当前位置:文档之家› 岩体质量等级

岩体质量等级

岩体质量等级
岩体质量等级

4岩体基本质量分级

4.1基本质量级别的确定

4.1.1岩体基本质量分级,应根据岩体基本质量的定性特征和岩体基本质量指标(BQ)两者相结合,按表4.1.1确定。

岩体基本质量分级表

4.1.1

4.1.2当根据基本质量定性特征和基本质量指标(BQ)确定的级别不一时,应通过对定性划分和定量指标的综合分析,确定岩体基本质量级别。必要时,应重新进行测试。

4.2基本质量的定性特征和基本质量指标

4.2.1岩体基本质量的定性特征,应由表3.2.1和表3.3.1所确定的岩石坚硬程度和岩体完整程度组合确定。

4.2.2岩体基本质量指标(BQ),应根据分级因素的定量指标R c的兆帕数值和K v,按下式计算:

BQ=90+3R c+250K v(4.2.2)

注:使用(4.2.2)式时,应遵守下列限制条件:

①当R c>90K v+30时,应以R c=90K v+30和K v代入计算BQ值。

②当K v>0.04R c+0.4时,应以K v=0.04R c+0.4和R c代入计算BQ值。

岩土力学——岩体基本质量级别确定

例题:已知某地下工程岩体的勘探资料如下:岩样单轴饱和抗压强度Mpa R c 5.42=;岩石较坚硬,但岩体较破碎,岩石的弹性纵波速度s m V pr /4500=,岩体的弹性纵波速度s m V pm /3500=;工作面潮湿,有的地方呈点滴出水状态;有一组结构面,其走向与巷道轴线夹角大约为25度,倾角为33度;现场没有发现极高应力现象。按照我国工程岩体分级标准(GB50218-94),计算确定该岩体基本质量级别和考虑工程基本情况后的级别。 答:(1)岩体基本质量级别的确定应依照岩体基本质量的定性特征和岩体基本质量指标(BQ )相结合考虑。 根据题中描述,基本质量定性特征为:岩石较坚硬而岩体较为破碎; 605.0)4500/3500()/(22≈==pr pm v V V K Mpa R c 5.42= 岩体基本质量指标:75.368250390=++=v c K R BQ 虽然现场观察岩体较为破碎,但计算的岩体完整性指数K v 表明岩体较为完整,因而依据工程岩体分类标准综合考虑岩体基本质量级别为III 级。(参见表1, 2) (2)对工程岩体进行详细定级时,还应考虑地下水状态地下水状态、初始应力状态、工程 轴线或走向线的方位与主要软弱结构面产状的组合关系等必要的修正因素。 岩体基本质量修正指标:[])321(100K K K BQ BQ ++-= K 1——地下水影响修正系数,潮湿且出现点滴出水,取0.1;(表3) K 2——主要软弱结构面产状影响修正系数,根据结构面走向与倾角值,取K 2为0.4-0.6; K 3——初始应力状态影响修正系数,根据现场情况,无极高应力现象,取K 3=0.5。 []258(100321≈++-=)K K K BQ BQ 考虑工程情况后,级别为IV 级。

工程岩体分级标准

工程岩体分级标准(中) 2010-04-15 | 来源:中国地质环境信息网 | 【大中小】【打印】【关闭】 附录F 本标准用词说明 F.0.1 为便于执行本标准条文时区别对待,对要求严格程度不同的用词说明如下: (1)表示很严格,非这样做不可的: 正面词采用“必须”; 反面词采用“严禁”。 (2)表示严格,在正常情况下均应这样做的: 正面词采用“应”; 反面词采用“不应”或“不得”。 (3)表示允许稍有选择,在条件许可时首先应这样做的: 正面词采用“宜”或“可”: 反面词采用“不宜”。 F.0.2 条文中指定应按其它有关标准、规范执行时,写法为“应符合…的规定”,或“应按……执行”。 附加说明 本标准主编单位、参加单位和主要起草人名单 主编单位:水利部长江水利委员会长江科学院 参加单位:东北大学 总参工程兵第四设计研究院 铁道部科学研究院西南分院 建设部综合勘察研究院 主要起草人:于石春、邢念信、李云林、李兆权、苏贻冰 张可诚、林韵梅、柳赋铮、徐复安、董学晟 中华人民共和国国家标准 工程岩体分级标准 GB 50218-94 条文说明 制订说明 本标准是根据国家计委计标发〔1986〕28号文和计标函〔1987〕39号文的要求,水利部负责上编,具体由水利部长江水利委员会长科学院会同东北大学、总参工程兵第四设计研究院、铁道部科学研究院西南分院、建设部综合勘察研究院共同编制

