当前位置:文档之家› 物理学教程(第二版)上册课后习题答案详解

物理学教程(第二版)上册课后习题答案详解

物理学教程(第二版)上册课后习题答案详解
物理学教程(第二版)上册课后习题答案详解

物理学教程(第二版)上册习题答案

第一章 质点运动学

1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr

(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )

(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v

分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).

(2) 由于|Δr |≠Δs ,故t

s t

ΔΔΔΔ≠r ,即|v |≠v .

但由于|d r |=d s ,故

t

s t d d d d =

r ,即|v |=v .由此可见,应选(C).

1 -

2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)

t

r d d ; (2)

t

d d r ; (3)

t

s d d ; (4)

2

2d d d d ??

? ??+??? ??t y t x .

下述判断正确的是( )

(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 分析与解

t

r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标

系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;

t

d d r 表示速度矢量;在自然坐标系中速度大小可用公式t

s d d =

v 计算,在直角坐标系中则可由公式2

2

d d d d ??

?

??+??? ??=

t y t x v 求解.故选(D).

1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s

表示路程, a t表示切向加速度.对下列表达式,即

(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )

(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的 分析与解

t

d d v 表示切向加速度a t,它表示速度大小随时间的变化率,

是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;

t

r d d 在

极坐标系中表示径向速率v r (如题1 -2 所述);t

s d d 在自然坐标系中表示质点的速率v ;而

t

d d v 表示加速度的大小而不是切向加速度a t.因此

只有(3) 式表达是正确的.故选(D).

1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变

分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改

变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).

1 -5 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:

(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t =4 s 时质点的速度和加速度.

分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0

Δx x x t -=

,而在求路程时,就必

须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =t

x

来确定其运动方向改变的时刻t p ,求出

0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程

21x x s ?+?=,如图所示,至于t =4.0 s 时质点速度和加速度可用

t

x d d 和

22

d d t

x 两式计算.

题 1-5 图

解 (1) 质点在4.0 s 内位移的大小 m

32Δ04-=-=x x x

(2) 由

0d d =t

x

得知质点的换向时刻为

s

2=p t (t =0不合题意)

m 0.8Δ021=-=x x x

m

40Δ242-=-=x x x

所以,质点在4.0 s 时间间隔内的路程为 m 48ΔΔ21=+=x x s

(3) t =4.0 s 时

1

s

0.4s

m 48d d -=?-==

t t

x v 2

s

0.422

m.s

36d d -=-==

t t

x a

1 -6 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:

(1) 质点的运动轨迹;

(2) t =0 及t =2s时,质点的位矢;

(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;

分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).

解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为

2

412x

y -

=

这是一个抛物线方程,轨迹如图(a)所示.

(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为

j r 20= , j i r 242-=

图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得

j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m

66.5)(Δ)(ΔΔ2

2

=+=

y x r

而径向增量m

47.2ΔΔ2

02

02

22202=+-

+=-==y x y x r r r r

题 1-6 图

1 -7 质点的运动方程为

2

3010t

t x +-= 2

2015t t y -=

式中x ,y 的单位为m,t 的单位为s.

试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.

分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向. 解 (1) 速度的分量式为

t

t

x x 6010d d +-==

v

t t

y y 4015d d -==

v

当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为

1

2

02

00s

m 0.18-?=+=

y

x v v v

设v 0与x 轴的夹角为α,则

2

3tan 00-

==

x

y αv v

α=123°41′

(2) 加速度的分量式为

2

s

m 60d d -?==

t

a x x v ,

2

s

m 40d d -?-==

t

a y y v

则加速度的大小为

2

2

2

s

m 1.72-?=+=

y

x a a a

设a 与x 轴的夹角为β,则

3

2tan -

==

x

y a a β

β=-33°41′(或326°19′)

1 -8 一升降机以加速度1.2

2 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.

分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题

即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.

解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为

2

0121at

t y +

=v

2

022

1gt

t h y -

+=v

当螺丝落至底面时,有y 1 =y 2 ,即

2

02

02

121gt

t h at

t -

+=+

v v

s 705.02=+=

a

g h t

(2) 螺丝相对升降机外固定柱子下降的距离为

m

716.0212

02=+

-=-=gt

t y h d v

解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有

2

)(210t

a g h +-

=

s 705.02=+=

a

g h t

(2) 由于升降机在t 时间内上升的高度为

2

021at

t h +

='v 则

m

716.0='-=h h d

题 1-8 图

1 -9 质点沿直线运动,加速度a =4 -t

2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程. 分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t

a d d v =

和t

x d d =

v 可得t

a d d =v

t

x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时

间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.

