当前位置:文档之家› 概率论第一章习题解答

概率论第一章习题解答

概率论第一章习题解答
概率论第一章习题解答

概率论第一章习题解答

概率论第一章习题解答

一、填空题: 1.

,()0.1,()0.5,

A B P A P B ?==则

()P AB =

,()P A B =U ,

()P A B =

U 。

分析:()(,)0.1;A P B P AB A ==?()()0.5;P A B P B ==U

()()()1()0.9

P A B P A B P AB P AB ===-=U I

2.设在全部产品中有2%是废品,而合格品中有85%是一级品,则任抽出一个产品是一级品的概率为 。

分析:设A 为抽正品事件,B 为抽一级品事件,则条件知

()1()0.98

P A P A =-=,

()0.85

P B A =,所求为

()()()0.980.850.833

P B P A P B A ==?=;

3.设A ,B ,C

为三事件且

P(A)=P(B)=P(C)=41,8

1

)(,0)()(===AC P BC P AB P ,则A,B,C 中至少有一个发生的概率为 . 分析:,()()0,()0ABC AB P ABC P AB P ABC ?≤=∴=Q

2.每次试验成功的概率为p (0< p <1),进行重复试验,直到第10次试验才取得4次成功的概率为( )。

分析:第10次试验才取得4次成功说明第10次是成功的,而前9次里恰有3次是成功的,因此为(B )3

46

9

(1)C

p p -

3.(C )()=()()P A B P A P AB --

4.关于独立性,下列说法错误的是( )。 (A) 若1

2

,,,n

A A A L 相互独立,则其中任意多个事件

12,,,)

k i i i A A A k n ≤L (仍相互独立;

(B )若1

2

,,,n

A A A L 相互独立,若则它们之中的任意多个事件换成其对立事件后仍然相互独立 (C ) 若A 与

B 相互独立, B 与

C 相互独立, A 与C 相互独立, 则A,B,C 相互独立;

(D ) 若A,B,C 相互独立,则A B U 与C 相互独立 分析:两两独立不一定相互独立;

5. n 张奖券中含有m 张有奖的, k 个人购买,每人一张,其中至少有一人中奖的概率是

( )。

分析:“至少有一人中奖”的对立事件是“全都没中奖”

;而“全都没中奖”的概率为k n m

k

n C

C -;因此

“至少有一人中奖”的概率为(A)

1k n m k n

C C -

-

三、解答题

1、解:

2、(6)不多于一个发生也可写成 A B B C A C U U ;

3.已知2

1

)(,31)(==B P A P ,求下列三种情形下)(B A P 的值

(1)A 与B 互不相容; (2)B A ?; (3)A

与B 相互独立。

解:()()()()P AB P B A P B P AB =-=-

(1)A 与B 互不相容,则()0P AB =,

()()0.5P AB P B ==; (2)

B

A ?;则

,()()

A B A P AB P A ==I 所以,

1

()()()6

P AB P B P A =-=

(3)A 与B 相互独立,则()()()P AB P A P B =,1

()3

P AB = 解法2:(3)A 与B 相互独立,则1()()()3P AB P A P B ==

4.一批产品共40个,其中5个次品,现从中任意取4个,求下列事件的概率。

A={取出的4个产品中恰有1个次品}; B={取出的4个产品中至少有1个次品}

解:

13

535

440

()C C

P A C =;

435

4

40

()1()1C P B P B C =-=-

5.已知在10件产品中有2只次品,在其中两次,每次取一只,作不放回抽样求下列事件的概率

(1)两只都是正品; (2)两只都是次品;

(3)一只是正品,一只是次品; (4)第二次取出的是次品。 解

6.三人独立地去破译一份密码,已知各人能

译出的概率分别为4

1,31,51 求:(1)三人中至少有一人能将此密码译出的概率;

(2)三人全部将此密码译出的概率。 解:设三人能译出是事件分别为A ,B,C , (1) ()1()1( )P A B C P A B C P A B C =-=-U U U U

31() ( )()5

P A P B P C =-=

(2)三人全部将此密码译出的概率即为

1()()()()60

P ABC P A P B P C ==

7.已知男性中有5%是色盲,女性中有0.25%是色盲,今从男女人数相等的人群中随机挑选一人,恰好是色盲,问此人是男性的概率是多?