而成,经建设部1994年11月5日以建标〔1994〕673号文批准,并会同国家技术监督局联合发布。 在本标准的编制过程中,标准编制组进行了广泛的调查研究,认真总结我国各有关行业在岩石工程建设和工程岩体分级(类)方面,以及岩石力学试验研究方面的实践经验,同时参考了国外先进的工程岩体分级(类)方法,并广泛征求了全国有关单位的意见。最后由我部会同有关部门审查定稿。 鉴于本标准系初次编制,在执行过程中,希望各单位结合工程实践和科学研究,认真总结经验,注意积累资料,如发现需要修改和补充之处,请将意见和有关资料寄交水利部长江水利委员会长江科学院(湖北省武汉市黄浦路23号,邮编430010),并抄送水利部科教司,以供今后修订时参考。 目次 1 总则 1.0.1 随着国家现代化建设事业的发展,水利水电、铁道、交通、矿山、工业与民用建筑、国防等工程中,各种类型、不同用途的岩石工程日益增多。在工程建设的各阶段(规划、勘察、设计和施工)中,正确地对岩体的质量和稳定性作出评价,具有十分重要的意义。质量高、稳定性好的岩体,不需要或只需要很少的加固支护措施,并且施工安全、简便;质量差、稳定性不好的岩体,需要复杂、昂贵的加固支护等处理措施,常常在施工中带来预想不到的复杂情况。正确、及时地对工程建设涉及到的岩体稳定性作出评价,是经济合理地进行岩体开挖和加固支护设计、快速安全施工,以及建筑物安全运行必不可少的条件。 对工程岩体稳定性作分析判断的数值计算和物理模型试验,要求事先进行相当详尽的地质勘察和岩石力学试验研究,花费人力和财力很多。地质条件复杂时,前期工作往往拉得很长,这种方法一般用于大型或重要的工程。 针对不同类型岩石工程的特点,根据影响岩体稳定性的各种地质条件和岩石物理力学特性,将工程岩体分成稳定程度不同的若干级别(一般称之为岩石分类或工程岩体分类,本标准称工程岩体分级),以此为标尺作为评价岩体稳定的依据,是岩体稳定性评价的一种简易快速的方法。这是由于岩体分级方法是建立在以往工程实践经验和大量岩石力学试验基础上的,只需进行少量简易的地质勘察和岩石力学试验就能据以确定岩体级别,作出岩体稳定性评价,给出相应的物理力学参数,为加固措施提供参考数据,从而可以在大量减少勘察、试验工作量,缩短前期工作时间的情况下,获得这些岩石工程建设的勘察、设计和施工不可少的基本依据,并可在进一步总结实际运用经验的基础上,为制定各种岩石工程施工定额提供依据。 本标准所说的稳定性,是指在工程服务期间,工程岩体不发生破坏或有碍使用的大变形。 自本世纪50—60年代以来,在国外提出许多工程岩体的分级方祛,其中有些在我国有广泛的影响,得到了不同程度的应用。在国内,自70年代以来,有关部门也在各自工程经验的基础上制定了一些岩体分级方法,在本部门或本行业推行应用。然而,这些分级方法的原则、标准和测试方法都不尽相同,彼此缺乏可比性、一致

土壤及岩石普氏分类表

土壤及岩石(普氏)分类表 岩体类别 在编写原则中,关于岩土爆破工程的土壤及岩石分类仍按建设部《全国统一建筑工程基础定额》中的土壤及岩石(普氏)分类表执行。 2003年颁布实施的国家标准《建设工程工程量清单计价规范》GB50500-2003规定采用的就是上述《土壤及岩石分类表》,1988年《全国统一城镇控制爆破工程、硐宝大爆破工程预算定额》也是采用此分类表。因此,编制全国统一爆破工程消耗量定额也决定采用该分类表。该表已为国内建筑工程与爆破界所公认,不仅可以确定工程所在岩石的开挖方法、判断岩石爆破的难易程度,而且可以作为计算承包工程单价、编制招投标的依据。 建国以来,我国科技工作者对岩石在分类分级进行过大量工作。如东北工学院,科学院工程地质研究所等。东北大学进行了岩石可爆性与稳定性的研究,提出了分级方法。其中岩石的可爆性分级是以能量平衡为准则,根据标准条件下爆破漏中体积、大块率、小块率、平均合格率试验数据以及岩石波阻抗,计算出岩石可爆性指数,提出分级表。共分为:易爆、中等可爆、难爆、很难爆、极端难爆五个等级。虽经过冶金部组织通过技术鉴定,但未成为全国公认的分级表,未能推广纳入爆破定额。但可供研究参考。 我国工程地质科学工作者(科学院地质所等)为了建立统一评价工程岩爆稳定性的分级标准,为岩土工程建设的勘察、设计、施工和编制定额提供必要的基本依据,经过多年研究并制定颁布了我国工程岩体分级标准(GB50218-94)。不仅可以确定爆破岩体的基本质量级别,还可用于判断岩体爆破的难易程度。(岩体基本质量级别分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ)级,岩石坚硬程度的定性划分为硬质岩,软质岩两类5级;岩体完整程度的定性划分为:完整、较完整、较破碎、极破碎五级。(可参考现代公路工程爆破P. 79-88)。