解 由分析知,应有

?

?

=

t

t a 0

d d 0

v

v v

得 03

3

14v v +-

=t t

(1)

由 ??=t

x

x t x 0d d 0

v

0042

12

12x t t t x ++-

=v

(2)

将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得

v 0=-1 m·s-1, x 0=0.75 m

于是可得质点运动方程为

75

.012

124

2

+-

=t t x

1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.

解 选取石子下落方向为y 轴正向,下落起点为坐标原点.

(1) 由题意知 v

v B A t

a -==

d d (1)

用分离变量法把式(1)改写为

t

B A d d =-v

v (2)

将式(2)两边积分并考虑初始条件,有

?

?

=

-t

t

B A 0

d d d 0

v v

v v

v

得石子速度 )e

1(Bt

B

A --=

v

由此可知当,t →∞时,B

A →v 为一常量,通常称为极限速度或收尾速度.

(2) 再由)e

1(d d Bt

B A t y --==

v 并考虑初始条件有

t

B

A y t

Bt

y

d )e

1(d 0

?

?

--=

得石子运动方程

)1(e

2

-+

=

-Bt

B

A t B

A y

1 -11 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-

2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.

题 1-11 图

分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即2

0021t

a t x x x x +

+=

v 和2

002

1t

a t y y

y y +

+=v ,

两个分运动均为匀变速直线运动.读者不妨自己验证一下. 解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得

??

?

+=

=

t

t

t t 0

)d 46(d d j i a v

v

j i t t 46+=v

又由t

d d r =

v 及初始条件t =0 时,r 0=(10 m)i ,积分可得

?

?

?

+=

=

t

t

r

r t

t t t 0

)d 46(d d 0

j i r v

j

i r 2

2

2)310(t t ++=

由上述结果可得质点运动方程的分量式,即

x =10+3t 2

y =2t 2

消去参数t ,可得运动的轨迹方程

3y =2x -20 m 这是一个直线方程.直线斜率3

2tan d d =

==αx

y k ,α=33°41′.轨迹如图

所示.

1 -1

2 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ. 分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t

ΔΔr =v

,它与时间间隔Δt 的大小有关,当Δt →0 时,平均

速度的极限即瞬时速度t

d d r =

v .切向和法向加速度是指在自然坐标下

的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即

t

t t e

a d d v =

,后者只反映质点速度方向的变化,它可由总加速度a 和a t

得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式

ρ

a n 2

v

=

求ρ.

解 (1) 由参数方程

x =2.0t , y =19.0-2.0t 2

消去t 得质点的轨迹方程:

y =19.0 -0.50x 2

(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度

j

i r r 0.60.2ΔΔ1

212-=--==

t t t

r v

(3) 质点在任意时刻的速度和加速度分别为

j

i j i j i t t

y t

x t y x 0.40.2d d d d )(-=+

=

+=v v v

j

j i a 2

2

2

2

2

s

m 0.4d d d d )(-?-=+

=

t

y t

x t

则t 1 =1.00s时的速度

v (t )|t =1s=2.0i -4.0j

切向和法向加速度分别为

t

t y x t t t

t

t

e e e a 2

22s

1s m 58.3)(d d d d -=?=+=

=

v v v

n n t n a a e e a 2

2

2

s m 79.1-?=-=

(4) t =1.0s质点的速度大小为

1

22s

m 47.4-?=+=

y x v v v

则m

17.112

==

n

a ρv

1 -13 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?

题 1-13 图

分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别

列出其运动方程,运用时间相等的条件,即可求解.

此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.

解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为

x =vt , y =1/2 gt 2

飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离

m

4522==g

y x v

(2) 视线和水平线的夹角为

o

5

.12arctan

==x y θ

(3) 在任意时刻物品的速度与水平轴的夹角为

v

v v gt αx

y arctan

arctan

==

取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为

2

s m 88.1arctan sin sin -?=??? ??==v gt g αg a t

2

s m 62.9arctan cos cos -?=??? ?

