为正数 这个条件,即由 是不一定成立的。 5. 由 成立。但不一定成立。反过来也不一定成立。事实上。 (三)均值不等式 1. 对于任意实数a ,b 都有 ,当且仅当a = b 时等号成立。 2. 对于任意正实数a ,b ,当且仅当a = b 时等号成立。 3. 对于任意正实数a, b 都有 ,当且仅当a = b 时等号成立。 4. 的几何解释:如图,AB 是⊙O 的直径,C 是AB 上任意一点,DE 是过C 点垂直于AB 的弦。若AC =a, BC =b 则AB =a + b ,⊙O 的半径 , Rt △ACD ∽Rt △BCD ,,。 a b,c d a c b d >>?->- c b d a ->-a a b 0,c d 0d >>>>? >b c d c b a > 或n n a b 0a b (n N,n 1)>>?>∈>n n a b a b (n N,n 1)>?>∈>11a b 0a b >>? <11a b a b >?<11a b a b 11 a b ab 0a b >>? < 且22a b 2ab +≥a b 2+2 a b ab 2+??≤ ? ??a b 2+a b r 2+= 2 CD AC CB ab =?=CD =

高中数学精讲精练(新人教A版)第03章三角函数B

2013高中数学精讲精练 第三章 三角函数B 第5课 三角函数的图像和性质(一) 【考点导读】 1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22 ππ - 上的性质; 2.了解函数sin()y A x ω?=+的实际意义,能画出sin()y A x ω?=+的图像; 3.了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】 1. 已知简谐运动()2sin( )()3 2 f x x π π ??=+< 的图象经过点(0,1),则该简谐运动的最小正周期 T =_________;初相?=__________. 2. 三角方程2sin( 2 π -x )=1的解集为_______________________. 3. 函数),2 ,0)(sin(R x x A y ∈π ω?+ω=的部分图象如图所示,则函数表达式为 ______________________. 4. 要得到函数sin y x =的图象,只需将函数cos y x π?? =- ?3?? 的图象向右平移__________个单位. 【范例解析】 例1.已知函数()2sin (sin cos )f x x x x =+. (Ⅰ)用五点法画出函数在区间,22ππ??-???? 上的图象,长度为一个周期; (Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到. 例2.已知正弦函数sin()y A x ω?=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ; (2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; (3)作出函数12()()y f x f x =+的图像的简图. 第3题

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

高中数学必修五,等差数列题型精讲精练

第七章 数列 第一节 等差数列 题型73、等差数列基本运算 ? 知识点摘要: ? 定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做 等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数). ? 等差数列的通项公式:a n =a 1+(n -1)d ;通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). ? 等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b 2,其中A 叫做a ,b 的等差中项. ? 等差中项的推论:在等差数列中,若m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). 若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *). ? 前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n ) 2. ? 等差数列的通项公式及前n 项和公式与函数的关系 1. 集合当d ≠0时,a n 是关于n 的一次函数;当d >0时,数列为递增数列;当d <0时,数列为递减数列. 2. 公差不为0时,S n =An 2+Bn (A ,B 为常数).S n 是关于n 的二次函数,且常数项为0. ? 典型例题精讲精练: 1. (2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )B A .-12 B .-10 C .10 D .12 2. 已知等差数列{a n }的前n 项和为S n ,若a 2=4,S 4=22,a n =28,则n =( )D A .3 B .7 C .9 D .10 3. (2019·开封高三定位考试)已知等差数列{a n }的前n 项和为S n ,且a 1+a 5=10,S 4=16,则数列{a n }的公差为( )B A .1 B .2 C .3 D .4 4. 已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( )D A .420 B .340 C .-420 D .-340 5. 在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=( )C A .12 B .18 C .24 D .30

高中数学函数的解析式

课题:___函数的解析式___ 教学任务 教 学 目 标 知识与技能目标会求简单函数的解析式 过程与方法目标 学生通过“回顾-反思-巩固-小结”的过程中 总结简单函数的解析式三种类型及解法。理解掌握 换元法、待定系数法,体会建立数学模型。培养学 生分类讨论的数学思想。 情感,态度与价值 观目标 使学生认识到数学与生活紧密相连,数学活动充满着探索与创 造,让他们在学习活动中培养独立的分析和建模的能力。 重点理解掌握应用换元法、待定系数法求简单函数的解析式 难点能初步掌握用数学模型解决实际问题,并能注意实际问题中的定义域 教学过程设计 问题与情境 设计 意图 活动1课前热身(资源如下) 1、设 ? ? ? ? ? < = > + = )0 (0 )0 ( )0 (1 ) ( x x x x x fπ,则f{f[f(-1)]}=_______ ___ 2、若一次函数f(x),使f[f(x)]=9x+1,则() f x= 3、已知:) (x f=x2-x+3 ,则 f(x+1) = , f( x 1 )= 4、若 x x x f - = 1 ) 1 (求f(x) = 5、客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙 地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙 地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过 的路程s与时间t之间关系的图象中,正确的是(). A. B. C. D. . 从正 反两 种情 况出 发,让 学生 回忆 体会 函数 解析 式用 法和 求法。 活动2类型解法 函数的解析式的几种类型及解法: 1、已知所要求的函数类型(一次、二次、反比例、指对数等), 利用待定系数法来求; 2、已知复合函数一般用变量代换(换元)法; 3、涉及实际问题求解析式,需建立数学模型即:把实际问题转 化为数学问题。 培 养学 生用 自己 的语 言来 总结 类型 与解 法 活动3提高探究 资源1、求满足下列条件的函数() f x的解析式: ①已知一次函数() f x,满足3(1)2(1)217 f x f x x +--=+. ②若二次函数满足(0)0 f=,且(1)()1 f x f x x +=++ ③设二次函数f(x)满足f(x-2)=f(-x-2),且图象在y轴上的截距为1,在x轴上截得 的线段长为2 2. 掌 握利 用待 定系 数法 求解 析式。