工程岩体分级标准GB502182 术语、符号

2术语、符号 2.1 术语 2.1.1 岩石工程rock engineeting 以岩体为工程建筑物地基或环境,并对岩体进行开挖或加固的工程,包括地下工程和地面工程。 2.1.2 工程岩体engineering rock mass 岩石工程影响范围内的岩体,包括地下工程岩体、工业与民用建筑地基、大坝基岩、边坡岩体等。 2.1.3 岩体基本质量rock mass basic quality 岩体所固有的、影响工程岩体稳定性的最基本属性,岩体基本质量由岩石坚硬程度和岩体完整程度所决定。 2.1.4 结构面sructural plane(discontinuity) 岩体内开裂的和易开裂的面,如层面、节理、断层、片理等,又称不连续面。 2.1.5 岩体完整性指数(Kv)(岩体速度指数)intactess index of rock mass(velocity index of rock mass) 岩体弹性纵波速度与岩石弹性纵波速度之比的平方。 2.1.6 岩体体积节理数(Jv)volumetric joint count of rock mass 单体岩体体积内的节理(结构面)数目。 2.1.7 点荷载强度指数(Is(50))pointloadstrengthindex 直径50mm圆柱形试件径向加压时的点荷载强度。 2.1.8 地下工程岩体自稳能力(stand-up time of rock mass for underground excavation) 在不支护条件下,地下工程岩体不产生任何形式破坏的能力。 2.1.9 初始应力场initial stress field 在自然条件下,由于受自重和构造运动作用,在岩体中形成的应力场,也称天然应力场。

关于工程岩体分级方法的综述

关于工程岩体分级方法的综述 摘要:综合分析我国现行的工程岩体分级特征,重点介绍岩体分级标准在根据岩石的强度、岩体的完整性、地下水条件、初应力状况等多方面因素下进行岩体分级,从而指导实地工程建设,并讨论与Q分类法和RMR分类法的关系,在发展中他们有趋于统一和向国际标准接轨的趋势。 关键字:工程岩体分级;国标;岩体基本质量 1.1 岩体分级的重要性 随着科学技术的不断进步和土地资源的日益减少,水利水电、铁道、交通、矿山、工业与民用建筑等各种类型、不同用途的岩体工程逐渐增多。质量高、稳定性好的岩体,不需要或只需要很少的加固支护措施,就可以保证工程施工和使用的安全;质量差、稳定性不好的岩体,常常会给工程的施工和使用带来诸多的安全隐患,甚至会在工程的施工和使用过程中出现地质灾害,需要采取复杂加固措施来保证工程施工和使用的安全[8]。因此,在工程建设中,准确而及时地进行工程岩体的稳定性判断,对于保证工程施工和使用的安全具有十分重要的意义。 1.2经过岩土工程界半个世纪的努力,目前岩体分级指标已形成了国标体系。 自上世纪50~60年代开始,工程岩体分级问题引起了国外岩土工程界的广泛关注。国外学者提出了许多工程岩体分级方法,并在工

程中得到了不同程度的应用。自上世纪70年代以后,国内的岩土工程界也开始了工程岩体分级方法的研究,以谷德振、黄鼎成[6]等为代表,在学习和消化国外研究成果,总结工程经验的基础上,提出了一些工程岩体分级方法,制定了相应的工程岩体分级行业标准,为我国经济建设的快速和健康发展作出了很大的贡献。自上世纪90年代以来,对国内外的研究成果及工程经验进行了系统的总结,形成了现在《工程岩体分级标准》 它是由水利部、建设部、铁道部等部门组织有关单位共同起草制定的适用于各种岩体工程的统一分级方法。属于国家最高层次的基础标准,适用于各行业、各种类型岩石工程的岩体分级,是制定各行各业岩体分级标准的基本依据。 1.3 岩体分级标准多属于综合分级,考虑岩石的强度、岩体的完整性、地下水条件、初应力状况等多方面因素。 岩体分级标准是一种多因素多指标、定性与定量相结合的分级方法,它分两步对工程岩体定级,即:先对岩体的基本质量划分级别,根据岩体固有并独立于工程类型的地质属性—岩石坚硬程度和岩体完整程度两个基本因素确定岩体基本质量的定性特征和定量指标,进而综合确定岩体质量级别,按照其稳定性分为5级,Ⅰ>Ⅱ>Ⅲ>>Ⅳ>Ⅴ;再针对岩体的具体条件做出修正,根据各类工程特点,考虑影响工程岩体基本质量的其他重要因素,利用地下水条件、岩体主要软弱结构面产状和初应力状态对岩体基本质量的影响等修正系数,对岩体基本质量(BQ值)进行修正,再确定具体工程岩体级别。

我国工程岩体分类标准

我 国 工 程 岩 体 分 级 特 点 四川交通职业技术学院 班级:DS10-2 姓名:曹伟 学号:

摘要:在对国内外岩体分级方法深入研究的基础上,对岩体分级乃法中所考虑的岩体分级因素及对各因素的处理方法进行了系统的归纳和总结。从岩体分级方法的现状来看,虽然目前尚无统一的岩体分级标准,但在岩体分级中应根据岩石的强度、岩体的完整性、地下水条件、地应力状况等多方面因素,进行岩体综合分级上达成了共识,并且国内规范中的岩体分级标准有趋于统一和向国际标准接轨的趋势。 关键词:岩体分级;分级因素;规范。 随着科学技术的不断进步和土地资源的日益减少,水利水电、铁道、交通、矿山、工业与民用建筑、国防等工程中,各种类型、不同用途的岩体工程逐渐增多。质量高、稳定性好的岩体,不需要或只需要很少的加固支护措施,就可以保证工程施工和使用的安全;质量差、稳定性不好的岩体,常常会给工程的施工和使用带来诸多的安全隐患,甚至会在工程的施工和使用过程中出现地质灾害,需要采取复杂加固措施来保证工程施工和使用的安全,从而大大增加工程建设的成本。因此,在工程建设中,准确而及时地进行工程岩体的稳定性判断,对于保证工程施工和使用的安全具有十分重要的意义。合理的工程岩体分级是工程岩体稳定性判断的基础。 自上世纪50~60年代开始,工程岩体分级问题引起了国外岩土工程界的广泛关注。国外学者提出了许多工程岩体分级方法,并在工程中得到了不同程度的应用。自上世纪70年代以后,国内的岩土工程界也开始了工程岩体分级方法的研究,并在学习和消化国外研究成果,总结工程经验的基础上,提出了一些工程岩体分级方法,制定了相应的工程岩体分级标准,为我国经济建设的快速和健康发展作出了很大的贡献。自上世纪90年代以来,又对国内外的研究成果及工程经验进行了系统的总结,制定了一些工程岩体分级的国家规范,对许多行业标准也进行了修订。我国现行的与工程岩体分级相关的规范和标准见表1。本文中如不作说明,则所述规范和标准的代码均与表1相同。 表1:

岩体基本质量与可爆性分级

岩体基本质量与可爆性分级 穿孔爆破是采矿工程生产第一道工序。矿岩爆破效果的好坏与后续的铲装、运输和破碎工作的效率密切相关。 严格控制爆破矿岩块度,给后续采矿设备提供合适的爆破块度,可大大提高铲装、运输和破碎效率,减少二次破碎工作量。合理的爆破参数设计是实现控制爆破矿岩的大块率的关键,而要想进行合理的爆破参数设计就必须对矿岩的爆破难易程度(可爆性)有充分的认识,并在此基础上对岩石进行可爆性分级。 国内权威的可爆性分级依然停留在普氏分级与苏氏分级上,仅仅依靠坚固性系数作为岩体爆破难易的指标显得较为粗糙,已经不符合现在工程的要求。是由水利部、建设部、铁道部等部门组织有关单位共同起草制定的适用于各种岩体工程的统一分级方法。 它首先根据岩体固有并独立于工程类型的两个基本因素(岩石坚硬程度和岩体完整程度),确定岩体基本质量的定性与定量指标,进而综合确定岩体质量级别,然后根据各类工程特点,考虑影响工程岩体基本质量的其他重要因素(修正因素),对岩体基本质量(BQ值)进行修正,再确定具体工程岩体级别。这是一种多因素多指标、定性与定量相结合的分级方法。 《工程岩体分级标准》属国家层次的基础性标准,涉及到交通、水利水电、冶金矿山、煤炭、地质、建筑等行业的各种工程岩体分级,因此提出以《工程岩体分级标准》中的岩体基本质量指标来进行岩体可爆性分级,这样将基础分级与岩体可爆性分级统一起来,在工程应用中可以减少试验数据的测量,节约费用。本文先收集国内外资料,通过分析影响可爆性主要因素,通过统计国内外分级方法采用的指标,得出岩体完整性、岩石单轴饱和抗压强度、岩石密度是岩体可爆性

分级中采用最多的指标。 在国内外实际爆破工程实例中,收集岩石单轴饱和抗压强度Rc、岩体完整性指数Kv、岩石密度ρ与炸药单耗q关系的数据。结合《工程岩体分级标准》中的BQ公式,通过最小二乘法对BQ公式进行修正,得出新的计算公式。 对新的计算公式进行工程检验,发现新的计算公式准确率较高。根据修正的岩体基本质量指标公式,结合搜集到的工程数据对岩体进行可爆性分级。

工程岩体分类方法及其意义的探讨

摘要 工程岩体分类是岩石力学研究的一个重要内容。本文对国内外较具影响力的工程岩体分类方法及相应的岩体质量指标进行了归纳介绍,并对其中个别分类方法的优缺点进行了探讨,最后指出了工程岩体分类在对可利用岩体作出判别、工程优化设计过程中的重要作用,指出了工程岩体分类的指导意义。 关键词:岩体分类;质量指标;工程优化设计

