当前位置:文档之家› 数列极限的运算法则

数列极限的运算法则

数列极限的运算法则
数列极限的运算法则

数列极限的运算法则(5月3 日)

掌握数列极限的运算法则,并会求简单的数列极限的极限。 运用数列极限的运算法则求极限 数列极限法则的运用 教学目标 教学重点 教学难点 教学过程 一、复习引入: 函数极限的运算法则:如果 lim X X o

lim f(x).g(x)

X 冷

二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果 lim a n A, lim b n B,那么

n n lim (a n b n ) A B

n f(x) A, lim g(x) B,则 lim f (x) x x o ..f(x) lim

x x0

g(x)

x X o n im(a n b n

) A

lim (a n .b n ) A.B lim n

a n

b n

B

(B

推广:上面法则可以推广到有限多个数列的情况。 例如,

a n

b n

g(x )

0)

有极限,

则:lim (a n b n c n ) lim a n

lim b n n

n n lim n

C n

特别地,如果

C 是常数,那么

lim (C.a n ) lim C.lim a n

-

n

CA

例1?已知lim a n n

5, lim b n 3,求 lim (3a n

4b n ).

n

n

例2?求下列极限: 4、

(1) lim (5 ); n n

(2) lim (- 1)2

n n

例3?求下列有限:

/ 八,■ 2n 1 /c 、 ,■ n (1) lim

(2) lim ——

n

3n 1

n

n 1

分析:(1) (2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限, 上面的极限运算法则不能直接运用。

例4?求下列极限:

说明:1?数列极限的运算法则成立的前提的条件是:数列的极限都是存在,在进行极限运 算时,要特别注意这一点。

当n 无限增大时,分式的分子、分母都无限增大,分子、分母

都没有极限,上面的极限运算法则不能直接运用。

2?有限个数列的和(积)的极限等于这些数列的极限的和(积)

3?两个(或几个)函数(或数列)的极限至少有一个不存在,但它们的和、差、积、商的 极限不一定不存在。

(1)

5 n 2

1

7 n 2

1

2n 1) n 2 1)

(2)

lim(^ n

1 3

9

2; 3n 1

小结:在数列的极限都是存在的前提下,才能运用数列极限的运算法则进行计算;数列极限的运算法则是对有限的数列是成立的。

练习与作业:

2?求下列极限:

3?求下列极限

(1) lim

n lim

n 3n

(3) lim

n 3n 2

b ;

lim

n

2n2

3n2 1 °

5n

1?已知lim a n

n 2, lim b n

n

1,求下列极限

3

(1) lim (2a n

n 3b n);(2)lim

n

a n

b n

a n

(1)lim (4

n 1);

n lim

n

(4)

1

4?求下列极限

已知lim a n 3, lim b n

5,求下列极限:

n n \17 1

n

4b

n a 3 /V m \1

7

n -

n

an 一

an

m

H n

5?求下列极限: (1) . lim (7

n —) n

lim (

n

5)

(3) . lim

n

-(3

n n

4)

n 1

1 1

n

(4).

lim

n

(5). lim

n

2n —

(6).

lim n

5n

6n 11

(7). lim

n (8) lim(— n

n

1 4n 2) 1 n 2

1 (9) lim -

n

1 2n 1

(10).已知 lim a n

n

2,求 lim

n

n a n n a n

1

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

数列的极限及运算法则

学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思lim n n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情况如,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 二、基本题目 1.判断下列数列是否有极限,若有,写出极限;若没有,说明理由

数列极限的运算法则

数列极限的运算法则(5月3日) 教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。 教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用 教学过程: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]=±→) ()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限.. 多个数列的情况。例如,若{}n a ,{}n b ,{}n c 有极限, 则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 二.例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ → 例2.求下列极限: (1))45(lim n n + ∞ →; (2)2)11 (lim -∞→n n

