当前位置:文档之家› 直流微装置的磁流体动力学模拟

直流微装置的磁流体动力学模拟

直流微装置的磁流体动力学模拟
直流微装置的磁流体动力学模拟

第十四章直流微装置的磁流体动力学模拟

JAIME H. LOZANO PARADA, WILLIAM B.J. ZIMMERMAN

Department of Chemical and Process Engineering, University of Sheffield,

Newcastle Street, Sheffield S1 3JD United Kingdom

E-mail: w.zimmerman@https://www.doczj.com/doc/9914237876.html,

1.引言

磁流体动力学理论(MHD)研究电磁场中导电流体的交互作用。它在很多领域,包括热核反应[1]、太阳和太空等离子体[2]、火箭引擎[3]中都有着非常重要的作用。目前对MHD的研究兴趣越来越集中在芯片实验中的微尺度流动控制应用上[4]-[6]。驱动MHD微尺度泵的Lorentz力,在方向和大小上取决于施加的磁场B和电场E矢量。这种泵的主要特性就是可以控制局部流体流动,不需要力学设备就可以精确控制流体在微尺度流道网络中按照预定路径流动[7]。这种借助Lorentz力的局部流体控制方法使得流体控制变得十分灵活,例如流体可以双向流动、累积、减速甚至回退。与电动泵使用高的轴线电压相比[8],MHD微型泵使用低的横向电场。低的发热量使其可以用于驱动对高温和电压敏感的生物流动过程。简单的电子设备就可以顺序控制复杂微流动中的各个独立微型泵。流动速度通过电磁场的强度来控制。

似乎到目前为止仍没有关于MHD微型泵模拟的发表文章。下面我们将给出一些基于Galerkin有限元法的微型泵模拟结果,模拟过程在商业软件COMSOL Multiphysics 3.2中实现。数值求解采用压力修正算法——SIMPLE,它首先假设一个压力场,然后通过求解不可压缩流动的Navier-Stokes方程得到速度场。这些速度不需要满足Possion型连续方程,所以对压力场的修正也带来速度场的修正,最终满足质量守恒。求解速度场的同时计算电势场方程。这会得到Lorentz 力,然后将其反馈回N-S方程并作为体积力处理。连续耦合Lorentz力和速度场直到Newton迭代收敛。

2.理论

为了研究电场和磁场对微通道反应器(MR)里中性导电流体的影响,我们对不可压缩各向同性牛顿流体建立一个MHD方程。

在实验室尺度,MHD控制方程可以解耦合为三个主要问题[9]:一是基于质量守恒和动量守恒的连续方程流动问题;二是基于Maxwell方程的电动力学问题;三是基于能量守恒的热问题。但是流体动力学和电动力学的解耦合是存在问题的,因为定义了共同的压力边界条件。不过也很容易发现,当流动速度足够慢的时候,压力分布可以一阶近似为静流体情况,这样就可以定义一个纯磁流体动力学问题。这样就考虑了磁场对速度场的影响,但是忽略了流场对磁力线对流的影响(这就是著名的弱耦合),除非入口流速增大到磁场Reynolds数Rm比1大。当R m≈1时,磁力线对流约占静磁场B0的1%,但是如果R m≈10时,磁力线扰动带来的磁场近似等于没有扰动的磁场B0,也就是说这时磁力线的对流变得不可忽略。对于我们这种情况,如果产生磁场线对流需要入口平均流速u0≈104m/s,这是不可能的。所以这里忽略流体流动带来的磁力线对流。

我们模型中用到的MHD直流微型泵方程和参数都取自参考文献10。文献中采用基于有限体积法的PHOENICS代码,通过外部FORTRAN子程序连接到N-S

方程中来求解Lorentz 体积力,我们这儿没采用这种方法,而是使用基于有限元法的COMSOL Multiphysics 3.2软件来计算。这样做的好处是不用写外部子程序,源项和体积力已经预置进去了,计算方法已经考虑到这一点并进行了优化。这样我们就能够通过Newton 迭代更快收敛。

以下矢量方程以无量纲形式描述了该问题:

0ρρρ*=; 200t B t σρ*=; x x L *=; y y R *=; 0u u u *=; 0B B B *=, (1)

200p p u B R σ*=; 00J J u B σ*=; 2220B R Ha ση=; 00u B R φφ*=

这里3(m )ρ-是流体密度,σ(siemens/m)是电导率,0u (m/s)和0B (Tesla)分别是速度和电磁场强度。Ha 是Hartmann 数,2Ha 可以看作磁场与普通粘性力的比值,(Pa)p 是压力,R 是通道宽度,η(Kg/m ·s)是动力学粘度。

根据以上假设和无量纲数,可以构建稳态条件下的MHD 方程。连续性方程为:

0*??=u (2)

这里()u m/s 是满足无滑移边界条件的自由发散速度场。

作用在带电颗粒上的静电磁场力为Lorentz 力,在不可压缩Navier-Stokes 方程中表现为体积力

222Re 1p Ha Ha

******??-?=-?+?u u u J B (3) 这里J (Ampere/m 2)是根据欧姆定律算出的电流密度。

φ****=-?+?J u B (4)

这里φ(Volts)是由方程(5)给出的电势向量。方程(4)右侧第一项是施加的外部电场,第二项是由于磁场感应产生的电场。方程(3)中的叉积**?J B 是Lorentz 力。电势由以下方程得到:

()2***φ?=???u B (5)

外部电场需要满足绝缘边界条件0φ??=n 。电场和磁场由Maxwell 方程控制。方程(4)对z 积分后得到平均电流密度

/20000/2

1()h y z h dz E B u h σ-==-?j j (6) 通过对方程(6)的仔细分析我们能够明白当平均电流密度为零、负数或正数时的含义。假设我们在微通道中横向插入一对电极(平行与B )并将其短接,然后感

应电场E 0=0,当B 0为正值时00y j <。现在我们在外部电路中加入一些电阻,并逐渐增大其阻值,这些平均电流将会沿y 的负方向流动,随着电路电阻的增大而减小。当电阻足够大时(无限大电阻),外部电路相当于开路,也就是说00j =。当00j <时平均Lorentz 力(00j B ?)起着“制动”的作用。当电流最大时制动作