?==v gt g g a n α

1 -14 为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,到达跑道终端时速度大小为

150

0=v h km 1

-?,他随即以仰角

5

=α冲出,飞越跨度达57 m ,安全

着陆在西岸木桥上,求:

题 1-14 图

(1) 柯飞车跨越黄河用了多长时间?

(2) 若起飞点高出河面10 m ,柯驾车飞行的最高点距河面为几

米?

(3) 西岸木桥和起飞点的高度差为多少?

分析 由题意知,飞车作斜上抛运动,对包含抛体在内的一般曲线运动

来说,运用叠加原理是求解此类问题的普适方法,操作程序是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g ,故两个分运动均为匀变速直线运动或其中一个为匀速直线运动,直接列出相关运动规律方程即可求解,本题可建立图示坐标系,图中m m x y 和分别表示飞车的最大高度和飞跃跨度.

解 在图示坐标系中,有

t

v x )cos (0α= (1)

2

021sin (gt

t v y -

=)α (2)

gt

v v y -=αsin 0 (3)

(1) 由式(1),令57

m

==x x m ,得飞跃时间

37

.1cos 0m m ==

α

v x t s

(2)由式(3),令0

=y

v

,得飞行到最大高度所需时间

g

v t αsin 0m =

将’m

t 代入式(2),得飞行最大高度 67

.02sin 2

2

0m ==

g

v y αm

则飞车在最高点时距河面距离为

10

m +=y h m 67.10= m

(3)将37

.1m

=t s 代入式(2),得西岸木桥位置为

y = - 4.22 m

“-”号表示木桥在飞车起飞点的下方.

讨论 本题也可以水面为坐标系原点,则飞车在 y 方向上的运动方程应为

10

=y m + 2

2

1)sin (gt

t v

1 -15 如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角

30

=α,球的抛射角

60

,设球被抛出时的速率v 0 =19.6 m·s-1,

忽略空气阻力,问球落在山坡上处离山坡底端的距离为多少?此过程

经历多长时间?

题 1-15 图

分析 求解方法与上题类似,但本题可将运动按两种方式分解,如图(a )和图(b )所示.在图(a )坐标系中,两个分运动均为匀减速直线运动,加速度大小分别为-g α

cos

和-g αsin ,看似复杂,但求解本

题确较方便,因为落地时有y =0,对应的时间t 和x 的值即为本题所求.在图(b )坐标系中,分运动看似简单,但求解本题还需将落地点P 的坐标y 与x 的关系列出来.

解 1 由分析知,在图(a )坐标系中,有

2

0)sin (21)]cos([t

g t v x ααβ-+-= (1)

2

0)cos (2

1)]sin([t

g t v y ααβ-+

-= (2)

落地时,有y =0,由式(2)解得飞行时间为

31

.230tan 20==

g

v t s

将 t 值代入式(1),得

1.26322

0==

=g

v x OP m

解 2 由分析知,在图(b )坐标系中,

对小球 t

v x )cos (0β=

(1)

2

02

1)sin (gt

t v y -

(2)

对点P α

tan x y ='

(3)

由式(1)、(2)可得球的轨道方程为

β

β2

20

2cos 2tan v gx

x y -

= (4)

落地时,应有y y '=

,即

60

cos 260tan 30tan 2

2

02v gx

x x -

=

解之得落地点P 的x 坐标为

g

v x 332

0=

(5)

则 1.263230

cos 2

0==

=

g

v x OP

m

联解式(1)和式(5)可得飞行时间

31

.2=t s

讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?

1 -16 一质点沿半径为R 的圆周按规律2

021bt

t s -

=

v 运动,v 0 、b 都

是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈? 分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.

解 (1) 质点作圆周运动的速率为

bt

t

s -==

0d d v v

其加速度的切向分量和法向分量分别为

b t

s a t -==

22

d d , R

bt R

a n 2

02

)

(-=

=

v v

故加速度的大小为

R

)

(4

02222bt b a a

a a t t

n

-+=

+=

v

其方向与切线之间的夹角为

?

?

?

???--==Rb bt a a θt n

20)(arctan arctan v

(2) 要使|a |=b ,由

b

bt b R R

=-+4

02

2

)

(1v 可得

b

t 0v =

(3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为

b

s s s t 22

0v =

-=

因此质点运行的圈数为

bR

R

s n π4π22

v =

=

1 -17 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.