极限的运算法则

7.7 (2)极限的运算法则 一、教学内容分析 本小节的教学内容是在理解无穷数列极限的概念的基础上学习数列极限的运算性质及四个重要的极限,鉴于高二学生现有的数学基础,教材采取从实际的例子引入,给出数列极限的运算性质及四个重要极限的结论,然后通过例题加以说明的方式. 教学重点是数列极限的运算性质,教学中要强调运算性质成立的条件是两个数列的极限都存在. 教学难点是数列极限的运算性质及四个重要极限结论的灵活运用,会进行恒等变形,运算性质可从两个数列推广到有限个数列,注意有限与无限的本质区别. 二、教学目标设计 掌握数列极限的运算性质,会利用这些性质计算数列的极限. 知道数列极限的四个重要结论,并会用它们来求有关数列的极限; 会运用式的恒等变形,把分子、分母极限不存在的分式转化为若干个极限存在的数列的代数和,从而求出极限,提高观

察,分析以及等加转换的能力. 三、教学重点及难点 重点:数列极限的运算性质. 难点:数列极限的运算性质及重要极限的灵活运用. 四、教学流程设计 五、教学过程设计 一、复习回顾 1、数列极限的定义. 2、已知1 23-=n n a n 试判断数列{}n a 是否有极限,如果有,写 出它的极限. 二、讲授新课

1、实例引入 计算由抛物线x y =2,x 轴以及直线x=1所围成的区域 面积S :2 6)12)(1(lim lim n n n S S n n n --==∞→∞→ 2、数列极限的运算性质 (1)数列极限的运算性质 如果B b A a n n n n ==∞ →∞→lim ,lim ,那么 (1)B A b a b a n n n n n n n ±=±=±∞ →∞→∞→lim lim )(lim ; (2)B A b a b a n n n n n n n ?=?=?∞ →∞→∞→lim lim )(lim ; (3)B A b a b a n n n n n n n ==∞ →∞→∞→lim lim lim ; (2)的推论:若C 是常数,则A C a C b C n n n n n ?=?=?∞ →∞→∞→lim lim )(lim 说明:1、运算性质成立的条件 2、在数列商的极限中,作为分母的数列的项及其极 限都不为零. (2)常用的数列极限的几个结论 (1)对于数列{}n q ,当1

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(A n+B n)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An ? Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T+R的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£> 0(不论它多么小),总存在正数N,使得对于满足n > N的一切Xn,不等式|Xn-A| v &都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ?/ limAn=A,二对任意正数 &存在正整数N?,使n > N?时恒有|An-A| v&①(极限定义)同理对同一正数&存在正整数N?,使n>N?时恒有|Bn-B| v 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)| < |An-A|+|Bn-B| v & + & =2 &. 由于&是任意正数,所以2&也是任意正数. 即:对任意正数2 &存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 &. 由极限定义可知,lim(An+Bn)=A+B. 即:对任意正数C&存在正整数N,使n > N时恒有|C ? An-CA|v C&. 由极限定义可知,lim(C ? An)=C?A若C=0的话更好证) 法则2的证明: lim(A n-B n) =limA n+lim(-B n)(法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An ? Bn)=0. 证明:?/ limAn=0,二对任意正数 &存在正整数N?,使n>N?时恒有|An-0| v &③(极限定义)同理对同一