用也最大,此时外部电阻为零。

对于有限外部电阻情况,可以从流体中获得电功,此时系统相当于电池发电机。一定要注意到当j 0=0时平均流动速度由E 0=u 0B 0精确确定,所以通过测量感应电场就可以确定流动通量。我们假设以电源来代替外部电路中的电阻。这时电流沿y 轴正向流过流体,Lorentz 力沿着流体流动的方向,所以外部电源加速了流动。这就是电池泵的原理。

在COMSOL Multiphysics 中求解方程(2)-(5)可能需要一些技巧,最基本的是要确认使用的版本中有这些模块,动量守恒我们选用不可压缩Navier-Stokes 模块,电势选用直流导电模块。

3.几何形状

我们的MHD 系统位于一个微型反应器的矩形横截面反应段中。宽度和高度分别为300和100微米,长度约为宽度的10倍。根据轴线局部电磁场的改变将该域分为三部分(左、中、右)。磁场在中部保持常数不变,在左侧和右侧成指数递减。在划分网格时注意到大的横纵比可能会给内部边界流量守恒计算带来问题,所以需要通过调整空间坐标使得长度满足网格划分要求。流动结构和电场、磁场如图1所示。在x-y 平面放置一对磁铁(它可以作为直流微型泵的电磁场),产生沿z 轴正方向的磁场,流体沿x 轴正方向流动,当它穿过中间区域时流动情况被磁场改变。感应电流和电场沿y 轴方向。图1给出了起泵或阀作用时的内部流型,这取决于电极电势的正负号。在来流区域流体是充分发展的层流(图2左侧)。为方便起见我们假设流道高度比宽度或长度小很多,所以磁场方向的电流密度比其它方向要小很多。所以该问题可以简化为二维模型。

图1 微通道几何结构

图2 (a)速度分布和电势等高线;(b)流线;(c)Lorentz力矢量。N=5×103;Ha=4;Re=3.2×10-3

3.1 边界条件

4.在COMSOL Multiphysics 3.2中实现

打开COMSOL Multiphysics 3.2,进入模型导航栏。表2给出了详细的模型建立步骤。

5.计算结果

交互作用变量(Re/Ha2)和Hartmann数的变化源自Reynolds数和磁场强度的变化。对泵和阀的几种情况进行了建模。在所有情况下都考虑了磁铁区域外部的非导电壁面。

通过在流道两侧放置磁铁,引入了互相垂直的电场和磁场,为了说明交叉的电磁场是如何起到泵和制动作用的,我们绘制了每种情况下的速度和压力分布。

5.1 MHD直流微型泵

图2给出了MHD微流道的流型和电势等高线(a),流线(b)和Lorentz矢量(c)。由于上游和下游区域没有电极,壁面绝缘,电动势和y方向的静电场方向相反。电动势决定了那里磁场比较强,该区域以外磁通密度迅速降低且静电力起主要作用。所以系统表现为制动作用。这从图2中可以看出,当从上游进入中间区域时,速度分布变平了,因为流动进入恒定磁场区域(中心)。速度分布呈现M形,因为Lorentz力在靠近电极的地方更强,使得这里比中心的轴线速度阻力更小。这使得流体进入电极区域以后速度分布发生明显的抛物线型扭曲。在这些区域流动加速形成凹型分布。下游的最大速度向中心移动,使得M型分布更为明显。由于流向下游时电动力降低,使得最大速度分布向中心移动,直到流动再次恢复抛物线分布。电动势的等高线从电极最大值处向外扩散,沿轴线为零。图2(b)给出了相应的流线。由于Lorentz力将流体向壁面处挤压,流线在这里比较集中,然后流动加速以保证连续性。图2(c)给出了由交叉电流密度J和磁场强度B产生的

Lorentz力矢量。磁场是外部施加的,由永磁体或电磁体产生。在这种情况下磁雷诺数很小,所以采用弱耦合,认为磁场不受流体流动影响。电流密度矢量由两部分组成,一部分是由电极静电场产生,另一部分是由电动势场U×B产生。在上游和下游区域中静电场力占主导地位,电场矢量指向电极(图3(b)),所以上游轴线电流沿x轴正方向,下游沿负方向(图3(a))。图3(c)给出了感应磁场电流。显然这部分电流沿y的负方向,因为它是由交叉的流速和磁场产生的,所以只可能由我们选择的磁场方向来决定其方向。

图3 (a)电流矢量;(b)电场产生的电流;(c)磁场感应电流

从图4中可以更清楚的看到Lorentz力对流动的影响,它给出了Ha=100,N=500时沿轴线和电极壁面处的压力分布。当流体进入磁场区域时,轴线压力逐渐增大,所以此时流道明显成为一个泵。壁面处压力增长较慢,但是在电极中心处已经达到了轴线压力。当流体流过电极进入下游时,轴线和壁面处的压力都平滑降低直到出口边界条件。正如我们后面将会看到的,当电极极性反向时使得压力降变化正好相反,装置变成一个电磁阀。

图4 轴线和壁面处的压力分布

图5 不同轴线位置处轴线上速度分布的变化(入口到出口方向)

当N=500,Ha=10时,图5给出了MHD微型泵中从上游到下游区域轴线速度分布的演变情况。

入口边界条件定义了流道的抛物线分布。当流体进入中心区域时壁面处的Lorentz力起主要作用,使得沿流动方向分布拉长。这导致壁面处轴线速度加快。这种流型非常类似于电渗流;但是关键的不同之处在于该分布是由交叉的电场和磁场产生而不是大的轴线电场。注意到产生一个泵作用只需要设定电压为-10V。

图6给出了当Re=2×10-3时,Hartmann数对磁场控制中心区域轴线上速度的影响。对于小Ha数,流动不会受到电动势力的影响,所以速度分布和Ha=0时非常类似。