第1章诸论 工程岩体指各类岩石工程周围的岩体,这些岩石工程包括地下工程、边坡工程及与岩石有关的地面工程,即为工程建筑物地基、围岩或材料的岩体。而工程岩体分类是指通过岩体的一些简单和容易实测的指标,把地质条件和岩体力学性质参数联系起来,并借鉴已建工程设计、施工和处理等成功与失败方面的经验教训,对岩体进行归类的一种工作方法[ 1 ]。 一个工程项目在可行性研究阶段和初步设计阶段,如果缺少岩体具体而详细的强度和水文地质资料时,工程岩体分类系统就会成为一个很有用的工具。选择合适的分类系统能帮助我们更好地了解岩体的质量好坏,预测可能出现的岩体力学问题,从而为工程设计、支护衬砌、建筑选型和施工方法选择等提供参数和依据。从这个角度而言,考虑岩块强度、结构面强度等诸多因素,以工程实用为目的的岩体分类,不仅是岩石力学研究的一个重要内容,而且对实际工程具有重要意义。 从Ritter(1879)谋求将经验方法公式化用于隧洞设计,尤其是决定支护形式开始,岩体分类系统的发展已有100多年历史。其间,国外许多学者作了大量的研究工作,如早期的太沙基(Terzaghi,1946)、劳弗尔(Lauffer,1958)和迪尔(Deere,1964)等。20世纪70年代以后,随着岩体工程建设的不断发展,工程岩体分类方法的研究取得了显著的进展,如威克汉姆(Wikham,1972)等提出了RSR分类法,宾尼奥斯基(Bieniawski,1973)提出了RMR分类法,巴顿(Barton,1974)等提出了Q系统分类法等。随后,霍顿(1975)、宾尼奥斯基(1976)、巴顿(1976)和拉特利奇(1978)等分别对各种分类方法进行了一系列的比较研究。 我国于20 世纪70年代相继在一些行业或部门开展了工程岩体分类方法的研究,并自20 世纪70年代起国家及水利水电、铁道和交通等部门,根据各自特点提出了一些围岩分类方法及其应用的工程实例。如国家为制定《锚杆喷射混凝土支护技术规范》(GBJ86-85),(2001年修订为GBJ50086-2001)而提出的工程岩体分类;铁道部门为制定《铁路隧道设计规范》(TB10003-2001)而提出的铁路隧道围岩分类,总参工程兵(坑道工程)围岩分类等。1994年颁布了我国国家标准《工程岩体分级标准》(GB5018-94),该标准提出了分两步进行的工程岩体分级方法:首先根据岩体坚硬程度和完整性这两个指标进行初步定级,然后针对各类工程特点,并考虑其他影响因素对岩体基本质量指标进行修正,再对工程岩体进行进一步分级。该标准为我国岩体工程建设中岩体分级提供了一个统一的尺度,为我国岩体工程的设计,施工提供了可靠的基础,已经被一些行业规范所采用[ 2 ]。

工程岩体分级标准

工程岩体分级标准

工程岩体分级标准(上) 1 总则 1.0.1 为建立统一的评价工程岩体稳定性的分级方法;为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据,制定本标准。 1.0.2 本标准适用于各类型岩石工程的岩体分级。 1.0.3 工程岩体分级,应采用定性与定量相结合的方法,并分两步进行,先确定岩体基本质量,再结合具体工程的特点确定岩体级别。 1.0.4 工程岩体分级所必需的地质调查和岩石试验,除应符合本标准外,尚应符合有关现行国家标准的规定。 2 术语、符号 2.l 术语 2.1.1 岩石工程rock engineering 以岩体为工程建筑物地甚或环境,并对岩体进行开挖或加固的工程,包括地下工程和地面工程。 2.1.2 工程岩体engineering rock mass

岩石工程影响范围内的岩体,包括地下工程岩体、工业与民用建筑地基、大坝基岩、边坡岩体等。 2.1.3 岩体基本质量rock mass basic quality 岩体所固有的、影响工程岩体稳定性的最基本属性,岩体基本质量由岩石坚硬程度和岩体完整程度所决定。 2.1.4 结构面structural Plane (discontilnuity) 岩体内开裂的和易开裂的面,如层面、节理、断层、片理等,又称不连续面。 2.1.5 岩体完整性指数(KV)(岩体速度指数)intactness index of rock mass(velocity index of rock mass) 岩体弹性纵波速度与岩石弹性纵波速度之 比的平方。 2.1.6 岩体体积节理数(JV)volumetric joint count of rock mass 单体岩体体积内的节理(结构面)数目。 2.1.7 点荷载强度指数从(IS(50))point load strength index

工程岩体分类的指导意义

工程岩体分类的指导意义 工程岩体分类根据用途的不同可分为两大类第一类是针对性较少的、原则的、大致的通用分类这种分类可供各学科领域各国民经济部门笼统的使用第二类则是针对某一学科领域某一具体工程或某一工程的具体部位的特殊要求甚至专为某工程目的服务的专用分类。而对于第二类由于各行业的工程项目在规模、使用环境、使用寿命和稳定性的要求方面有很大差异。因此在对工程岩体分类时需要考虑的因素就会不同。比如水工建筑基岩通常要考虑岩体的渗透性能而深埋地下洞室和人工高边坡则必须注意初始应力场的影响采矿业则更关心岩石的可钻性和可爆性。这说明影响工程岩体分类的因素是多种多样的我们很难找出一种尽可能准确又有较大的应用范围的分类方法。正因如此随着岩石力学等相关领域的发展工程岩体的分类方法趋于多样化。又由于长期的地质作用岩体本身存在复杂性主要表现在它的不均匀性和各向异性所以任何一种工程岩体的分类方法都存在有待完善改进的地方。但尽管如此还是有许多的学者致力于工程岩体的研究工作。尤其是随着国内外一系列大中型水利水电工程的开发建设, 施工过程中所存在的大量工程地质问题使人们逐渐认识到工程区岩体质量分类的实用性和重要性。众所周知面对与岩体相联系的工程项目在项目的可行性研究阶段和初步设计阶段为了在经济性和安全性作出合理选择有赖于对岩体的稳定性评价。而岩体的稳定性评价方法三致分为分析计算法、模拟试验法和岩体分类法。而前两者过程周期长、耗资大其不足之处是显而易见的。相比之下工程岩体分类法不需要详尽的岩体力学测试资料尤其是现场大型测试可以节省大量的时间和投资快速作出评价。并且由于考虑了岩块强度、结构面强度等诸多因素所以合理并且准确的岩体分类法不仅能对工程区岩体结构模式及其强度特性作出评价帮助我们更及时地了解岩体的质量好坏预测可能出现的岩体力学问题而且还能对可利用岩体作出判别、工程优化设计、确定合理建基面从而为后续的工程设计、支护衬砌、建筑选型和施工方法选择等提供参数和依据。这就是工程岩体分类的指导意义所在。