(完整版)极限四则运算法则.doc

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理 1:若lim f (x) A,lim g (x) B ,则 lim[ f ( x) g (x)] 存在,且 lim[ f ( x) g ( x)] A B lim f (x) lim g( x) 。 证明:只证 lim[ f ( x) g ( x)] A B ,过程为 x x0,对0, 1 0 ,当 0 x x0 1时,有 f (x) A ,对此, 2 0 ,当0 x x0 2 2 时,有 g ( x) B ,取min{ 1 , 2 } ,当0 x x0 时,有 2 ( f ( x) g( x)) ( A B) ( f (x) A) ( g( x) B) f ( x) A g( x) B 2 2 所以 lim ( f ( x) g( x)) A B 。 x x0 其它情况类似可证。 注:本定理可推广到有限个函数的情形。 定理 2:若lim f (x)A,lim g(x) B ,则 lim f ( x) g( x) 存在,且 lim f (x) g( x) AB lim f ( x) lim g( x) 。 证明:因为 lim f ( x) A, lim g( x) B , f ( x) A, g (x) B, (,均为无穷小) f ( x) g(x) ( A)( B) AB ( A B) ,记 A B,为无穷小,lim f ( x) g(x) A B 。 推论 1:lim[ cf ( x)]clim f ( x) ( c 为常数)。 推论 2:lim[ f ( x)]n[lim f ( x)] n( n 为正整数)。 定理 3:设lim f ( x) A, lim g( x) B 0 ,则 lim f ( x) A lim f ( x) 。 g( x) B lim g (x) 证明:设 f ( x) A, g(x) B(,为无穷小),考虑差:

数列极限求法及其应用-毕业论文

数 列 极 限 的 求 法 及 其 应 用 2012年 9 月 28 日

容提要 数列极限可用N ε-语言和A N -语言进行准确定义,本文主要讲述数列极限的不同求法,例如:极限定义求法、极限运算法则法、夹逼准则求法、单调有界定理求法、函数极限法、定积分定义法、Stoltz 公式法、几何算术平均收敛公式法、级数法、收缩法等等.我们还会发现同一数列极限可用不同方法来求. 最后我们还简要介绍了数列极限在现实生活中的应用,如几何中推算圆面积,求方程的数值解,研究市场经营的稳定性及购房按揭贷款分期偿还问题.通过这些应用使我们对数列极限有一个更系统立体的了解. 关键词 ε-定义;夹逼准则;Stoltz公式;函数极限 N

On the Solutions and the Applications as to the Sequence Limit Name: Yang NO. 07 The guidance of teachers: Dong Titles: Lecturer Abstract The limit of a sequence can be accurately defined by N ε-language and A N - language. This paper mainly describes different solutions to finding sequence limit, for example, definition of sequence limit method, fundamental operations of sequence limit method, squeezing law method, the monotone convergence theorem method, function limits method, definite integrals definition method, Stoltz formula method, geomeric and arithmetic convergence formula method, series method, contraction method, etc. We'll also find that different methods can be used to solve the same limit. Finally, we also briefly introduce the applications of sequence limit in real life, such as, infering the area of a circle in geometry, finding the numerial solution of equations, studying the stability of the market operation and the amortization problems of purchase mortgage loans.