图6 Hartmann数对中心区域轴线速度分布的影响

当Ha数增大时,Lorentz力赶上粘性力大小,开始将流体向壁面方向推动,所以在靠近壁面附近Lorentz力是不平衡的,足够将流动方向的速度分布拉长。

正如Ha=6时轴线附近看到的,一旦流体穿过中心区域,由于惯性较小,流型会变成再循环型。我们相信这是为了保证连续性。

正如前面提到的,从图7绘制的轴线上压力分布图可以清楚的看出由中心区域的电磁力产生的泵效应。显然与Ha=0时相比压力增大了6倍。同时也应该注意到当Ha增大超过6倍以后并不能显著增大压力降。这点很容易理解,因为在微通道结构中高Ha数在实验上很难达到,受能够经受高磁场的材料限制,所一个适当的Ha数是十分必要的。

图7 各种Hartmann数下轴线上的压力分布

5.2 MHD直流微型阀

在本节中我们通过模型研究当电极极性翻转时会出现什么情况。在这种情况下,电场产生的电流提高了由磁场产生的感应电流,所以Lorentz力在负x轴方向得到加强,系统类似于一个制动阀。一旦电极极性翻转,感应电场会被固定电场增强。图8(a)显示了当上游抛物线速度分布的来流进入由Lorentz力控制的中心区域后的变形情况。在中心区域靠近壁面处流动反向。一旦流动离开电极进入下游,它又恢复到抛物线型流动。图8(b)给出了对应的流线分布。流动被推离壁面且出现了回流涡。为保持连续性流体加速。

图8 (a)等电势线和轴线速度分布;(b)流线;(c)Lorentz力矢量。

图9显示了当电极极性翻转时的电流矢量。在阀型流中所有电流向量沿相同方向彼此增强。这意味着Lorentz力沿x轴负方向增强,减缓了流动过程。

图9 (a)电流密度向量;(b)电场产生的电流;(c)磁场产生的感应电流。

图10显示了不同轴线位置处轴线速度分布的空间变化。可以注意到当流动进入磁场控制区域后在靠近电极处产生回流涡。为了保证连续性可以看到轻微的速度增加。

图10 几个轴线位置处轴线上的速度分布

在泵型流型中,从图11中的压力图可以很容易的看到制动效应。

图11 沿轴线靠近壁面处的压力分布。

沿轴线从入口进入上游区域时,压力平滑降低,而进入中心区域时压力急剧变化。一旦流体进入下游区域,压力又变得连续缓慢降低。上游区域中靠近壁面处流动降低缓慢,但是开始降低的位置靠后,且比轴线上更剧烈,不过在下游区域中又很快达到平滑。图11非常重要,因为它表明了电磁场是如何通过影响压力降来起到减速作用的。

6.结论

前面的工作中,在COMSOL Multiphysics3.2中得到了微型反应器中电磁动力学模型的数值解,并且研究了导电流体中交叉电场和磁场的交互作用。针对不同Hartmann数分析了电磁场的泵效应和制动效应。Reynolds数对泵或制动效应的影响没有考虑,因为在微型结构中典型的Reynolds数为2×10-3

参考文献

[1]P. Helander, Magnetohydrodynamics (MHD), The 40th Culham Plasma

Physics Summer School, UKAEA Fusion (2003).

[2]P. Cargill, Space plasma physics: I+II, The 40th Culham Plasma Physics

Summer School, UKAEA Fusion (2003).

[3] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, V ol. 1, 2nd

edn. (Plenum Press, New York, 1984).

[4]J. Jang and S. S. Le, Theoretical and experimental study of MHD

(magnetohydrodynamic) micropump, Sensors and Actuators 80 (2000)

84-89.

[5] A. Manz and G. Jenkins, A miniaturized glow discharge applied for optical

emission detection in aqueous analytes, J. Micromech. Microeng. 12 (2002)

N19-N22.

[6]J. Zhong, M. Yi and H. H. Bau, Magnetohydrodynamic (MHD) pump

fabricated with ceramic tapes, Sensors and Actuators A 96 (2002) 59-66.

[7]H. H. Bau, J. Zhu, S. Qian and Y. Xiang, A magneto-hydrodynamically

controlled fluidic network, Sensors and Actuators B 88 (2003) 205-216.

[8]J. M. MacInnes, Computation of reacting electrokinetic flow in

microchannel geometries, Chem. Eng. Sci. 57 (2002) 4539-4558.

[9]R. Moreau, Magnetohydrodynamics (Kluwer Academic Publishers,

Dordrecht, 1990).

[10]M. Hughes, K. A. Pericleous and M. Cross, The numerical modeling of DC

electromagnetic pump and brake flow, Appl. Math. Modelling 19 (1995). [11]H. H. Bau, J. Zhong and M. Yi, A minute magneto hydrodynamic (MHD)

mixer, Sensors and Actuators B 79 (2001) 207-215.

计算流体动力学分析-CFD软件原理与应用_王福军--阅读笔记

计算流体动力学(简称CFD)是建立在经典流体动力学与数值计算方法基础之上的一门新型独立学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点。 第一章节 流体流动现象大量存在于自然界及多种工程领域中,所有这些过程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。本章向读者介绍这些守恒定律的数学表达式,在此基础上提出数值求解这些基本方程的思想,阐述计算流体力学的任务及相关基础知识,最后简要介绍目前常用的计算流体动力学商用软件。 计算流体动力学((Computational Fluid Dynamics简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制卜对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。 1.1.2计算流体动力学的工作步骤 采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤: (1)建立反映工程问题或物理问题本质的数学模型。具体地说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数值模拟的出发点。没有正确完善的数 学模型,数值模拟就毫无意义。流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。 (2}}寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。这里的计算方法不仅包括微分方程的离散化方法及求解方法,还包括贴体坐标的建立,边界条件的处理等。这些内容,可以说是c}}的核心。 (3})编制程序和进行计算。这部分工作包括计算网格划分、初始条件和边界条件的输入、控制参数的设定等。这是整个工作中花时间最多的部分。由于求解的问题比较复杂,比如Na}ier-Stakes方程就是一个讨,分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。正是从这个意义上讲.数值模拟又叫数值试验。应该指出,这部分工作不是轻而易举就可以完成的。 4})显示计算结果。计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要参考意义。 以上这些步骤构成了CFD数值模拟的全过程。其中数学模型的建立是理论

