当前位置:文档之家› 作物生长模拟研究进展

作物生长模拟研究进展

作物生长模拟研究进展
作物生长模拟研究进展

作物生长模拟研究进展

杨 宁,廖桂平

(湖南农业大学农学院,湖南长沙,410128)

摘 要:作物生长模拟是一个新兴的研究领域,有助于理解预测和调控作物生长发育及其对环境的反应。本文着重介绍了作物生长模拟模型的定义、特征、国内外的研究动态以及目前常用的生长模型。

关键词:作物;模拟;生长模型;生理生态

中图分类号:S314 文献标识码:A 文章编号:100125280(2002)0520255203

作物模拟是一门新兴的边缘技术,是近期作物生理生态研究的重大进展。它是以系统分析原理和计算机模拟的技术来定量地描述作物的生长、发育、产量形成的过程及其对环境的反应。这种生长模拟模型是作物生理生态知识的高度综合与集成,具有一般性意义[1~3]。成功的生长模拟可广泛应用于理解、预测和调控作物的生长与产量。过去十多年来,随着计算机技术的更新以及作物的生理生态研究的进展,国内外已建立了若干个作物生长模型[1,3]。本文就当前作物模拟的基本特征、现状及前景以及当前作物模拟通用的方法、发展趋势作一个概述。

1 作物生长模拟的定义与特征

过去十多年中,在作物生理生态研究方面积累了大量的资料,对于这些资料进行分析与归纳得出了许多一般定量描述的数学关系。由于作物形态发生的规律性,如油菜主茎总叶数的多少直接影响着油菜产量的高低、群体单株主茎总叶数每增加一片时每公顷产量可增加75kg左右[4,5]。因为主茎总叶数多,一次分枝就多,单株角果数就多。另一方面,不同作物的收获指数和经济产量的关系不尽相同。袁婺洲在作物的收获指数研究中发现,稻麦经济产量的提高主要是通过提高收获指数来实现,生物产量变化不大;而油菜的经济产量主要是通过提高生物产量来实现的[6]。在数量关系上,水稻的收获指数可达到50%~55%,而油菜基本保持在25%~30%。作物生长模型通常是指作物生长系统及其与气候系统、土壤系统互作的逻辑性的数学表达。它应能定量地描述不同地点、环境和时间条件下的作物阶段发育、形态发生、物质积累、分配与产量。作物的生长模型应为建立与操纵这种生长模型的过程。

作物生长模型不同于生产中的栽培模式,又不同于估产中的统计模型。较理想的生长应具有以下的特征:

收稿日期:2002210229

作者简介:杨宁(1974-),男,湖南绥宁人,在读硕士。①系统性:对模拟的不同成分或过程进行系统的、全面的分析与描述。②动态性:包括时间过程的变化及不同成分间的动态关系。③机制性:在经验性或描述性的基础上,提供了对主要生理过程的理解和解释,即具有一定的模拟水平。④预测性:对不同系统提供了可靠的定量描述。⑤通用性:适用于任何时间、地点与品种。⑥便用性:可为非专家操作应用,可用于一般的气候、土壤及作物资料。⑦灵活性:容易进行修改补充。⑧研究性:除了应用性以外,还可用于生理生态的研究、探讨[7]。

2 国内外研究动态

作物生长模拟模型研究的思想源于积温学说(R eaum u r,1740)与作物生长分析法(Grego ry,1907;

B lackm an,1919)。20世纪60年代荷兰的W it等人创立的作物生长动力学,开创了作物生长计算机模拟研究的新纪元。他从系统论的角度,以作物生理学和作物生态学为主要学科基础研究作物生长发育与产量形成的过程以及与生态环境因子的定量关系,把作物生长过程的各种生态与生理机制概括为简单的数学表达式。20世纪60年代以来,以荷兰、前苏联、美国为代表形成了作物生长模拟研究的三种风格。荷兰侧重于生物学机制,前苏联注重于数学物理方面的处理,而美国则强调模型的实用性,面向用户,以实用方便、简洁、稳定为建模原则。如B row n取平均气温及其平方项计算发育速度[8]; Robertson提出了生物气象时间尺度模型[9];Shoo tGro 用叶热间法(指每个叶片出现所需要的时间)来计算物侯期[10,11]等。