分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移. 解 因ωR =v ,由题意ω∝t 2 得比例系数

3

2

2

s

rad 2-?==

=

Rt

t

ωk v

所以 22)(t t ωω==

则t ′=0.5s 时的角速度、角加速度和切向加速度分别为

1

2

s rad 5.02-?='=t ω

2

s

rad 0.24d d -?='==

t t

ωα

2

s

m 0.1-?==R αa t

总加速度

n t t n R ωR αe e a a a 2

+=+=

()()

2

2

22s

m 01.1-?=+=

R ωR αa

在2.0s内该点所转过的角度

rad

33.53

2d 2d 20

32

2

2

0==

=

=

-?

?

t

t t t ωθθ

1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?

分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到. 解 (1) 由于3

42t

θ

+=,则角速度2

12d d t

t

θω

==

.在t =2 s 时,法向加

速度和切向加速度的数值分别为

2

2s

2s

m 30.2-=?==ωr a t n

2

s

2s

m 80.4d d -=?==t

ωr

a t t

(2) 当2

22

12/t

n t

a a a a

+=

=时,有2

23n

t

a a

=,即

()(

)4

22

2

12243t

r rt =

得 3

213

=

t

此时刻的角位置为

rad

15.3423

=+=t θ

(3) 要使t n

a a =,则有

()(

)4

22

2

12243t

r rt =

t =0.55s

1 -19 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前

进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v 2 .(设下降的雨滴作匀速运动)

题 1-19 图

分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1

'

2

2

v v v += (如图所示),于是可得

1

o

12s

m 36.575

tan -?==

v v

1 -20 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?

分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应

满足h

l α

arctan

≥.再由相对速度的矢量关系122v v v -=',即可求出所需车

速v 1.

题 1-20 图

解 由122

v v v -='[图(b)],有

θ

θcos sin arctan

221v v v -=α

而要使h

l α

arctan

≥,则

h

l θ

θ≥-cos sin 221v v v

??

?

??+≥θh θl sin cos 21v v

第二章 牛顿定律

2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于

光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )

(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ

分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.

2 -2用水平力F N把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N逐渐增大时,物体所受的静摩擦力F f的大小( )

(A) 不为零,但保持不变

(B) 随F N成正比地增大

(C) 开始随F N增大,达到某一最大值后,就保持不变

(D) 无法确定

分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N范围内取值.当F N增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).

2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )

(A) 不得小于gRμ(B) 必须等于gRμ

(C) 不得大于gRμ(D) 还应由汽车的质量m决定

分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).

2 -4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )

(A) 它的加速度方向永远指向圆心,其速率保持不变

(B) 它受到的轨道的作用力的大小不断增加

(C) 它受到的合外力大小变化,方向永远指向圆心

(D) 它受到的合外力大小不变,其速率不断增加

物理学教程(第二版)(上册)课后答案

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( )

物理学教程第二版下册课后答案

第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为 2εσ ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说法正确的是( ) (A ) 电场强度为零的点,电势也一定为零 (B ) 电场强度不为零的点,电势也一定不为零 (C ) 电势为零的点,电场强度也一定为零 (D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ). *9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶

大学物理上册答案详解

大学物理上册答案详解 习题解答 习题一 1—1 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?12r r -=,12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量。 ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1—1图所示. 题1—1图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分 量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=

式中 dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度 和加速度时,有人先求出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而 求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确。因为速度与加速度都是矢量,在平面直角坐标 系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 22 222 2 22 2 22d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v ==

物理学教程(第二版)上册课后答案第六章

AHA12GAGGAGAGGAFFFFAFAF 第六章 机 械 波 6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( ) 题6-1 图 (A) 均为零 (B) 均为2 π (C) 均为2 π- (D) 2π 与2π- (E) 2π-与2 π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).