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学-二项式定理精讲精练

高中数学-二项式定理精讲精练 1.二项式定理 (1)二项式定理 011()C C C C ()n n n k n k k n n n n n n a b a a b a b b n --*+=+++++∈L L N ,这个公式叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式,共有____________项,其中各项的系数_____________叫做二项式系数. 说明:二项式定理中的,a b 既可以取任意实数,也可以取任意的代数式,还可以是别的.在二项式定理中,如果设1,a b x ==,则得到公式: 0122(1)C C C C C n k k n n n n n n n x x x x x +=++++++L L . (2)二项展开式的通项 二项展开式中的C k n k k n a b -叫做二项展开式的通项,用1k T +表示,即通项为展开式的第 __________项:1C k n k k k n T a b -+=. 2.“杨辉三角”与二项式系数的性质 (1)杨辉三角 当n 依次取1,2,3,…时,()n a b +展开式的二项式系数可以表示成如下形式: 该表称为“杨辉三角”,它蕴含着许多规律:例如:在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;在相邻的两行中,除1以外的其余各数都等于它“肩上”两个数字之_______. (2)二项式系数的性质

①对称性.与首末两端“等距离”的两个二项式系数_________.事实上,这一性质可直接 由公式C C m n m n n -=得到. ②增减性与最大值.当12n k +< 时,二项式系数是逐渐增大的;当1 2 n k +>时,二项式系数是逐渐减小的,因此二项式系数在中间取得最大值.当n 是偶数时,中间的一项的二项式系数_________最大;当n 是奇数时,中间的两项的二项式系数_________相等且最大. ③各二项式系数的和.已知0122(1)C C C C C n k k n n n n n n n x x x x x +=++++++L L .令1x =, 则0122C C C C n n n n n n =++++L .也就是说,()n a b +的展开式的各个二项式系数的和为 _________. K 知识参考答案: 1.(1)n +1C ({0,1,2,,})k n k n ∈L (2)1k + 2.(1)和(2)①相等②2C n n 1122C ,C n n n n -+③2n K —重点 二项式定理及二项展开式的通项公式 K —难点 用二项式定理解决与二项展开式有关的简单问题 K —易错 容易混淆项与项的系数,项的系数与项的二项式系数 一、二项展开式中特定项(项的系数)的计算 求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n =L ).一定要记准二项式的展开式,对于较复杂的二项式,有时先化简再展开更简捷. 【例1】已知在 的展开式中,第6项为常数项. (1)求含的项的系数; (2)求展开式中所有的有理项.

高中数学求函数解析式的各种方法

函数解析式 1、已知2(21)42f x x x +=-,求()f x 表达式。 2、已知1()2()23f x f x x +=+,求()f x 表达式。 3、已知2(1)21f x x +=+,求(1)f x -,()f x 。 4、已知23()2()23f x f x x --=-,不求()f x 的解析式,直接求(0)f ,(2)f 。 5、已知2 211()11x x f x x --=++,求()f x 解析式。 6、设()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x,y 都有()()(21)f x y f x y x y -=--+,求()f x 。 7、若函数2 2()1x f x x =+,求111(1)(2)()(3)()(4)()234f f f f f f f ++++++。 8、已知函数()x f x ax b =+,(2)1f =且方程()0f x x -=有唯一解,求()f x 表达式。 9、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 。 10、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 11、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 12、已知函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 13、设,)1(2)()(x x f x f x f =-满足求)(x f 。 14、设)(x f 为偶函数,)(x g 为奇函数,又,1 1)()(-=+x x g x f 试求)()(x g x f 和的解析式。 15、设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 。 16、已知f (x +1)=x +2x ,求()f x 的解析式。 17、已知f (x + x 1)=x 3+31x ,求()f x 的解析式。 18、已知函数()f x 是一次函数,且满足关系式3(1)2(1)217f x f x x +--=+,求()f x 的解析式。 19、已知2(1)lg f x x +=,求()f x 。 20、已知()f x 满足1 2()()3f x f x x +=,求()f x 。

高中数学导数典型例题精讲(详细版)