十款制作影视特效的优秀软件介绍

十款制作影视特效的优秀软件介绍 相信很多影视制作初学者在看到市场上那些琳琅满目的制作软件一定是头晕脑胀,不知道用哪种制作软件比较好,下面给大家介绍十款影视制作的软件,一起来看看吧。 1、RealFlow 是由西班牙Next Limit公司出品的流体动力学模拟软件。它是一款独立的模拟软件,可以计算真实世界中运动物体的运动,包括液体。RealFlow提供给艺术家们一系列精心设计的工具,如流体模拟(液体和气体)、网格生成器、带有约束的刚体动力学、弹性、控制流体行为的工作平台和波动、浮力(以前在RealWave 中具有浮力功能)。你可以将几何体或场景导入RealFlow来设置流体模拟。在模拟和调节完成后,将粒子或网格物体从RealFlow导出到其他主流3D软件中进行照明和渲染。 2、Houdini (电影特效魔术师) Side Effects Software的旗舰级产品,是创建高级视觉效果的有效工具,因为它有横跨公司的整个产品线的能力,Houdini Master为那些想让电脑动画更加精彩的动画制作家们提供了空前的能力和工作效率。 3、lightwave LightWave是一个具有悠久历史和众多成功案例的为数不多的重量级3D软件之一。由美国NewTek公司开发的LightWave3D是一款高性价比的三维动画制作

软件,它的功能非常强大,是业界为数不多的几款重量级三维动画软件之一。LightWave3D从有趣的AMIGA开始,发展到今天的8.5版本,已经成为一款功能非常强大的三维动画软件,支持Windows98/NT/2000/Me,MACOS9/Xp。 4、Combustion 是一种三维视频特效软件,基于PC或苹果平台的Combustion软件是为视觉特效创建而设计的一整套尖端工具,包含矢量绘画、粒子、视频效果处理、轨迹动画以及3D效果合成等五大工具模块。软件提供了大量强大且独特的工具,包括动态图片、三维合成、颜色矫正、图像稳定、矢量绘制和旋转文字特效短格式编辑、表现、flash输出等功能;另外还提供了运动图形和合成艺术新的创建能力,交互性界面的改进;增强了其绘画工具与3ds max软件中的交互操作功能;可以通过cleaner编码记录软件使其与flint、flame、inferno、fire和smoke同时工作。 5、Softimage 公司曾经是加拿大Avid公司旗下的子公司。SOFTIMAGE 3D曾经是专业动画设计师的重要工具。用SOFTIMAGE 3D创建和制作的作品占据了娱乐业和影视业的主要市场,《泰坦尼克号》、《失落的世界》、《第五元素》等电影中的很多镜头都是由SOFTIMAGES 3D制作完成的,创造了惊人的视觉效果。 6、DFusion DFusion是一个高端的、用于影视后期、独立的图象处理的特效的合成平

《计算流体动力学分析》学习报告

《计算流体动力学分析》学习报告 计算流体力学基础: 本章主要讲解流体动力学的核心思想以及流体动力学的控制方程。 1、计算流体动力学(Computational Fluid Dynamic )基本思想:把原来在时间和空间上的连续的物理量,用一系列离散点上的变量值来代替,通过一定的原则和方式建立变量之间的代数方程式,求解之后获得变量的近似值。 2、CFD 控制方程: 质量守恒方程 0)·=?+??u t ρρ( 动量守恒方程(Navier-Stokes 方程) Fz z y x z u w div t w F z y x y u v div t v F z y x x u u div t u zz zx zx y zy yy xy x zx yx xx +??+??+??+??-=+??+??+??+??+??-=+??+??+??+??+??-=+??τττρρρτττρρρτττρρρ)()()()()()( 能量守恒方程 T p S gradT c k div T u div t +=+??)()(T ( ρρ) S T 为粘性耗散项。 方程含有u ,v ,w ,p ,T 和ρ六个未知量,所以还需要一个方程组,才能使其封闭,而这个方程组就是联系P 和ρ的状态方程组:P=(ρ,T )。 组分质量守恒方程(在一个系统中,可能存在质的交换,或者存在化学组分时使用。) ()s s s s S c grad D div c u div t +=+??)()(c (s ρρρ ) 为便于对控制方程进行计算和分析,对CFD 控制方程写成通用格式: ()S z z y y x x z w y v x u t S grad div u div t +??Γ??+??Γ??+??Γ??=??+??+??+??+Γ=+??)()()()()()())()(φφφφρφρφρρφφφρρφ 依次为瞬态项,对流项,扩散项和源项。 3、湍流控制方程 三维的N-S 方程无论对于层流还是湍流都是是使用的,但由于直接求解三维瞬态的控制方程,对计算机的内存和速度要求很高,因此在工程上广为采用的方法是对瞬态的N-S 方程进行实践平均处理,同时补充反应湍流特性的其他方程,例如湍动能方程以及湍流耗散率方程

管内湍流的数值模拟

管内湍流的数值模拟 摘要:当Reynolds数大于临界值时,平滑流动会出现一系列复杂的变化,最终会导致流动特征的本质变化,流动呈无序的混乱状态,这种状态称为湍流。计算流体力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。本文以湍流管流模型为例,借助Fluent软件进行空气动力学分析,对该管内湍流流动进行模拟。 关键词:计算流体力学;Fluent;管内湍流;数值模拟 1 引言 流体试验表明,当Reynolds数大于临界值时,平滑流动会出现一系列复杂的变化,最终会导致流动特征的本质变化,流动呈无序的混乱状态。这时,即使是边界条件保持不变,流动也是不稳定的,速度等流动特性都随机变化,这种状态称为湍流。 随着高速电子计算机的出现,数值模拟越来越多地应用于流场的模拟。计算流体力学(Computational Fluid Dynamics ,简称为CFD)就是其中一种有效的研究流体动力学的数值模拟方法,它是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析;是基于计算机技术的一种数值计算工具, 用于求解流体的流动和传热问题。它能够描述几何体边界的复杂的流动现象,能够在设计的初期快速地评价设计并做出修改;在设计的中期,用来研究设计变化对流动的影响,减少未预料到的负面影响;设计完成后,CFD提供各种数据和图像,证实设计目的。CFD大大减少了费用、时间以及新设计带来的风险。近年来,CFD越来越多地应用于翼型设计和流场的分析中,成为一种重要的设计和计算方法。 Fluent软件是用于模拟和分析在复杂几何区域内的流体流动与热交换问题的专用CFD软件。它用于计算计算流体流动和传热问题的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、化学反应等。Fluent提供了灵活的网格特性,用户可以方便的使用结构网格和非结构网格对各种复杂区域进行网格划分。本文以湍流管流模型为例,借助Fluent软件进行空气动力学分析,对该管内湍流流动进行模拟,并分析了模型内的中心速度分布、表面摩擦系数和流速剖面。 2 数学及物理模型的建立 2.1 数学模型