6-2 一横波以速度u沿x轴负方向传播,t时刻波形曲线如图(a)所示,则该时刻() (A)A点相位为π(B)B点静止不动 (C)C点相位为 2 π3(D)D点向上运动 分析与解由波形曲线可知,波沿x轴负向传播,B、D处质点均向y轴负方向运动,且B处质点在运动速度最快的位置. 因此答案(B)和(D)不对. A处质点位于正最大位移处,C 处质点位于平衡位置且向y轴正方向运动,它们的旋转矢量图如图(b)所示.A、C点的相位分别为0和 2 π3.故答案为(C) 题 6-2 图 6-3如图所示,两列波长为λ的相干波在点P相遇.波在点S1振动的初相是φ1,点S1到点P的距离是r1.波在点S2的初相是φ2,点S2到点P的距离是r2,以k代表零或正、负整数,则点P是干涉极大的条件为() AHA12GAGGAGAGGAFFFFAFAF

物理学教程(第二版)-马文蔚下册公式原理整理(1)

物理期末知识点整理 1、 计算题知识点 1) 电荷在电场中运动,电场力做功与外力做功的总的显影使得带电粒子动能增加。 2) 球面电荷均匀分布,在球内各点激发的电势,特别是在球心激发的电势(根据高斯定理,球面内的电场强度为零,球内的电势与球面的电势相等 04q R επε= ,电势满足叠加原理) 3) 两个导体球相连接电势相等。 4) 载流直导线在距离r 处的磁感应强度02I B r μπ= ,导线在磁场中运动产生的感应电动势。(电场强度02E r λπε= )t φ ξ=- 5) 载流直导线附近的线框运动产生的电动势。 6) 已知磁场变化,求感应电动势的大小和方向。 7) 双缝干涉,求两侧明纹间距,用玻璃片覆盖其中的一缝,零级明纹的移 动情况。(两明纹间距为' d d d λ?= ,要求两侧明纹的间距,就是要看他们之间有多少个d ?,在一缝加玻璃片,使得一端的光程增加,要使得两侧光程相等,光应该向加玻璃片的一方移动) 8) 牛顿环暗环公式,理解第几暗环的半径与k 的关系。(r =k=0、1、2…..)) 9) 光栅方程,光栅常数,第几级主极大与相应的衍射角,相应的波长,每厘米刻线条数,第一级谱线的衍射角(光栅明纹方程(')sin b b k θλ+=±(k=0、1、2….)暗纹方程(')sin (21)/2b b k θλ+=±+(k=0、1、2….)光栅常数为'b b +) 10) 布鲁斯特定律,入射角与折射角的关系2 1 tan b n n θ= 2、 电场强度的矢量合成 3、 电荷正负与电场线方向的关系(电场线从正电荷发出,终止于负电荷) 4、 安培环路定理0Bdl I μ=?。 5、 导线在磁场中运动(产生感应电动势),电流在磁场中运动受到安培力的作用。 6、 干涉条件(频率相同,相位相等或相位差恒定,振动方向相同) b θ

大学物理上册课后习题答案

大学物理上册课后习题答案

习题解答 习题一 1-1 |r ?|与r ? 有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解: (1)r ?是位移的模,?r 是位矢的模的增量, 即r ?1 2r r -=,1 2 r r r ? ?-=?; (2)t d d r 是速度的模,即t d d r = =v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题 1-1图 (3) t d d v 表示加速度的模,即 t v a d d ? ?= ,t v d d 是加速度a 在切向上的分量.

∵有ττ??(v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d τ τ???+= 式中dt dv 就是加速度的切向分量. ( t t r d ?d d ?d τ??Θ与的运算较复杂,超出教材规定,故不予 讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r = 2 2 y x +,然后根据v =t r d d ,及a = 2 2d d t r 而求得结果; 又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种 方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 j y i x r ? ??+=, j t y i t x t r a j t y i t x t r v ??? ???? ?222222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x

物理学教程第二版全复习提纲

大学物理复习提纲 大学物理1 第一章 质点运动学 教学要求: 1.质点平面运动的描述,位矢、速度、加速度、平均速度、平均加速度、轨迹方程。 2.圆周运动,理解角量和线量的关系,角速度、角加速度、切向加速度、法向加速度。 主要公式: 1.笛卡尔直角坐标系位失r=x i +y j +z k , 质点运动方程(位矢方程):k t z j t y i t x t r )()()()( 参数方程:。t t z z t y y t x x 得轨迹方程消去 )()() ( 2.速度:dt r d v 3.加速度:dt v d a 4.平均速度:t r v 5.平均加速度:t v a 6.角速度:dt d 7.角加速度:dt d 8.线速度与角速度关系: R v 9.切向加速度: R dt dv a 10.法向加速度:R v R a n 2 2 11.总加速度:2 2n a a a 第二章 牛顿定律 教学要求:

1.牛顿运动三定律及牛顿定律的应用。 2.常见的几种力。 主要公式: 1.牛顿第一定律:当0 合外F 时,恒矢量 v 。 2.牛顿第二定律:dt P d dt v d m a m F 3.牛顿第三定律(作用力和反作用力定律):F F 第三章 动量和能量守恒定律 教学要求: 1.质点的动量定理、质点系的动量定理和动量守恒定律。 2.质点的动能定理,质点系的动能定理、机械能守恒定律。 3.变力做功。 4.保守力做功的特点。 主要公式: 1.动量定理:P v v m v m dt F I t t )(1221 2.动量守恒定律:0,0 P F 合外力 当合外力 3. 动能定理:)(2 1212 22 1v v m E dx F W x x k 合 4.机械能守恒定律:当只有保守内力做功时,0 E 第四章 刚体 教学要求: 1. 刚体的定轴转动,会计算转动惯量。 2.刚体定轴转动定律和角动量守恒定律。 主要公式: 1. 转动惯量: r dm r J 2 是转动惯性大小的量度. 与三个因素有关:(刚体质量,质量分布,转轴位置.) 2. 平行轴定理:2 md J J c

大学物理习题及综合练习答案详解

库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上, 使它们之间的库仑力正好抵消万有引力,已知地球的质量M =l024kg ,月球的质量m =l022 kg 。(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。 解:(1)设Q 分成q 1、q 2两部分,根据题意有 2 221r Mm G r q q k =,其中041πε=k 即 2221q k q GMm q q Q += +=。求极值,令0'=Q ,得 0122=-k q GMm C 1069.5132?== ∴k GMm q ,C 1069.51321?==k q GMm q ,C 1014.11421?=+=q q Q (2)21q m q M =Θ ,k GMm q q =21 k GMm m q mq Mq ==∴2122 解得C 1032.6122 2?==k Gm q , C 1015.51421?==m Mq q ,C 1021.51421?=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形 的重心上。为使每个负电荷受力为零,Q 值应为多大 解:Q 到顶点的距离为 l r 33= ,Q 与-q 的相互吸引力为 20141r qQ F πε=, 两个-q 间的相互排斥力为 2 2 0241l q F πε= 据题意有 10 230cos 2F F =,即 2 022041300cos 41 2r qQ l q πεπε=?,解得:q Q 33= 电场强度 7-3 如图7-3所示,有一长l 的带电细杆。(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元 d x 对P 点的点电荷q 0 的电场力为何q 0受的总电场力为何(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。 解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为 200200)(d 41 )(d 41 d x a l x q x a l q q F -+=-+= λπεπε q 0受的总电场力 )(4)(d 400020 0a l a l q x a l x q F l +=-+= ?πελπελ 00>q 时,其方向水平向右;00

大学物理教程(上)课后习题答案解析

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 21)y = 或 1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 213r r r i j =-=-r u r u r r r V 位移的大小 r ==r V (3) 2x dx v t dt = = 2(1)y dy v t dt ==- 22(1)v ti t j =+-r r r 2x x dv a dt ==, 2y y dv a dt == 22a i j =+r r r 当2t s =时,速度和加速度分别为 42/v i j m s =+r r r 22a i j =+r r r m/s 2

1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为 常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+r r r r (2)质点的速率为 v R ω== 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在 t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 2216n a R Rt ω== 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.020 (63)(33) 18I Fdt t dt t t N s ==+=+=? ?g 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,

物理学教程第二版马文蔚下册课后答案完整版

第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A ) 放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随 位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因 而正确答案为(B ). 9-2 下列说法正确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面 的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线 数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不 可能为零,因而正确答案为(B ). 9-3 下列说法正确的是( ) (A ) 电场强度为零的点,电势也一定为零 (B ) 电场强度不为零的点,电势也一定不为零

(C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.