8.设工厂A和工厂B的产品的次品率分别为1%和2%,现从由A和B的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,求该产品是工厂A生产的概率。

解:

概率论测试项目(总)

概率论测试项目 姓名: 学号: 班级:

目录 一、概率论与随机过程相关外文资料 二、随机变量与随机过程的概念 三、绘制正态分布的密度函数的图形 四、用统计软件解决随机过程计算问题 五、中心极限定理的仿真实验 六、《概率论与随机过程》学习总结

一、概率论与随机过程相关外文资料 1、摘要翻译 采用业绩衡量的做法日益广泛,是寻求可持续竞争优势的公司取得成功的关键因素。因此,有必要制定一种系统的方法,使公司更加注重业绩衡量。本文提出了一种基于OPI概念的企业经营绩效指标(OPI)。顾客到达从泊松过程和指数分布..为了支持该方法的有效使用,给出了OPI的统计性质,并构造了一步的操作过程。该方法不仅可以评价和判断当前的性能是否达到六西格玛的水平,而且可以提高参数估计的精度。为了验证该方法的实用性和可行性,本文将该方法应用于一个实际的运行绩效评价和改进案例研究中。结果表明,该方法为实现六西格玛提供了一种更为有效的方法,可以在实际操作管理和持续改进中实现。 2、论文中有关的概率论与随机过程问题 该论文介绍了OPI(经营绩效指数)的发展,以及OPI的定义和统计特性。还介绍了OPI与六西格玛的关系,以及OPI的估计和置信区间。文中给出了一种基于顾客从泊松过程到商店的概念的经营绩效指数(OPI)的操作步骤。在章节中给出了一个真实的案例研究。4说明了该方法的应用。5结论和今后研究的途径在章节中作了总结。 该论文在介绍OPI的发展时对顾客到商店过程进行了分析,发现到达一家商店的顾客人数N(t)符合泊松分布。顾客到达商店的间隔时间的平均值遵循指数分布。

二、随机变量与随机过程的概念 1、随机变量 概念: 在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗骰子的点和数,而并不真正关心其实际结果,就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。 例:某足球队外出比赛,赛-场看做次随机试验,结果有3个:胜、负、平,分别用心表示,则样本空间为S= (er,e,ey).为了评定最后的比赛名次,得要将试验结果数量化,通常按胜一场记2分,负一场记0分,平一场记 1分的规则记分若令X表示该足球队赛一场的得分数,那么容易看到它具有下列特征. (1) 它是取值0,1,2的一个变量,而且它的取值依赖于试验结果e,这种依赖关系可以用一个样本点e的函数来表示,即 2,e=e1 X=X(e)={0,e=e2 1,e=e3 (2)若由过去的比赛记录统计,该足球队外出比赛获胜的概率为1/2,打平或输球的机E率均为1/4.于是X的取值有概率规律: P{X=2}=1/2,P{X=0}=1/4, P(X=1)}=1/4.同样,对任意给定的实数x, {X≤x}= {e|X(e)≤x}是一个事件,因而可求出其概率 例如: 当x=-0.1时,有 P{X≤-0.1}=P{e|X(e)≤-0.1}=P(φ)=0; 当x=0.3时,有 P{X≤0.3}=P{e|X(e)≤0.3}= P{e2}=1/4;