流体流动数值模拟

流体流动现象普遍存在于自然界及多种工程领域中。所有这些流动过程都遵循质量守恒、动量守恒、能量守恒和组分守恒等基本物理定律;而且流动若处于湍流状态,则该流动系统还要遵守附加的湍流输运方程。本讲座将依据流体运动的特性阐述计算流体动力学的相关基础知识及任务;在流体运动所遵循的守恒定律及其数学描述的基础上,介绍数值求解这些基本方程的思想及其求解过程。 第一节计算流体动力学概述 计算流体动力学(CFD)技术用于流体机械部流动分析及其性能预测,具有成本低,效率高,方便、快捷用时少等优点。近年来随着计算流体力学和计算流体动力学及计算机技术的发展, CFD技术已成为解决各种流体运动和传热,以及场问题的强有力、有效的工具,广泛应用于水利、水电,航运,海洋,冶金,化工,建筑,环境,航空航天及流体机械与流体工程等科学领域。利用数值计算模拟的方法对流体机械的部流动进行全三维整机流场模拟,进而进行性能预测的方法越来越广泛地被从事流体机械及产品性能取决于各种场特性的设计、科研等科技人员所使用;过去只有通过实验才能获得的某些结果或结论,现在完全可借助CFD模拟的手段来准确地获取。这不仅既可以节省实验资源,还可以显示从实验中不能得到的许多场特性的细节信息。 一、什么是计算流体动力学 计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含流体流动和有热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理场(如速度场和压力场,以及热力场等),用一系列有限个离散点上变量值的集合来代替;并通过一定的原则和规律建立起关于这些离散点上的场变量之间关系,从而组成这些场变量之间关系的代数方程组;然后求解这种代数方程组,来获得这些场变量的近似值[1-3];这就是流动的数值计算。或者直观地说,通过数值计算中的各种离散方法,把描述连续流体运动的控制偏微分方程离散成代数方程组,由此建立该流动的数值模型;再根据问题的具体情况,设定边界条件和初始条件封闭方程组;然后通过计算机数值计算求解这种代数方程组,从而获得描述该流场场变量的某些运动参数的数值解。 计算流体动力学是在经典流体力学、数值计算理论、计算方法,以及计算机科学与技术的基础上建立和发展起来的多学科、多领域交叉的流体力学中的一个新分支;或可以说是一门新学科。他将科学的理论知识与实际工程计算紧密地结合在了一起,是我们流体机械及流体工程学科和工程领域中目前科学研究与工程计算、分析或设计的高质、高效,短周期、低费用的强有力不可或缺的重要工具。

工程使用有限元软件大全

ANSYS产品: Ansys v9.0 +SP1 Ansys WorkBench Suite v9.0+SP1(Ansys协同仿真环境) Ansys 9.0 Ansys 9.0 for Linux Ansys WorkBench Suite 9.0(Ansys协同仿真环境) Ansys Heal 8.1(Ansys Automatic Geometry Healing模块,必须先安装Ansys8.1) Ansys ParaMesh 3.0(网格处理软件包) Ansys EMAX 8.0(ANSYS公司专为电子工业而发展的高频电磁分析软件;针对电子工程师在进行RF/微波被动组件与电路的设计、电磁场干扰与协调性(EMI/EMC)天线设计与对象识别;需要先安装Ansys8.0) Ansys AI Enviroment 2.0(机械工程新一代的通用前后处理工具) Ansys AI Nastran 1.0 Ansys UIDL Visual Builder AutoCAD图形转化为Ansys工具 Ansys Workbench 8.0 分析培训教材及实例 2004 Ansys 8.2 机械设计高级应用实例 1CD Ansys Conference 2004-ISO 1CD Ansys LS-Dyna 分析指南(简体中文,Ansys公司的正版培训教程扫描书,96.7MB) Ansys 耦合场分析指南(简体中文,Ansys公司的正版培训教程扫描书) Ansys LS-Dyna Exercise 6CD Ansys 7.0 Training Guides 1CD Ansys 5.7.Professional.Excercise.CD 1CD Ansys 5.7简体中文教程 Ansys Theory 1CD Ansys 混凝土结构计算论文集 Ansys 工程计算应用教程(简体中文) Ansys 工程应用实例解析 1CD 显示动力学与Ansys LS-Dyna中文培训教程 Ansys 2004 中国用户论文集 1CD CFX v5.7.1 for windows-ISO 1CD(大型商业CFD软件) CFX v5.7.1 for linux-ISO 1CD CFX v5.7.1 SP2 update only for windows(升级文件) CFX v4.4-ISO 1CD CFX Rif v1.4.1-ISO 1CD(用于燃烧工艺的建模,是建立稳态flamelet库:可用于CFX-TASCflow2.12或CFX-5分析紊流燃烧的理想工具,CFX-RIF可自动创建先期整合式flamelet库) CFX BladeGen plus v4.1.10(交互式涡轮机械叶片设计工具) CFX TASCflow 2.12.2.NT 1CD(旋转机械气动、水动力学分析和设计,必须先安装Exceed 3D 7.1)