工程岩体分级标准GB502185 工程岩体级别的确定

5工程岩体级别的确定 5.1 一般规定 5.1.1 对工程岩体进行初步定级时,宜按表4.1.1规定的岩体基本质量级别作为岩体级别。 5.1.2 对工程岩体进行详细定级时,应在岩体基本质量分级的基础上,结合不同类型工程的特点,考虑地下水状态、初始应力状态、工程轴线或走向线的方位与主要软弱结构面产状的组合关系等必要的修正因素,其中边坡岩体,还应考虑地表水的影响。 5.1.3 岩体初始应力状态,当无实测资料时,可根据工程埋深或开挖深度、地形地貌、地质构造运动史、主要构造线和开挖过程中出现的岩爆、岩芯饼化等特殊地质现象,按本标准附录B作出评估。 5.1.4 当岩体的膨胀性、易溶性以及相对于工程范围,规模较大、贯通性较好的软弱结构面成为影响岩体稳定性的主要因素时,应考虑这些因素对工程岩体级别的影响。 5.1.5 岩体初步定级时,岩体物理力学参数,可按本标准附录C中表C.0.1选用。结构面抗剪断峰值强度参数,可根据岩石坚硬程度和结构面结合程度,按本标准附录C中表C.0.2选用。

5.2 工程岩体级别的确定 5.2.1 地下工程岩体详细定级时,如遇有下列情况之一时,应对岩体基本质量指标(BQ)进行修正,并以修正后的值按表4.1.1确定岩体级别。 5.2.1.1 有地下水; 5.2.1.2 岩体稳定性受软弱结构面影响,且由一组起控制作用; 5.2.1.3 存在本标准附录B表B.0.1所列高初始应力现象。 5.2.2 地下工程岩体基本质量指标修正值(〔BQ〕),可按附录D计算。 5.2.3 对跨度等于或小于20m的地下工程,当已确定级别的岩体,其实际的自稳能力,与本标准附录E 相应级别的自稳能力不相符时,应对岩体级别作相应调整。 5.2.4 对大型的或特殊的地下工程岩体,除应按本标准确定基本质量级别外,详细定级时,尚可采用有关标准的方法,进行对比分析,综合确定岩体级别。 5.2.5 工业与民用建筑地基岩体应按表4.1.1规定的基本质量级别定级。 5.2.6 工业与民用建筑地基岩体基岩承载力可按下列规定确定: 5.2. 6.1 各级岩体基岩承载力基本值(fo)可按表5.2.6-1确定。 基岩承载力基本值(fo) 表5.2.6-1 5.2. 6.2 考虑基岩形态影响时,基岩承载力标准值(fk)可按下式确定。 f k=ηfo(5.2.6) 5.2. 6.3 基岩形态影响折减系数(η),可按表5.2.6-2选用。 基岩形态影响折减系数(η) 表5.2.6-2

工程岩体分级标准GB502183 岩体基本质量的分级因素

结构设计—工程岩体分级标准GB50218-94 3.1 分级因素及其 确定方法 3岩体基本质量的分级因素 3.1 分级因素及其确定方法 3.1.1 岩体基本质量应由岩石坚硬程度和岩体完整程度两个因素确定。 3.1.2 岩石坚硬程度和岩体完整程度,应采用定性划分和定量指标两种方法确定。

3.2 岩石坚硬程度的定性划分 3.2.1 岩石坚硬程度,应按表3.2.1 进行定性划分。 岩石坚硬程度的定性划分 表3.2.1 3.2.2 岩石坚硬程度定性划分时,其风化程度应按表3.2.2确定。 岩石风化程度的划分 表3.2.2

3.3 岩体完整程度的定性划分 3.3.1 岩体完整程度,应按表3.3.1进行定性划分。 岩体完整程度的定性划分 表3.3.1 注:平均间距指主要结构面(1~2组)间距的平均值。 3.3.2 结构面的结合程度,应根据结构面特征,按表3.3.2确定。 结构面结合程度的划分 表3.3.2