导数经典例题精讲 导数知识点 导数是一种特殊的极限 几个常用极限:(1)1 lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,0011lim x x x x →= . 两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞?? += ??? (e=2.718281845…). 函数极限的四则运算法则:若0 lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0 lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????;(3)()()()0 lim 0x x f x a b g x b →=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞ ==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞?=?(3)()lim 0n n n a a b b b →∞ =≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c 是常数) )(x f 在0x 处的导数(或变化率或微商) 000000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?''===??. .瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===??. 瞬时加速度:00()() ()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -=' (4) x x 1 )(ln = ';e a x x a log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则 (1)' ' ' ()u v u v ±=±.(2)' ' ' ()uv u v uv =+.(3)'' '2 ()(0)u u v uv v v v -=≠. 复合函数的求导法则 设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U处有导数 ''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且''' x u x y y u =?,或写作'''(())()()x f x f u x ??=. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力.

人教版高中数学必修一函数解析式的求法大盘点

函数解析式的求法大盘点 函数解析式的求解方法较多,在此,我归纳了几类供大家学习,希望对大家有所帮助。 一. 方程组法 型型和此法主要适用(x) )()()()()(c tx bf x af x c x t bf x af =+=+。 。即函数的解析式为得:替换为解析:把。 联立方程组,即可解出替换为分析:把的解析式。 ,求满足函数例3)(3)(-)(2)-()(2)(,)(,)()(2)()(.1x x f x x f x x f x f x x f x f x x x f x x x f x x f x f x f ==????=-=----=-- 。即函数的解析式为得:替换为解析:把。联立方程组,即可解出替换为分析:把的解析式。,求满足函数例)2(31)()2(31)(1 )(2)1()1(2)(,1)(,1)()1(2)()(.2x x x f x x x f x x f x f x x f x f x x x f x x x f x x f x f x f +--=+--=???? ????-=--=----=-- 点评:方程组法求函数解析式关键是根据所给表达式列出方程组。 )()()()()()()()()()(x f x t c x bf x t af x c x t bf x af x t x x c x t bf x af 即可解出,即替换为型需把???????=+=+=+, ).()()()()()()((x) )()(x f tx c x bf tx af x c tx bf x af tx x c tx bf x af 即可解出,即替换为型需把???=+=+=+

高中数学函数及其表示典型经典例题精讲精练

函数及其表示 考点一 求定义域的几种情况 ①若f(x)是整式,则函数的定义域是实数集R; ②若f(x)是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f(x)是对数函数,真数应大于零。 ⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。 ⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑦若f(x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题 考点二 映射个数公式 C ard(A)=m ,card(B)=n, m,n ∈N * ,则从A 到B 的映射个数为 n m 。简单说成“前指后底”。 方法技巧清单 方法一 函数定义域的求法 2.(2009江西卷理)函数 2 34 y x x = --+的定义域为? ?? ( ) A.(4,1)-- B .(4,1)- C.(1,1)- D.(1,1]- 解析 由2 10 1 1141 340x x x x x x +>>-????-<??.故选C 5.求下列函数的定义域。①y= 22+?-x x .②y= () x x x -+12 .③y= x x -+-11 6.已知函数f(x)的定义域为(),51,求函数F (x)=f(3x-1)-f(3x+1)的定义域。 1. 下列各组函数中表示同一函数的是( )A.y=5 5 x 和 x y 2 = B .y =ln e x 和 e x y ln = C. ()()() ()3131+=-+-= x y x x x y 和 D. x x y y 0 1 = = 和 2.函数y=f(x)的图像与直线x =2的公共点个数为 A. 0个B. 1个 C. 0个或1个 D. 不能确定 3.已知函数y= 22 -x 定义域为{}2,1.0,1-,则其值域为 方法三 分段函数的考察 ⅰ 求分段函数的定义域和值域 2x+2 x []0,1-∈ 1求函数f(x)= x 2 1- x()2,0∈ 的定义域和值域 3 x [)+∞∈ ,2

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

高中数学知识点精讲极限和导数

第十二章 极限和导数 第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞ →, 另外)(lim 0 x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x -→表示x 小 于x 0且趋向于x 0时f(x)的左极限。 2 极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因

变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导,此极限 值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x)在 区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1 )'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1 = ;(8).1)'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3))(')]'([x u c x cu ?=(c 为常数);(4))()(']')(1[ 2x u x u x u -=;(5)) () ()(')(')(]')()([2 x u x v x u x v x u x u x u -=。 8.复合函数求导法:设函数y=f(u),u=?(x),已知?(x)在x 处可导,f(u)在对应的点u(u=?(x))处可导,则复合函数y=f[?(x)]在点x 处可导,且(f[?(x)])'=)(')](['x x f ??. 9.导数与函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有0)('>x f ,则f(x)在(a,b)单调递增;(3)若对一切x ∈(a,b)有0)('x f ,则f(x)在x 0处取得极小值;(2)若0)(''0

相关主题
文本预览
相关文档 最新文档