物理学教程(第二版)上册课后答案7

第七章 气体动理论 7 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( ) (A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程,当两者分子数密度n 相同时,它们压强也相同.故选(C). 7-2 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比 ()()() 4:2:1::2/12C 2/12B 2/12A =v v v ,则其压强之比C B A ::p p p 为( ) (A) 1∶2∶4 (B) 1∶4∶8 (C) 1∶4∶16 (D) 4∶2∶1 分析与解 分子的方均根速率为 M RT /3=2v ,因此对同种理想气体有 3212C 2B 2A ::::T T T =v v v ,又由物态方程nkT ρ,当三个容器中分子数密度n 相 同时,得16:4:1::::321321==T T T p p p .故选(C). 7 -3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ ,当气体温度升高为04T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为( ) (A) 004,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C) 00422λλ===,,Z Z 0v v (D) 00,2,4λλ===Z Z 0v v 分析与解 理想气体分子的平均速率M RT π/8=v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2= ,由于容器体积不变,即分子数密度n 不变,则平 均碰撞频率变为0Z 2;而平均自由程n d 2 π21 =λ,n 不变,则λ也不变.因此正确答案为(B). nkT p =

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

物理学教程(第二版)上册课后答案4.5单元

第四章刚体的转动 4-1有两个力作用在一个有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零. 对上述说法下述判断正确的是( ) (A)只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误 (C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确 分析与解力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B). 4-2关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同. 对上述说法下述判断正确的是( ) (A)只有(2)是正确的 (B)(1)、(2)是正确的 (C)(2)、(3)是正确的 (D)(1)、(2)、(3)都是正确的 分析与解刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B). 4-3均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( ) (A)角速度从小到大,角加速度不变 (B)角速度从小到大,角加速度从小到大 (C)角速度从小到大,角加速度从大到小 (D)角速度不变,角加速度为零

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

物理学教程(第二版)上册课后答案第六章

物理学教程(第二版)上册课后答案第六章

第六章 机 械 波 6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( ) 题6-1 图 (A) 均为零 (B) 均为2π (C) 均为2 π- (D) 2π 与2 π - (E) 2π-与2 π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻() (A )A 点相位为 π (B )B 点静止不动 (C )C 点相位为 2 π3 (D )D 点向上运动 分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和 2 π3.故答案为(C ) 题 6-2 图 6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )

物理学教程(第二版)课后答案10

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4== 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

赵近芳版《大学物理学上册》课后答案之欧阳文创编

习题解答 习题一 1-1|r ?|与r ?有无不同?t d d r 和t d d r 有无不同?t d d v 和 t d d v 有无不 同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?1 2r r -=,12r r r -=?; (2)t d d r 是速度的模,即 t d d r ==v t s d d .t r d d 只是速度在径向上的 分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是 速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示. 题1-1 图 (3) t d d v 表示加速度的模,即 t v a d d = ,t v d d 是加速度a 在切向上 的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=式中dt dv 就是加速度的切向分量.

(t t r d ?d d ?d τ 与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v =t r d d ,及a =2 2d d t r 而求得结果;又有人先计算速度和加速度的 分量,再合成求得结果,即 v = 2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 222 22d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种 正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面 直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴故它们 的模即为 2 222 22222 222d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 其二,可能是将2 2d d d d t r t r 与误作速度与加速度的模。在1-1题中 已说明t r d d 不是速度的模,而只是速度在径向上的分量,同 样,2 2d d t r 也不是加速度的模,它只是加速度在径向分量中的

物理学教程(第二版)上册课后习题答案详解

物理学教程(第二版)上册习题答案 第一章 质点运动学 1 -1 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =| r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′ 无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故 t s t ΔΔΔΔ≠ r ,即|v |≠v . 但由于|d r |=d s ,故 t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 分析与解 t r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的 一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式 2 2d d d d ?? ? ??+??? ??=t y t x v 求解.故选(D). 1 -3 分析与解 t d d v 表示切向加速度a t ,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用; t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t .因此 只有(3) 式表达是正确的.故选(D). 1 -4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1 -5 解 (1) 质点在4.0 s 内位移的大小 m 32Δ04-=-=x x x (2) 由 0d d =t x 得知质点的换向时刻为 s 2=p t (t =0不合题意) 则 m 0.8Δ021=-=x x x m 40Δ242-=-=x x x 所以,质点在4.0 s 时间间隔内的路程为

相关主题
文本预览
相关文档 最新文档