概率论第一章小测试

第一章小测试 一、选择题 1.设A 、B 、C 为三个事件,则A 、B 、C 不全发生可表示为( ) A. ABC B. ABC C. C B A D. C B A 2.设事件A 和B 互为对立事件,则下列各式不成立的是( ) A. ()0P AB = B. ()0P AB = C. ()1P A B = D.()1P B A = 3.将一枚均匀硬币抛掷3次,则至少有2次出现币值面朝上的概率是( ) A. 18 B. 38 C. 12 D. 58 4.盒内有6个产品,其中正品4个次品2个,不放回地一个一个往外取产品,则第二次才取到次品的概率与第二次取产品时取到次品的概率分别为( ) A. 41153, B. 441515, C. 1133 , D. 14315, 5.设两个事件A 和B 相互独立,且()0.5P A =,()0.4P B =, 则()P A B 的值是( ) A. 0.9 B. 0.8 C. 0.7 D. 0.6 6.对于任意事件A,B,若A B ?,则下列各等式不成立的是( ) A. B B A = B. φ=B -A C. B B A = D. φ=B A 7.设A,B 为任意两个概率不为0的互斥事件,则下列结论中一定正确的是( ) A. ()()P A B P A = B. ()()()P A B P A P B -=- C. ()()()P AB P A P B = D.()()P A B P A -= 8.将一枚均匀硬币抛掷3次,则恰有一次出现币值面朝上的概率是( ) A. 38 B. 18 C. 58 D. 12 9. 已知在10只电子元件中,有2只是次品,从其中取两次,每次随机地取一只,作不放回抽取,则第二次取出的是次品的概率是( ) A. 145 B. 15 C. 1645 D. 845 10.设两个事件A 和B 相互独立,且()0.6P A =,()0.3P B =, 则()P A B 的值是( ) A. 0.3 B. 0.7 C. 0.72 D. 0.9 11.事件A 、B 、C 中恰有一个事件发生的事件是( ) A .ABC B . C AB C .C B A D .C B A C B A C B A ++ 12.设A 和B 是两个随机事件,则下列关系式中成立的是( )

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答 习题一 3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生. 解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A . 5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码. (1)求最小的号码为5的概率; (2)求最大的号码为5的概率. 解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得 (1)12 1)(31025==C C A P ; (2)20 1)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求: (1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率. 解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得

(1)0855.0)(3200 2194161≈=C C C A P ; (2)9122.0)(3200 31940≈=C C A P ; (3)0023.0)(3200 3611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率: A 表示“这三个数字中不含0和5” ; B 表示“这三个数字中包含0或5” ; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得 157)(31038==C C A P ;158)(1)(=-=A P B P ;30 7)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P . 解:4.08.05.0)|()()(=?==A B P A P AB P )]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-== 3.0) 4.06.0 5.0(1=-+-= 10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()() ()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少? 解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为 3 19.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 (6) 甲乙二人下棋一局,观察棋赛的结果。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 (10) 测量一汽车通过给定点的速度。 (11) 将一尺之棰折成三段,观察各段的长度。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 (2) A 与B 都发生,而C 不发生。 (3) A ,B ,C 都发生。 (4) A ,B ,C 中至少有一个发生。 (5) A ,B ,C 都不发生。 (6) A ,B ,C 中至多于一个发生。 (7) A ,B ,C 中至多于二个发生。 (8) A ,B ,C 中至少有二个发生。 3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,??????≤<=121x x A ,? ?????<≤=234 1x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求A , B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)? (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少?

概率论自测试题

课程号: 《概率论与数理统计》自测试卷 考试形式:闭卷考试 考试时间:120分钟 专业 班号 学号 姓名 得分 注意:所有答案请写在答题纸上,写清题号,否则无效。 一、填空题(本题20分,每题5分,共4题) 1、已知P(A)=0.4,P(B)=0.5, 若A 与B 互不相容,则P(AUB)= __0.9 ; 2、某国奥队前锋在4次射门中至少命中1次的概率为 15 16 ,则此前锋在一次射门中进球的概率为 12; 3、设随机变量X 服从参数为λ的Poisson 分布, 已知E(X)+ D(X) =5,则参数λ等于 _2.5 ; 4、假设来自正态总体(,100)N μ 的容量为100的样本,样本均值为5x =,则总体均值μ的置信度为0.95 的双侧置信区间为(已知分位点0.025Z =1.96) (3.04, 6.96) . 【解答】 1、 已知P(A)=0.4,,P(B)=0.5, 若A 与B 互不相容,则由有限可加性有P(AUB)=0.4+0.5=0.9 2、 某国奥队前锋在4次射门中至少命中1次的概率为 1516,则1516 =1-4 (1)p -,从而此射手在一次射击中命中的概率为p= 1 2 。 3、 由Poisson 分布数学期望和方差的性质有E(X)+ D(X) =5 即λλλ+==25,从而,λ=2.5. 4、来自正态总体(,100)N μ 的容量为100的样本,样本均值为5x =,则总体均值μ的置信度为0.95 的 双侧置信区间为(已知分位点0.025Z =1.96 )在方差已知的条件下是??± ?X ,代入数据得置信区间(5-1.96, 5+1.96) =(3.04, 6.96) 。 二、选择题(本题20分,每题5分,共4题) 1、一酒鬼带着n 把钥匙回家,只有一把是门钥匙。他随手摸1把,总共摸了n 次,(提示:酒鬼的特征是失忆即无记忆性,每次可能重复摸到任何一把钥匙)。设随机变量X 为摸到门钥匙的总次数,则X 服从的分布为____C______