CFD—计算流体动力学软件介绍

CFD 流体动力学软件介绍 CFD—计算流体动力学,因历史原因,国一直称之为计算流体力学。其结构为: 提出问题—流动性质(流、外流;层流、湍流;单相流、多相流;可压、不可压等等),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 分析问题—建模—N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 解决问题—差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 成果说明—形成文字,提交报告,赚取应得的回报。 CFD实现过程: 1.建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: CATIA:航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! UG:总觉得EDS脑袋进水了,收了I-deas这么久了,也才发布个几百M的UG NX 2.0,还被大家争论来争论去说它如何的不好用!其实,软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

CFD计算流体动力学入门教程选择

非流体、热动专业CFD新手入门 首先掌握流体力学基本原理,丁祖荣主编的流体力学这本教材,仔细看两天,这样就会知道gambit中为什么会有边界层设置,边界层厚度如何设置;雷诺系数如何确定来判断层流与湍流;马赫数如何确定来判断流体是可压还是不可压,这样就能解决Fluent,是基于压力还是基于密度求解。能够对实际中一些看似简单的流体现象有深刻的认识,能够准确判断是定常流还是非定常流。 CFD网格划分 网格划分对于初学者所接触案例,其实非常简单。但实际工程中,大项目,特别涉及到整套工程,如环保,飞机,网格质量与数量都要求非常高,往往服务器类的PC才能解决问题,所谓的内存128G,CPU四核主频3.0以上。初学者,简单的管道,一般的机器还是没问题。有机械三维软件基础的,对于gambit建模就非常容易了。往往大项目,复杂的结构gambit 建模显得力不从心,所以对于流体工作者来说,学习三维软件对于建模有莫大的帮助,如Proe。 1.1Gambit介绍 网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit,文件名如果已经存在,要加上参数-old。 一.Gambit的操作界面 图1 Gambit操作界面 如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。 文件栏 文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。这些命令的使用和一般的软件一样。Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件

流体力学虚拟仿真实验教学云平台-浙江大学与杭州源流科技联合研发

在普通本科高等学校开展示范性虚拟仿真实验教学项目建设工作,是目前高校迫在眉睫的重要实验室建设任务。杭州源流科技毛根海教授团队研发的流体力学虚拟仿真实验平台,具有典型性和统一性,值得兄弟院校借鉴和引用。 毛根海教授团队研发的基于WEB的流体力学虚拟仿真实验平台主要包含项目如下: MGH-RJ 6-2-1基于WEB的流体力学虚拟仿真实验平台-流体静水力学实验软件MGH-RJ 6-2-2基于WEB的流体力学虚拟仿真实验平台-能量方程实验软件 MGH-RJ 6-2-3基于WEB的流体力学虚拟仿真实验平台-文丘里实验软件 MGH-RJ 6-2-4基于WEB的流体力学虚拟仿真实验平台-雷诺实验软件 MGH-RJ 6-2-5基于WEB的流体力学虚拟仿真实验平台-动量定律实验软件 MGH-RJ 6-2-6基于WEB的流体力学虚拟仿真实验平台-孔口管嘴实验软件 MGH-RJ 6-2-7基于WEB的流体力学虚拟仿真实验平台-局部水头损失实验软件MGH-RJ 6-2-8基于WEB的流体力学虚拟仿真实验平台-沿程水头损失实验软件MGH-RJ 6-2-9基于WEB的流体力学虚拟仿真实验平台-毕托管测速实验软件MGH-RJ 6-2-10基于WEB的流体力学虚拟仿真实验平台-泵特性曲线实验软件

MGH-RJ 6-2-11基于WEB的流体力学虚拟仿真实验平台-泵特性综合实验软件MGH-RJ 6-3-1 基于WEB云平台的水面曲线实验虚拟仿真CAI软件 MGH-RJ 6-3-2 基于WEB云平台的堰流实验虚拟仿真CAI软件 MGH-RJ 6-3-3 基于WEB云平台的水跃实验虚拟仿真CAI软件 MGH-RJ 6-3-4 基于WEB云平台的消能池实验虚拟仿真CAI软件 MGH-RJ 6-3-5 基于WEB云平台的消能坎实验虚拟仿真CAI软件 MGH-RJ 6-3-6 基于WEB云平台的挑流消能实验虚拟仿真CAI软件 WEB网络版实验虚拟仿真CAI软件的技术特性如下: 1、基于互联网+,电脑、IPAD、手机都可通过其上的WEB浏览器访问云平台网站做实验,不需下载APP,网上实验真正做到了24小时全开放,方便学生实验虚实结合,随时随地进行实验预习和复习。 2、无需下载APP,直接通过客户端的IE浏览器上网,登录流体力学实验虚拟仿真CAI网站云平台即可操作虚拟仿真实验,并具备使用用户名、密码登录界面