数列极限的运算法则

数列极限的运算法则 (上海教育出版社高中课本数学高二第一学期第二课时) 一.教学目标: 掌握数列极限的运算法则,并会利用这些法则求简单的数列的极限。 二.教学重点:运用数列极限的运算法则求极限 教学难点:无限个数列极限的运算 教学过程: 1. 引入: 今天的主角是古希腊著名的数学家、物理学家阿基米德。他提出了三次方程的几何解法,发现了以他的名字命名的螺线,他曾求出许多图形的面积和体积,极限的思想能够帮助我们解决很多几何图形面积体积的问题,今天我们也来做一次数学家,研究重现一下他这一贡献的过程。我们来看这个例子,要计算由抛物线2y x =、x 轴以及直线x=1所围成的区域的面积S ,这是一个曲边三角形,不能用三角形的面积公式来计算,阿基米德是如何计算的呢首先把区间[0,1]分为两部分,那么作出的这一个矩形的面积必然小于曲边三角形面积,之后我们再尝试继续一分为二,那么作出这三个矩形,其面积比我们刚才计算的要大,但仍小于曲边三角形的面积,继续采取这种方法,增大区间段,不妨设把区间[0,1]分成n 个小区间,即用x 轴上的分点0,1231,,,.....,,n n n n n n - 分隔;那么在每个小区间上作一个小矩形,使矩形的左上端点在抛物线上,这些矩形的高对应就是 222212310,(),(),(),.....,()n n n n n -,我们来考虑这些矩形面积的总和: 2222222332 1112111123...(1)(1)(21)(1)(21)0()()....()66n n n n n n n n S n n n n n n n n n n -++++-----=?+?+?+?===我们不妨考察n S 与S 之间有何关系,我们尝试使n 越来越大,也就使分的每段区间越来越小,那么矩形可以要多窄有多窄,我们是不是就可以把n S 近似看作S 了呢,n 无限增大,矩形面积的和就可以无限逼近曲边三角形的面积~这就是一种极限的思想,当n 无限增大时,矩形面积的总和n S 可以近似等于曲边三角形的面积,它们之间的差极其小。那么这个极限我们上节课已经学过了,结果是多少哇(1/3)非常好,这是大学中非常重要的一种积分的思想,我们看到了极限的重要性,那么大家更要认真学习,积极理解。那么我们就来回顾一下上节课介绍的常见的三种数列极限。(提问)不错,功课做的很足~我们上节课呢,介绍的f(n)/g(n)模型是常考点,但除此之外还有很多复杂的数列,他们的极限比较复杂,那么应该如何求呢我们学过实数的四则运算,今天我们就来探讨一下数列极限的四则运算性质: 揭示主题:数列极限的四则运算性质。 2. 概念详细讲解:

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

数列的极限及运算法则

数列的极限及其运算法则 学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n c b a c b a ∞ →∞→∞→∞→++=++lim lim lim )(lim

数列极限的运算法则

精心整理 数列极限的运算法则(5月3日) 教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。 教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用 [→lim 0 x x 如果}有极二.例1.例2.(例3.求下列有限: (1)1312lim ++∞ →n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限:

(1))1 1 2171513( lim 2 222+++++++++∞ →n n n n n n K (2)39312421(lim 1 1--∞→++++++++n n n K K 说明:1.数列极限的运算法则成立的前提的条件是:数列的极限都是存在,在进行极限运算时,要特别注意这一点。当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 2. 3.1.(12.(13.(1)n n lim ∞→; (2) 2 3lim -∞→n n ; (3)2 12 3lim n n n --∞→; (4)1325lim 22--∞→n n n n 。 4.求下列极限 已知,3lim =∞→n n a ,5lim =∞ →n n b 求下列极限: (1).).43(lim n n n b a -∞ → (2). n n n n n b a b a +-∞ →lim

5.求下列极限: (1). );2 7(lim n n -∞→ (2).)51 ( lim 2-∞ →n n (3).)43 (1lim +∞→n n n (4).11 1 1 lim -+∞→n n n (5).22321lim n n n ++++∞→Λ (6).11657lim -+∞→n n n (7). n (9

考研数列极限计算汇总

数列极限及其计算(习题部分) 数列极限存在性的证明以及数列极限的计算,是考研数学的重难点,有时会命制成压轴题。 在考研范围内,数列极限计算常用的方法主要有单调有界准则、夹逼准则、初等变形、定积分定义、归结原理、级数收敛的必要条件、转化为幂级数求和等。本章部分题目涉及到后续章节的知识(如利用定积分定义求极限),自学本讲义的同学可暂时跳过。 题型一、递推数列的极限 (一)单调有界准则 例题1收敛并求极限值 注:利用单调有界准则证明递推数列的收敛性,是常考题型。在具体证明单调性和有界性时,常用到一些经典的不等式放缩,如均值不等式,柯西不等式等等;有时也可用数学归纳法证明。(在进行含有自然数的命题的证明时,我们常常可以考虑数学归纳法,这是一个很好用也很流氓的一个方法。) 类题1 ,证明收敛并求极限值 类题2 ,证明收敛并求极限值 ,问此时是否收敛,该如何 证明?若将,又该如何证明? 类题3 ,证明收敛并求极限值 [注]:此题对于极限值的取舍才是关键点,这是很多辅导书都没有讲清楚的地方,希望大家好好思考。 类题4 设数列,证明收敛并求极限 类题5设可导,且,对于数列收敛, 且极限值满足方程 类题6 收敛并求极限值 类题7 (2018年数学二压轴题)设,证明收敛并求极限 注:这题是我当年考研时的原题,当时考完以后,很多人就在吹这个题多么的不常规,是考研史上最难的数列极限题。也正常,弱者总喜欢找各种理由。 例题2设收敛 注:①.该题说明,某些不是递推型的数列,也可以用单调有界准则来证明 ②.是一个非常重要的极限,我们将这个极限值定义为欧拉常数, 和是等价无穷