《概率论与数理统计》第一章知识小结

附加知识: 排列组合知识小结: 一、计数原理 1.加法原理:分类计数。 2.乘法原理:分步计数。 二、排列组合 1.排列数(与顺序有关): )(),1()2)(1(n m m n n n n A m n ≤+---=Λ !n A n n =,n A A n n ==10,1 如:25203456757=????=A ,12012345!5=????= 2.组合数(与顺序无关): !m A C m n m n =,m n n m n C C -= 如:3512344567!447 4 7 =??????==A C ,211 2672757757=??===-C C C 3.例题:(1)从1,2,3,4,5这五个数字中,任取3个数字,组成一个没有重复的3位数,共有___6034535=??=A ____种取法。 (2)从0,1,2,3,4这五个数字中,任取3个数字,组成一个没 有重复的3位数,共有___483442 414 =??=A A ____种取法。 (3)有5名同学照毕业照,共有__1201234555=????=A _种排法。 (4)有5名同学照毕业照,其中有两人要排在一起,那么共有 _48)1234()12(4422=?????=A A ___种排法。 (5)袋子里有8个球,从中任意取出3个,共有___38C ____种取法。 (6)袋子里有8个球,5个白球,3个红球。从中任意取出3个, 取到2个白球1个红球的方法有___1 325C C ____种。

38876 56321 C ??= =?? 第一章、基础知识小结 一、随机事件的关系与运算 1.事件的包含 设A ,B 为两个事件,若A 发生必然导致B 发生,则称事件B 包含于A ,记作B A ?。 2.和事件 事件“A,B 中至少有一个发生”为事件A 与B 的和事件,记作B A Y 或B A +。 性质:(1)B A B B A A Y Y ?? , ; (2)若B A ?,则B B A =Y 3.积事件:事件A,B 同时发生,为事件A 与事件B 的积事件,记作B A I 或AB 。 性质:(1),AB A AB B ??; (2)若B A ?,则A AB = 4.差事件:事件A 发生而B 不发生为事件A 与B 事件的差事件,记作()A B AB -。 性质:(1)A B A ?-; (2)若B A ?,则φ=-B A 5.互不相容事件:若事件A 与事件B 不能同时发生,即AB Φ=,则称事件A 与事件B 是互不相容的两个事件,简称A 与B 互不相容(或互斥)。 6.对立事件:称事件A 不发生为事件A 的对立事件,记作A 。 性质:(1)A A =; (2)Ω==Ωφφ,; (3)AB A B A B A -==- 设事件A,B ,若AB=Φ,A+B=?,则称A 与B 相互对立.记作 。

第一章概率论习题解答附件

教 案 概率论与数理统计 (Probability Theory and Mathematical Statistics ) Exercise 1.1 向指定目标射三枪,观察射中目标的情况。用1A 、2A 、 3A 分别表示事件“第1、2、3枪击中目标” ,试用1A 、2A 、3A 表示以下各事件: (1)只击中第一枪; (2)只击中一枪; (3)三枪都没击中; (4)至少击中一枪。 Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。所以,可以表示成 1A 32A A 。 (2)事件“只击中一枪”,并不指定哪一枪击中。三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A . (3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A . (4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A . Exercise 1.2 设事件B A ,的概率分别为 21,31 .在下列三种情况下分别求)(A B P 的值: (1)A 与B 互斥; (2);B A ? (3)81)(=AB P . Solution 由性质(5),)(A B P =)()(AB P B P -. (1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)= 21 (2) 因为;B A ?所以)(A B P =)()(AB P B P -=)()(A P B P -= 6 13121=-