计算流体力学_CFD_的通用软件_翟建华

第26卷第2期河北科技大学学报Vol.26,No.2 2005年6月Journal of Hebei University of Science and T echnology June2005 文章编号:100821542(2005)022******* 计算流体力学(CFD)的通用软件 翟建华 (河北科技大学国际交流与合作处,河北石家庄050018) 摘要:对化学工程领域中的通用CFD(Computational Fluid Dynamics)模拟软件Phoenics,Flu2 ent,CFX等的具体特点和应用情况进行了综述,指出了他们各自的结构特点、特有模块、包含的数学模型和成功应用领域;给出了选用CFD软件平台的7项准则,对今后CFD技术的发展进行了预测,指出,今后CFD研究的主要方向将集中在数学模型开发、工程改造和新设备开发及与工艺软件的匹配连用等方面。 关键词:计算流体力学;模拟软件;CFX;FLUENT;PH OENICS 中图分类号:T Q015.9文献标识码:A Review of commercial CFD software ZH AI Jian2hua (Department of Int ernation Exchange and Cooperation,H ebei University of Science and Technology,Shijiazhuang H ebei 050018,China) Abstr act:The paper summar izes the features and application of the CF D simulation software like Phoenics,F luent and CFX etc in chemical engineering,and discusses their str ucture features,special modules,mathematical models and successful application areas.It also puts forward seven r ules for the good choice of commercial CF D code for the CF D simulation resea rcher s.Based on t he predict ion of the technology development,it points out the possible r esear ch direction for CF D in the future will focus on the development of mathematical model,project transformat ion,new equipment and their matching application with technologi2 cal softwa re. Key words:CF D;simulation software;CF X;FLUENT;P HOENICS CFD(Computational Fluid Dynamics)软件是计算流体力学软件的简称,是用来进行流场分析、计算、预测的专用工具。通过CFD模拟,可以分析并且显示流体流动过程中发生的现象,及时预测流体在模拟区域的流动性能,并通过各种参数改变,得到相应过程的最佳设计参数。CFD的数值模拟,能使我们更加深刻地理解问题产生的机理,为实验提供指导,节省以往实验所需的人力、物力和时间,并对实验结果整理和规律发现起到指导作用。随着计算机软硬件技术的发展和数值计算方法的日趋成熟,出现了基于现有流动理论的商用CFD软件。这使许多不擅长CFD工作的其他专业研究人员能够轻松地进行流体数值计算,从而使研究人员从编制繁杂、重复性的程序中解放出来,以更多的精力投入到研究问题的物理本质、问题提法、边界(初值)条件和计算结果的合理解释等重要方面上,充分发挥商用CFD软件开发人员和其他专业研究人员各自的智力优势,为解决实际工程问题开辟了道路。 CFD研究走过了相当漫长的过程。早期数值模拟阶段,由于缺乏模拟工具,研究者一般根据自身工作性质和研究过程,自行编制模拟程序,其优点是针对性强,对具体问题的解决有一定精度,但是,带来的问题 收稿日期:2004208221;修回日期:2004211221;责任编辑:张军 作者简介:翟建华(19642),男,河北平乡人,教授,主要从事化工CFD、高效传质与分离和精细化工方面的研究。

流体力学势流理论

第六章势流理论 本章内容: 1.势流问题求解的思路 2.库塔----儒可夫斯基条件 3. 势流的迭加法 绕圆柱的无环绕流,绕圆柱的有环绕流 4.布拉休斯公式 5.库塔----儒可夫斯基定理 学习这部分内容的目的有二: 其一,获得解决势流问题的入门知识,即关键问题是求解速度势。求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。 其二,明确两点重要结论: 1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。 2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。 本章重点: 1、平面势流问题求解的基本思想。 2、势流迭加法 3、物面条件,无穷远处条件 4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位 置,流线图谱,升力,阻力,环流方向等。 5、四个简单势流的速度势函数,流函数及其流线图谱。 6、麦马格鲁斯效应的概念 7、计算任意形状柱体受流体作用力的卜拉修斯定理 8、附加惯性力,附加质量的概念 本章难点: 1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。 2.任意形状柱体受流体作用力的卜拉修斯定理 3.附加惯性力,附加质量的概念 §6-1 几种简单的平面势流 平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。

例如: 1)绕一个无穷长机翼的流动, 2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话, 则这一问题就可以按 一、均匀流 流体质点沿x轴平行的均匀速度Vo ,如图6-5所示, V x=V o , V y =0 dx V dy V dx V dy y dx x d y x 0=+=??+??= ?? ? 积分:φ=V ox (6-4) 如图6-3 流函数的全微分为, dy V dy V dx V dy y dx x d o x y =+-=??+??= ψψψ 积分:ψ=V o y (6 -5 如图6-4 由(6-4)和(6 -5 流线:y=const ,一组平行于x轴的直线,如图6 -3 等势线:x=const ,一组平行于y轴的直线,如图6-3中的虚线。 均匀流的速度势还可用来表示平行平壁间的流动或薄平板的均匀纵向绕流,如图6-4所示。 平面源:流体由坐标原点出发沿射线流出,反之,流体从各个方向流过来汇聚于一点,谓之平面汇:与源的流动方向相反。 设源的体积流量为Q,速度以源为中心,沿矢径方向向外,沿圆周切线方向速度分量为零。现以原点为中心,任一半径r作一圆,则根据不可压缩流体的连续性方程, 体积流量Q πrvr=Q ∴vr=Q/2πr (6-6) 在直角坐标中,有 x y V y x V y x ??- =??=??=??= ψ?ψ? 在极坐标中有: r r s V r s r V s r ??- =??=??=??=??=??= ψθ??θψψ?11 (6-7) 图6-6 点源和点汇 极坐标中φ和ψ 的全微分:

流体主要计算公式

1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。 1781年拉格朗日首先引进了流函数的概念。 1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。 1876年雷诺发现了流体流动的两种流态:层流和紊流。 1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。 19世纪末,相似理论提出,实验和理论分析相结合。 1904年普朗特提出了边界层理论。 20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。 理想势流伯努利方程 (3-14) 或(3-15) 物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。 (应用条件:“”所示) 符号说明 二、沿流线的积分

1.只有重力作用的不可压缩恒定流,有 2.恒定流中流线与迹线重合: 沿流线(或元流)的能量方程: (3-16) 注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。一般不同流线各不相同(有旋流)。 (应用条件:“”所示,可以是有旋流) 流速势函数(势函数)观看录像>> ?存在条件:不可压缩无旋流,即或 必要条件存在全微分d 直角坐标 (3-19) 式中:——无旋运动的流速势函数,简称势函数。 ?势函数的拉普拉斯方程形式 对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有: 或(3-20) 适用条件:不可压缩流体的有势流动。 点击这里练习一下 极坐标 (3-21) 流函数

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

计算流体动力学概述

计算流体动力学概述 作者:王福军 1 什么是计算流体动力学 计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。CFD方法与传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系,图1给出了表征三者之间关系的“三维”流体力学示意图理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证新的数值计算方法的理论基础。但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。对于非线性情况,只有少数流动才能给出解析结果。 “三维”流体力学示意图 实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。然而,实验往往受到模型尺寸、流场扰动、人身安全和测量精度的限制,有时可能很难通过试验力一法得到结果。此外,实验还会遇到经费投入、人力和物力的巨大耗费及周期长等许多困难。 而CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算。就好像在