3.4 定量指标的确定和划分 3.4.1 岩石坚硬程度的定量指标,应采用岩石单轴饱和抗压强度(Rc)。Rc应采用实测值。当无条件取得实测值时,也可采用实测的岩石点荷载强度指数(Is(50))的换算值,并按下式换算: 3.4.2 岩石单轴饱和抗压强度(Rc)与定性划分的岩石坚硬程度的对应关系,可按表3.4.2确定。 Rc与定性划分的岩石坚硬程度的对应关系 表3.4.2 3.4.3 岩体完整程度的定量指标,应采用岩体完整性指数(Kv)。Kv应采用实测值。当无条件取得实测值时,也可用岩体体积节理数(Jv),按表3.4.3确定对应的Kv值。 Jv与Kv对照表 表3.4.3 ) 3.4.4 岩体完整性指数(Kv)与定性划分的岩体完整程度的对应关系,可按表3.4.4确定。 Kv与定性划分的岩体完整程度的对应关系 表3.4.4 3.4.5 定量指标Kv、Jv的测试,应符合本标准附录A的规定。

工程岩体分类标准

工程岩体分类标准

我国工程岩体分级标准 1 总则 1.0.1 为建立统一的评价工程岩体稳定性的分级方法;为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据,制定本标准。 1.0.2 本标准适用于各类型岩石工程的岩体分级。 1.0.3 工程岩体分级,应采用定性与定量相结合的方法,并分两步进行,先确定岩体基本质量,再结合具体工程的特点确定岩体级别。 1.0.4 工程岩体分级所必需的地质调查和岩石试验,除应符合本标准外,尚应符合有关现行国家标准的规定。 2术语、符号 2.l 术语 2.1.1 岩石工程 rock engineering 以岩体为工程建筑物地甚或环境,并对岩体进行开挖或加固的工程,包括地下工程和地面工程。 2.1.2 工程岩体 engineering rock mass 岩石工程影响范围内的岩体,包括地下工程岩体、工业与民用建筑地基、大坝基岩、边坡岩体等。 2.1.3 岩体基本质量 rock mass basic quality 岩体所固有的、影响工程岩体稳定性的最基本属性,岩体基本质量由岩石坚硬程度和岩体完整程度所决定。 2.1.4 结构面 structural Plane(discontilnuity)

岩体内开裂的和易开裂的面,如层面、节理、断层、片理等,又称不连续面。 )(岩体速度指数) intactness index of rock mass 2.1.5 岩体完整性指数(K V (velocity index of rock mass) 岩体弹性纵波速度与岩石弹性纵波速度之比的平方。 2.1.6 岩体体积节理数(J ) volumetric joint count of rock mass V 单体岩体体积内的节理(结构面)数目。 ) point load strength index 2.1.7 点荷载强度指数从(I S(50) 直径50mm圆柱形试件径向加压时的点荷载强度。 2.1.8 地下工程岩体自稳能力(stand-up time of rock mass for underground excavation) 在不支护条件下,地下工程岩体不产生任何形式破坏的能力。 2.1.9 初始应力场initial stress field 在自然条件下,由于受自重和构造运动作用,在岩体中形成的应力场,也称天然应力场。 2.2 符号

岩体基本质量的分级因素

3岩体基本质量的分级因素 3.1分级因素及其确定方法 3.1.1岩体基本质量应由岩石坚硬程度和岩体完整程度两个因素确定。 3.1.2岩石坚硬程度和岩体完整程度,应采用定性划分和定量指标两种方法确定。 3.2岩石坚硬程度的定性划分 3.2.1岩石坚硬程度,应按表3.2.1进行定性划分。 岩石坚硬程度的定性划分表3.2.1

3.2.2岩石坚硬程度定性划分时,其风化程度应按表3.2.2确定。 岩石风化程度的划分表3.2.2 3.3 岩体完整程度的定性划分 3.3.1 岩体完整程度,应按表3.3.1进行定性划分。 岩体完整程度的定性划分表3.3.1 注:平均间距指主要结构面(1~2组)间距的平均值。

3.3.2 结构面的结合程度,应根据结构面特征,按表3.3.2 确定。 结构面结合程度的划分表3.3.2 3.4定量指标的确定和划分 3.4.1岩石坚硬程度的定量指标,应采用岩石单轴饱和抗压强度(R C)。R C应采用实用测值。当无条件取得实测值时,也可采用实测的岩石点荷载强度指数(I S(50) )的算值,并按下式换算: R C =22.82I(3.4.1)3.4.2岩石单轴饱和抗压强度(R C)与定性划分的岩石坚硬程度的对应关系,可按表3.4.2表确定。 R C与定性划分的岩石坚硬程度的对应关系表3.4.2 3.4.3 岩体完整程度的定量指标,应采用岩体完整性指数(K v)。K v应采用实测值。 当无条件取得实测值时,也可用岩体体积节理数(J v ),按表3.4.3确定对应的K v 值。 J v与K v对照表表3.4.3 3.4.4岩体完整性指数(K v)与定性划分的岩体完整程度的对应关系,可按表3.4.4确定。 K v与定性划分的岩体完整程度的对应关系表3.4.4