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1.写出下列随机试验的样本空间。 (1)记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。 (4)生产产品直到得到10件正品,记录生产产品的总件数。 (5)一个小组有A,B,C,D,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。 (6)甲乙二人下棋一局,观察棋赛的结果。 (7)一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9)有A,B,C三只盒子,a,b,c三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。 (10)测量一汽车通过给定点的速度。 (11)将一尺之棰折成三段,观察各段的长度。 2.设A,B,C为三事件,用A,B,C的运算关系表示下列事件。 (1)A发生,B与C不发生。 (2)A与B都发生,而C不发生。 (3)A,B,C都发生。 (4)A,B,C中至少有一个发生。 (5)A,B,C都不发生。 (6)A,B,C中至多于一个发生。 (7)A,B,C中至多于二个发生。 (8)A,B,C中至少有二个发生。

3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,?????? ≤<=121x x A ,? ?????<≤=2341x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,1)(=AC P ,求A ,B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算) (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少 8. 一盒子中有4只次品晶体管,6只正品晶体管,随机地抽取一只测试,直到4只次品管子都找到为止。求 第4只次品管子在下列情况发现的概率。 (1) 在第5次测试发现。 (2) 在第10次测试发现。 9. 甲、乙位于二个城市,考察这二个城市六月份下雨的情况。以A ,B 分别表示甲,乙二城市出现雨天这一 事件。根据以往的气象记录已知4.0)()(==B P A P ,28.0)(=AB P ,求)/(B A P ,)/(A B P 及)(B A P ?。 10. 已知在10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概 率。 (1) 二只都是正品。 (2) 二只都是次品。 (3) 一只是正品,一只是次品。 (4) 第二次取出的是次品。 11. 某人忘记了电话号码的最后一个数字,因而随意地拨号,求他拨号不超过三次而接通所需的电话的概率

概率论与数理统计习题及答案__第一章

《概率论与数理统计》习题及答案 第 一 章 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, A =‘甲盒中至少有一球’ ; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’, B =‘通过的汽车不少于3台’ 。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

“概率论与数理统计”测试题参考答案

“概率论与数理统计”测试题参考答案 1.设A , B 是两个随机事件,已知P (A ) = 0.6,P (B ) = 0.8,P (A B )=0.2,求:(1))(B A P ;(2))(B A P . 解:(1) )(A P =)(1A P -= 0.4 )(B A P = )(A P )(A B P =0.4 ?0.2 = 0.08 (2) )(B A P =1-)(B A P = 1 - ) ()(B P B A P =1-8 .008.0= 0.9 2.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率. 解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则 (1))(1)(1)(211A P A P A P -=-= 745.0255.0113 12 3 8=-=- =C C . (2))()()()(3232A P A P A A P B P +=+= 273.0018.0255.0255.0312 3 4=+=+ C C . 3.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。已知第一台加工的零件是第二台加工的零件的3倍,求任意取出的零件是合格品的概率. 解:设A i :“是第i 台车床加工的零件”(,)i =12,B :“零件是合格品”.由全概公式有 P B P A P B A P A P B A ()()()()()=+1122 显然4 3)(1= A P ,4 1)(2= A P ,99.0)(1=A B P ,P B A ().2098=,故 9875.098.04 199.04 3)(=?+ ?= B P 4.一袋中有9个球,其中6个黑球3个白球.今从中依次无放回地抽取两个,求第2次抽取出的是白球的概率. 解:设如下事件:

概率论期末测试

2008-2009年度第二学期概率论与数理统计测试题 1.根据以往的考试结果分析,努力学习的学生中有90%的可能考试及格,不努力学习的学生中有90%的可能考试不及格.据调查,学生中有90%的人是努力学习的,试问: ⑴ 考试及格的学生中有多大可能是不努力学习的人?(5分) ⑵ 考试不及格的学生中有多大可能是努力学习的人?(5分) 2. 设随机变量X 服从区间)6,1(上的均匀分布,求一元二次方程012=++t X t 有实根的概率;(10分) 3.设X 与Y 是独立同分布的随机变量,它们都服从均匀分布(0,1)U 。试求 Z X Y =-的分布函数与概率密度函数;(10分) 4.设X 的密度函数为),(,21)(∞+-∞∈=-x e x f x ① 求X 的数学期望EX 和方差DX ;(10分) ② 求X 与X 的协方差和相关系数,并讨论X 与X 是否相关?(10分) ③ 问X 与X 是否相互独立?说明理由。(10分) 5. 一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一只蛋糕的价格是`一个随机变量,它取1元、1.2元、1.5元各个值的概率分别为0.3、0.2、0.5。某天售出300只蛋糕。求收入至少400元的概率;(10分) 6.设总体X 的概率密度为(1)01()0x x f x θ θ?+<<=??其它,其中1θ>-是未知参数,12,,,n X X X 为一个样本,试求参数θ的矩估计量和最大似然估计量。 7.已知X 的概率分辨为 21012320.132i X p a a a a a -- ,试求: (1)常数a ;(2分) (2)21Y X =-的概率分布。(5分)

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

概率统计测试题

1. 某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一 个容量为45的样本,则应抽取的男生人数为_______. 2. 甲、乙、丙、丁四人排成一行,则甲、乙都不在两端的概率为( ) A.1 12B. 1 6 C.1 24D. 1 4 3. 已知x、y的取值如下表所示: x0134 y0.9 1.9 3.2 4.4 从散点图分析,y与x线性相关,且y^=0.8x+a,则a=( ) A.0.8 B.1 C.1.2 D.1.5 4. 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图所示; 若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7 人,则其中成绩在区间[139,151]上的运动员人数为( ) A、3 B、4 C、5 D、6 5. 为了解某校高三学生身体状况,用分层抽样的方法抽取部分男生和女 生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中 从左到右前三个小组频率之比为1:2:3,第二小组频数为12,若全校 男、女生比例为3:2,则全校抽取学生数为________. 6.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ) (A)1 10(B)1 8 (C)1 6 (D)1 5

7.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点 D 在函数1,0()1 1,02 x x f x x x +≥?? =?-+

2020年智慧树知道网课《概率论》课后章节测试满分答案

第一章测试 1 【单选题】(10分) 设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件=()。 A. {1,2,5,6,7,9,10} B. {1,2,5,6,7,8,9,10} C. {1,2,4,5,6,7,8,9,10} D. {1,2,3,5,6,7,8,9,10} 2 【单选题】(10分) 同时掷3枚均匀的硬币,恰好有两枚正面向上的概率为()。 A. 0.325 B. 0.125 C. 0.375 D. 0.25

3 【单选题】(10分) 假设任意的随机事件A与B,则下列一定有()。 A. B. C. D. 4 【单选题】(10分) 设A,B为任意两个事件,则下式成立的为()。 A. B. C.

D. 5 【单选题】(10分) 设则=()。 A. 0.48 B. 0.24 C. 0.32 D. 0.30 6 【单选题】(10分) 设A与B互不相容,则结论肯定正确的是()。 A. B.

C. D. 与互不相容 7 【单选题】(10分) 已知随机事件A,B满足条件,且,则()。 A. 0.7 B. 0.4 C. 0.3 D. 0.6 8 【单选题】(10分)

若事件相互独立,且,则()。 A. 0.665 B. 0.875 C. 0.775 D. 0.95 9 【单选题】(5分) A. B. C. D.

10 【判断题】(5分) 不可能事件的概率一定为0。() A. 对 B. 错 11 【判断题】(5分) A. 错 B. 对 12 【判断题】(5分) 贝叶斯公式计算的是非条件概率。()

相关主题
文本预览
相关文档 最新文档