是发散的。() 例题3问数列的单调性和函数的单调性之间有无必然联系?请猜想并证明你的判断。 例题4 (2013年数学二压轴题)设函数 (1) 求的最小值 (2)设数列收敛并求极限 注:本题的解法值得借鉴。该题说明,即使某些数列的递推关系由不等式给出,也能使用单调有界准则。 类题1 收敛并求极限 类题2 ,证明收敛并求极限 (二)非单调的迭代数列 例题1收敛并求极限值 注:对付这种不单调的数列,我们可以采取“先斩后奏”的办法——即先把极限值找出来,然后再用递推放缩的方法,证明这个数字就是该数列的极限。以下还有几道类似的题—— 类题1 ,证明收敛并求极限值 类题2 收敛并求极限值 例题2 压缩映像原理 设当,满足——对于上任意两点和,都有 ,试证明—— (1) ,使得 (2) ,证明收敛,且 注:压缩映像原理根本就不要求数列是单调的——只要函数是一个压缩映射,那么就一定收 若题目还告知了可导,那么在具体使用压缩映像原理证明数列收敛时,更常用的是下面这个推论:推论成立,则一定收敛。 (在利用压缩映像原理解题时,最常见的错误就是忽略了 ——正是因为,才能保证数列收敛。这里的相当于是一个“压缩比例” 或“压缩因子”。所以,如果只是证明出来了,是证明不出数列收敛的;, 才能说明数列收敛,也就是说,这个是不可缺少的,在解题时一定要找到这个具体的,切记!)

高三数学试题数列的极限

数列的极限 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0 (|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a ( b ≠0). ●点击双基 1.下列极限正确的个数是 ①∞ →n lim α n 1=0(α>0) ②∞ →n lim q n =0 ③∞ →n lim n n n n 3 232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞ →n lim [n (1-3 1)(1-4 1)(1-51) (1) 2 1 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞ →n lim [n (1-3 1)(1-4 1)(1-5 1) (1) 2 1 +n )]

=∞ →n lim [n ×32×43×54×…×2 1++n n ] =∞ →n lim 2 2+n n =2. 答案:C ●典例剖析 【例1】 求下列极限: (1)∞ →n lim 7 5722 2+++n n n ;(2) ∞ →n lim ( n n +2-n ); (3)∞ →n lim ( 2 2n + 2 4n +…+2 2n n ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因 n n +2与 n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限. 解:(1)∞ →n lim 7 57 222 +++n n n =∞→n lim 2 2757 12n n n +++ =5 2. (2)∞ →n lim ( n n +2-n )= ∞ →n lim n n n n ++2=∞ →n lim 1111++ n =2 1. (3)原式=∞ →n lim 2 2642n n ++++Λ=∞ →n lim 2 )1(n n n +=∞→n lim (1+n 1 )=1. 评述:对于(1)要避免下面两种错误:①原式=) 75(lim ) 72(lim 22+++∞ →∞ →n n n n n =∞ ∞=1, ②∵∞ →n lim (2n 2+n +7), ∞ →n lim (5n 2+7)不存在,∴原式无极限.对于(2) 要避免出现下面两种错误: ①∞ →n lim ( n n +2-n )= ∞ →n lim n n +2-∞ →n lim n =∞-∞=0;②原式=∞ →n lim n n +2-∞ →n lim n =∞-∞不存在.