直流微装置的磁流体动力学模拟

第十四章直流微装置的磁流体动力学模拟 JAIME H. LOZANO PARADA, WILLIAM B.J. ZIMMERMAN Department of Chemical and Process Engineering, University of Sheffield, Newcastle Street, Sheffield S1 3JD United Kingdom E-mail: w.zimmerman@https://www.doczj.com/doc/9914237876.html, 1.引言 磁流体动力学理论(MHD)研究电磁场中导电流体的交互作用。它在很多领域,包括热核反应[1]、太阳和太空等离子体[2]、火箭引擎[3]中都有着非常重要的作用。目前对MHD的研究兴趣越来越集中在芯片实验中的微尺度流动控制应用上[4]-[6]。驱动MHD微尺度泵的Lorentz力,在方向和大小上取决于施加的磁场B和电场E矢量。这种泵的主要特性就是可以控制局部流体流动,不需要力学设备就可以精确控制流体在微尺度流道网络中按照预定路径流动[7]。这种借助Lorentz力的局部流体控制方法使得流体控制变得十分灵活,例如流体可以双向流动、累积、减速甚至回退。与电动泵使用高的轴线电压相比[8],MHD微型泵使用低的横向电场。低的发热量使其可以用于驱动对高温和电压敏感的生物流动过程。简单的电子设备就可以顺序控制复杂微流动中的各个独立微型泵。流动速度通过电磁场的强度来控制。 似乎到目前为止仍没有关于MHD微型泵模拟的发表文章。下面我们将给出一些基于Galerkin有限元法的微型泵模拟结果,模拟过程在商业软件COMSOL Multiphysics 3.2中实现。数值求解采用压力修正算法——SIMPLE,它首先假设一个压力场,然后通过求解不可压缩流动的Navier-Stokes方程得到速度场。这些速度不需要满足Possion型连续方程,所以对压力场的修正也带来速度场的修正,最终满足质量守恒。求解速度场的同时计算电势场方程。这会得到Lorentz 力,然后将其反馈回N-S方程并作为体积力处理。连续耦合Lorentz力和速度场直到Newton迭代收敛。 2.理论 为了研究电场和磁场对微通道反应器(MR)里中性导电流体的影响,我们对不可压缩各向同性牛顿流体建立一个MHD方程。 在实验室尺度,MHD控制方程可以解耦合为三个主要问题[9]:一是基于质量守恒和动量守恒的连续方程流动问题;二是基于Maxwell方程的电动力学问题;三是基于能量守恒的热问题。但是流体动力学和电动力学的解耦合是存在问题的,因为定义了共同的压力边界条件。不过也很容易发现,当流动速度足够慢的时候,压力分布可以一阶近似为静流体情况,这样就可以定义一个纯磁流体动力学问题。这样就考虑了磁场对速度场的影响,但是忽略了流场对磁力线对流的影响(这就是著名的弱耦合),除非入口流速增大到磁场Reynolds数Rm比1大。当R m≈1时,磁力线对流约占静磁场B0的1%,但是如果R m≈10时,磁力线扰动带来的磁场近似等于没有扰动的磁场B0,也就是说这时磁力线的对流变得不可忽略。对于我们这种情况,如果产生磁场线对流需要入口平均流速u0≈104m/s,这是不可能的。所以这里忽略流体流动带来的磁力线对流。 我们模型中用到的MHD直流微型泵方程和参数都取自参考文献10。文献中采用基于有限体积法的PHOENICS代码,通过外部FORTRAN子程序连接到N-S

沿程损失阻力系数的FLUENT数值模拟(计算流体力学作业)..

计算流体力学课程作业 作业题目:沿程损失阻力系数的FLUENT数值模拟 学生姓名:易鹏 学生学号: 专业年级:动力工程及工程热物理12级学院名称:机械与运载工程学院 2012年5月2日

沿程损失阻力系数的 FLUENT 数值模拟 一、 引言 沿程损失(pipeline friction loss )是指管道内径不变的情况下,管内流体流过一段距离后的水头损失。其中边界对水流的阻力是产生水头损失的外因,液体的粘滞性是产生水头损失的内因,也是根 本原因。沿程能量损失的计算公式是:2f l v h =λd 2g 。其中:l 为管长,λ 为沿程损失系数,d 为管道内径,2 v 2g 为单位重力流体的动压头(速度 水头),v 为流体的运动粘度系数。粘性流体在管道中流动时,呈现出两种流动状态,管道中的流速cr v v <(cr v 为层流向湍流转变的临界流速)为层流,此时整个流场呈一簇互相平行的流线。则cr v v >时为湍流,流场中的流体质点作复杂的无规则的运动。沿程损失与流动状态有关,故计算各种流体通道的沿程损失,必须首先判别流体的流动状态。 沿程损失能量损失的计算公式由带粘性的伯努利方程 221122 12f v p v p ++z =++z +h 2g ρg 2g ρg 推出,可知,12f P -P h =ρg 其中: ——单位质量流体的动能(速度水头)。流体静止时为0。 ——单位质量流体的势能(位置水头)。 ——单位质量流体的压力能(压强水头)。 2 v 2g z p ρg

又由量纲分析的π定理,得出 2 Δp L =λ1d ρV 2 ,计算出达西摩擦因子22Δpd λ=LρV , 则2f L V h =λD 2g ,由于Vd Re =ν,μν=ρ,则d λ=f(Re )。 关于沿程损失最著名的是尼古拉茨在1932~ 1933年问所做的实验(右图为实验装置图)。其测得曲线如图1,从此得出了几个重要结论: 1.层流区 Re <2320为层流区。在该区域内,管壁的相对粗糙度对沿程损失系数没有影响。 2.过渡区 2320<Re <4000为由层流向湍流的转换区,可能是层流,也可能是湍流,实验数据分散,无一定规律。 3.湍流光滑管区 4000<Re <26.98(d/ε)8/7,为湍流光滑管区。勃拉修斯(p.Blasius )1911年用解析方法证明了该区沿程损失系数与相对粗糙度无关,只与雷诺数有关,并借助量纲分析得出了4×10e3<Re <10e5范围内的勃拉休斯的计算公式为 0.25 0.3164 Re λ=

相关主题
文本预览
相关文档 最新文档