基于概率统计的可拓学分析方法在边坡岩体质量分级中的应用研究

基于概率统计的可拓学分析方法在边坡岩体质量分级中的应用研究 随着我国经济的快速发展,与之相配套的工程建设也如火如荼地展开。由于我国地形多样,地势复杂,使得工程建设面临很大的难度,这其中很重要的一方面,就是边坡岩体的稳定性问题。当前,对于边坡岩体质量分级的研究已取得了一定的进展,随着可拓学等新学科的兴起,边坡岩体分级研究也出现了新的起色。 可拓学边坡岩体分级稳定性评价标准一、引言 可拓学是用形式化模型研究事物拓展的可能性和开拓创新的规律与方法,并用于解决矛盾问题的科学。通俗地说,可拓学研究产生创意的理论和方法,成为生产创意的理论依据和方法来源。可拓学的研究对象是矛盾问题,基本理论是可拓论,方法体系是可拓方法,逻辑基础是可拓逻辑,与各领域的交叉融合形成可拓工程。可拓论、可拓创新方法和可拓工程构成了可拓学。目前,已形成初步的理论框架,并建立了在人工智能、计算机、管理、控制、检测等领域的应用方法,广泛的运用到科学实践分析中。 在自然界和现实生活中,事物是可以分成截然不同的两大类:一类是确定性的现象;另一类是不确定性的现象。研究自然界中随机现象统计规律的数学方法,叫做概率统计,又称数理统计方法。概率论——就是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法。 近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。概率论和数理统计是一门随机数学分支,它们是密切联系的同类学科。但是应该指出,概率论、数理统计、统计方法又都各有它们自己所包含的不同内容。目前,随着概率统计研究的发展,在工程建设和岩体测定中也得到了一定的运用,本文从概率统计的视角着眼,就是对之前应用研究的一个回顾。 二、边坡岩体质量分级的研究 1.边坡岩体概述 根据岩体工程不同种类,可以对岩体进行分类,其分类标准主要是根据地质条件的不同以及岩体本身所具备的物理力学特性对岩体稳定性的影响来进行划分的,可以根据其稳定程度,划分为几个不同类别,同时,将其作为标准来初步评价岩体稳定性。工程岩体的性质一般由岩体的完整程度以及坚硬的程度来决定,并将其作为岩体基本质量,其是岩体分级分类主要标准,是在对工程岩体受影响因素充分考虑的基础上,进一步修正岩体基本质量而提出的。在岩石力学的角度来看,对岩体的分类一般不仅仅局限在定量描述岩体质量和结构上,还需要

岩体力学名词解释

1.岩体力学:是力学的分支学科,是研究岩体在各种立场作用下变形与破坏规律的理论及其实际应用的学科,是一门应用性学科 2.天然应力:人类工程活动之前存在于岩体中的应力。 3.研究方法:工程地质研究法,实验法,数学力学分析法,综合分析法 4.岩石质量指标(RQD)值:大于10cm的岩芯累计长度与钻孔进尺长度之比的百分数。 5.岩体:在地质历史过程中形成的,有岩石单元体和结构面网络组成,具有一定的结构并赋存一定的天然应力状态和地下水等地质环境中的地质体 6.岩块:是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体 7.结构面:地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界或带 8.造岩矿物:含氧岩,氧化物,氢氧化物,卤化物,硫化物,自然元素 9.粒间连接分类:结晶连接,胶结连接 10.风化程度指标:定性指标主要有颜色,矿物腐化程度。定量指标主要有风化孔隙率指标和波速指标 11.结构面成因分类:1地质成因类型原生结构面(沉积结构面,岩浆结构面,变质结构面)2力学成因:张性结构面,剪性结构面12.机构面的影响因素:产状,连续性,密度,张开度,形态,填

充胶结特征(贴硅胶结的强度最高),结构面的组合关系 13.岩石软化性:是指岩石浸水饱和后强度降低的性质。 14.岩体成因分类:岩浆岩体,沉积岩体(他生沉积岩,自生沉积岩),变质岩体 15.岩体工程分类:岩体质量分级,洞室围岩分类,岩体地质力学分类(RMR分类),巴顿岩石质量分类(Q分类) 16.岩石的物理性质:岩石的密度(颗粒密度,岩块密度),岩石的空隙性 17.岩石的水理性质:岩石的吸水性,岩石的软化性,岩石的抗冻性,岩石的透水性 18.岩石的吸水率:是指岩石在常温压下自由吸入水的质量与岩样干密度之比。岩石的饱和吸水率是指岩试件在高压或者真空的条件下吸收水的质量与岩式样干质量之比。饱水系数:岩石的吸水率与饱和吸水率之比 19.饱和吸水率:岩石试件在高压或真空条件下吸入水的质量与岩样干质量之比 20.质量损失率:是指冻容前后干质量之差与实验前干质量之比——百分数表示 21.剪切强度:在剪切荷载作用下,岩块抵抗剪切破坏的最大剪应力。 22.剪切(法向)刚度:是反应结构面剪切(法向)变形性质的重要参数

相关主题
文本预览
相关文档 最新文档