极限的运算法则

极限的运算法则 目的要求 1.掌握数列极限与函数极限的运算法则。 2.能运用极限的运算法则,求出较复杂的函数和数列的极限。 3.让学生体验“化归”、“类比”的数学思想方法。 内容分析 1.简单的函数极限可以从函数值的变化趋势中找出,但较为复杂的函数极限,就必须把它“化归”为简单的函数的极限,通过运算而得出。因此,极限的运算法则是我们实现化繁为简的基本手段。 2.教科书中给出了0x x →时,函数f (x )极限的四则运算法则,我们类似地可以给出当x →∞时,函数f(x)极限的运算法则,即 如果极限)(lim x f x ∞→与)(lim x g x ∞ →都存在,那么 )()(x g x f ±,)()(x g x f ?,) ()(x g x f (当x →∞时)的极限也存在,并且 )(lim )(lim )]()([lim x g x f x g x f x x x ∞→∞ →∞→±=±, )(lim )(lim )]()([lim x g x f x g x f x x x ∞ →∞→∞→?=?, )0)(lim ()(lim )(lim )()(lim ≠=∞ →∞ →∞→∞→x g x g x f x g x f x x x x 。 这些法则,可用类比的方法,直接改变式中的0x x →为x →∞而得出,以便学生理解记忆。 3.对于函数极限的运算法则,教科书只给出结论,不要求证明。 4.在上一节课中,已经给学生讲述了数列与函数的关系,即把数列看成是特殊的函数,根据演绎推理,很自然地得出数列的极限运算法则。进一步地令C b n =(C 为常数),则可推得:n n n n a C a C ∞ →∞→?=?lim )(lim 。 5.极限运算法则可以推广到有限多个数列的情况,让学生感受数学思维的一般规律,养成从特殊到一般,从具体到抽象的归纳思维习惯。 6.教科书中的例1~例5,共包含了0x x →与x →∞两类极限的计算问题。其中,0x x →的函数f (x )的极限计算时,分f(x)在0x x =处有定义和无定义的两种(例1、例2是有定

求数列极限方法总结归纳

求数列极限方法总结归纳 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到,平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。 极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。以下我们就极限的内容简单总结下。 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,

则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。 与极限计算相关知识点包括: 连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限; 可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在; 渐近线,(垂直、水平或斜渐近线); 多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。 下面我们重点讲一下数列极限的典型方法。 求数列极限可以归纳为以下三种形式。 1.抽象数列求极限 这类题一般以选择题的形式出现, 因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。 2.求具体数列的极限,可以参考以下几种方法: 利用单调有界必收敛准则求数列极限。首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。 利用函数极限求数列极限。如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

数列极限的运算性质

极限的运算 教学目标 1熟练运用极限的四则运算法则,求数列的极限. 2 ?理解和掌握三个常用极限及其使用条件?培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力. 3?正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想. 教学重点与难点使用极限四则运算法则及3个常用极限时的条件. 教学过程 (一)运用极限的四则运算法则求数列的极限 师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个 例1 :求下列极限: 3^2 7n 3n (1) lim n 师:(1)中的式子如何转化才能求出极限. 生:可以分子、分母同除以n3,就能够求出极限. 7- 0+ 0^- 0 7 师:(2)中含有幕型数,应该怎样转化? 生;可以转化咸11啤JO的形式.分子、分母同时除臥" 心0 师:分子、分母同时除以3n-1结果如何? 生:结果应该一样. 常用极限: 1 lim — =0,lim C=C , lim q n=0 (|q|<1 )来解决。 n 4n3 1 ,315 7 ----- 1 -------- p— 解‘原式牡叮山 lim 7 —lim —I- lim -□- + lim ~? lim4 - IL-KX* nf gfi 解:原式=lim肮— CO孑Z怕I?丿 Mi) 1 z 0-1 3 -lim I l旳

生;不能-因为limq" = 0中! 时,一般方法是把分子、分母同除以n的最高次為转化威求数列£} 的极限问题. % rr^w 师;第〔1)题有的同学结果得A有的得刍写岀耒大家分析、 判断正误. 0^~ 3 1-0 1 师:分子、分母同时除以2n或2n-1,能否求出极限? |q|1 (二)先求和再求极限 例2求下列极限: 由学生自己先做,教师巡视.

第二章极限习题及答案:极限的四则运算

分类讨论求极限 例 已知数列{}n a 、{}n b 都是由正数组成的等比数列,公比分别为q p ,,其中q p >,且1≠p ,1≠q ,设n n n b a c +=,n S 为数列{}n C 的前n 项和,求1lim -∞→n n n S S . (1997年全国高考试题,理科难度0.33) 解: ()() 1 1 1111--+--=q q b p p a S n n n ()( )()() ()( )()( ) 1 1111 1111111111--+----+--= ---n n n n n n q p b p q a q p b p q a S S . 分两种情况讨论; (1)当1>p 时,∵ 0>>q p ,故10<< p q , ∴1 lim -∞→n n n S S ()()()()????? ? ?????????????????? ??--+???? ??--?????????? ??--+???? ??-------1111111111111111111lim n n n n n n n n n n p p q p b p q a p p p q p b p q a p ()()()()()()010110 10111111?-+--?-+--? =p b q a p b q a p ()() p q a q a p =--? =1111 (2)当1

数列极限的运算性质

极限的运算 教学目标 1.熟练运用极限的四则运算法则,求数列的极限. 2.理解和掌握三个常用极限及其使用条件.培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想. 教学重点与难点 使用极限四则运算法则及3个常用极限时的条件. 教学过程 (一)运用极限的四则运算法则求数列的极限 师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个 常用极限:n n 1 lim ∞→=0,∞→n lim C=C ,∞ →n lim q n =0(|q|<1)来解决。 例1:求下列极限: 1 45 37lim )1(323-++-∞→n n n n n 师:(1)中的式子如何转化才能求出极限. 生:可以分子、分母同除以n 3,就能够求出极限.

师:(2)中含有幂型数,应该怎样转化? 师:分子、分母同时除以3n-1结果如何? 生:结果应该一样. 师:分子、分母同时除以2n或2n-1,能否求出极限?

(二)先求和再求极限 例2求下列极限: 由学生自己先做,教师巡视. 判断正误. 生:因为极限的四则运算法则只适用于有限个数列加、减、乘、除的情况.此题当n →∞,和式成了无限项的和,不能使用运算法则,所以解法1是错的. 师:解法2先用等差数列的求和公式,求出分子的和,满足了极限四则运算法则的条件,从而求出了极限.第(2)题应该怎样做?

生:用等比数列的求和公式先求出分母的和. =12. 师:例2告诉我们不能把处理有限项和问题的思路及方法随意地搬到无限项和的问题中去,要特别注意极限四则运算法则的适用条件. 例3求下列极限: 师:本例也应该先求出数列的解析式,然后再求极限,请同学观察所给数列的特点,想出对策. 生:(1)题是连乘积的形式,可以进行约分变形. 生:(2)题是分数和的形式,可以用“裂项法”变形.

大一高数复习资料【完整版】

大一高数复习资料【完整版】

高等数学(非数院) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部 分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δδ=-< (){},|0U a x x a δδ=<-< 第二节 数列的极限 ○数列极限的证明(★) 【题型示例】已知数列{}n x ,证明{}lim n x x a →∞ = 【证明示例】N -ε语言 1.由n x a ε-<化简得()εg n >, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????。当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0 x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()0 0x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当0 0x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明 (★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式 ()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大 ?()∞=x f lim ○无穷小与无穷大的相

相关主题
文本预览
相关文档 最新文档