与国外相比,我国作物模拟研究起步较晚,研究作物主要集中在水稻、小麦、棉花等。如冯利平等人(1997年)建立的小麦生育期模型;沈国权建立了水稻发育与温度的非线性模型[12];高亮之提出了水稻的“钟模型”[13]。这些模型的共同特点是具有动态性,一定的机制性、预测性和通用性。

但是以上这些模拟都有待于继续验证、改良和扩充,特别是有关生长发育的过程需要进一步定量。

552

2002年第5期 作物研究

3 常用的数学模型

3.1 生育期模型

在作物科学中,生育期模型的研究已有200多年的历史了。一个作物的生长模型的一般性结构可用以下数学关系来描述。

E=f(X i,Y i)

式中:E是作物生长发育的速率,X i为可以控制的变量和参量,Y i为不可控制的变量与参量,f为产生E 时,X i与Y i的关系。

(1)逻辑斯蒂(L ogistic)生长方程[14]

d w

d t

=R(m-w)w

式中:d w

d t

表示作物特定时间的生长速度;w是作物当时的测定速度,m是最终可能达到的量,R为参数。

该式能很好地表示作物的生长和物质生产所表示出的“S”形曲线。

(2)库柏茨(Gom pertz)生长方程[14]

d w d t =Dw ln(

w f

w

)

式中:d w

d t

示作物生长函数;w指作物当时生长机体的干重;w f是最终要达到的干重;D为参数。

(3)理查兹(R ichards)生长方程[14]

d w d t =

Kw(w n f-w n)

nw n f

式中:d w

d t

为作物生长的函数关系;w f是最终要达到的量;w为作物当时的量;K,n为参数。

(4)强特(Chan ter)生长方程[14]

d w d t =uw(1-

w

B

)e-D t

u,B与D为参数,w为当时测定的量,t为测定时的当时时间。

以上4个方程均能较好地描述作物的生长过程,在作物的生长模拟中已得到广泛的应用。

3.2 干物质积累及分配模型

(1)光合作用模型[14]。光合作用模型大多建立在经验或半经验的基础之上,这些模型通常不考虑品种因素,单叶光合强度与光强(I)的关系可用M OR S I-SA EK I公式描述。在作物群体中,由于叶片的遮挡与反射作用,使得不同位置光强不一样,而各层的光强I i可根据B eer-L am bert公式来确定,即[23]:

I i=I0e-KL

式中:I0为冠层顶部表面的太阳光强;K为群体的消光系数,L为I层位以上的叶面积指数。因此,群体光合作用(P)就是在上面公式的基础之上对群体光合面积(L A I)的积分得:

P=(DL

P m ax

K r

) L n(P m ax

+aQ

P max+aqe-k L A I

)[23]

式中:D L为日长(h);Q为平均生理辐射强度(J m2 h);a为P-I的曲线的初始斜率。当考虑环境因子(如温度、水等)对光合作用的影响时,即用环境因子对P m ax 进行修正后使用。此外可直接利用光合测定系统进行测定[14]。

(2)呼吸作用模型。植物呼吸作用可分为暗呼吸与光呼吸。

对呼吸作用的处理可归纳为四类:①现象学方法[15],②生物化学方法[16],③呼吸底物-平衡分析方法[17],④生长与维持呼吸的再循环模型方法[18]。

常用的方法是根据M cC ree提出的概念[15],将暗呼吸(R)分为生长呼吸和和维持呼吸,其中生长呼吸与光合速率成正比,对温度钝感;维持呼吸受温度和植物干物重的影响较大。呼吸模型通常采用:

R2=R1Q((t2-t1) 10)

10

式中:R1和R2分别为温度t1和t2的呼吸强度,Q10为温度系数。t1=0则可得

R=R0e k’t

式中:R表示温度为t时的维持呼吸强度;R0为0℃时的维持呼吸强度。且

R’=(L n Q10) 10

(3)干物质积累模型。作物的生理学研究表明,净光合产物在减去维持呼吸消耗后,其余用于生长,即

W=0.68Β(P-R)

式中:0.68为CO2与碳水化合物的相对分子量之比,表示光合作用固定的CO2向碳水化合物的转化,为植物对碳水化合物的转换效率或称生长函数,如小麦Β=0.67[19],水稻Β=0.7[20]。

另外还有一些特殊模拟方法,如建立的牧草生长模型,不是通过光合强度而是根据蒸腾耗水计算生物量[21]。

(4)干物质分配模型。植物体内的物质分配状态,在数学上可表达为:令X为植株物质的总集,若植株由几种物质组分构成,则:

X={X1,X2.........X n}

若这些物质位于不同部位(组织、器官)L上,且存在着m个部位,则:

L={L1,L2,.........L m}[14]

虽然,w就表示X i位于部位L上的重量,对作物来说,最重要的是碳与氮两种元素的分配。然而,迄今为止尚未得到令人满意的干物质分配的表示方法。但可归纳为4种方法[22]:经验方法、优先性—动态分配方法、功能性方法和机理性方法。

3.3 形态发生发展模型

植物营养器官发生的通用公式为:

652CRO P RES EARCH 2002(5)

P=B+∫t e t i(F-A)d t

式中:P为某器官的发生数;B为初始数;F为器官发生(形成)速率;A为其消亡速率;t i,t e分别为器官形成的起始与结束时间[24]。如叶面积指数(L A I)动态模型用积分方程表示为:

L A I=L A I0+∫t e t i(F-A)d t

式中:L A I0为叶面积指数初始量;R L A I为叶面积指数变化率,且R L A I=R w SLW,R w=a e W,SLW为比叶重(g m2),因此,人们称这一方法为比叶重法。叶面积指数动态模拟的另一种方法用曲线和舌线方程[25]。

90年代遥感技术应用于农业,使繁琐的L A I测量得到简化。张宏名等研究表明[26],光谱指数(N D V I)对叶面积指数(L A I)的变化有着良好一致的反应。其相关模型为

L A I=1.075+8.587N D V I2

形态发生发展模型的另一重要的构建方法是依据器官同伸关系。水稻等禾本科作物器官同伸数量关系研究已取得良好进展,其它作物尚需要进一步的研究。

4 作物生长模拟的前景

作物生长模拟的研究虽然有了长足的发展,但组建一个模型需要多方面的知识,在研究和生产中有几个方面的问题有待于进一步解决。

(1)模型的参数与生态因子。现有模型参数的确定方法,大多数来自文献及实际试验结果,缺乏生理学机理及生态学物质循环的逻辑性推断。

(2)知识的获取、表示、更新与推理方法。知识的获取是建立模拟模型的“瓶颈”,有待于更进一步的研究。

参考文献:

[1] Ecophy2Hodges J.P redicting C rop Pheno logy[M].

U SA:CRC P ress,1991.1~189.

[2] Penn ing de V ires FW T,Jan sen DM,T en Berge H FM,et

al.Si m u lati on of Si o logical P rocesses of Grow th in

Several A nnual C rop s[M].W agen ingen:Pudoc,1989.1

~20.

[3] W h isler FD,A cock B,Baker DN,et al.C rop si m u lati on

models in agronom ic system s[J].A dvences in

A gronom y,1989,10:149~208.

[4] 官春云.油菜遗传育种研究进展[J].作物研究,1994,8

(增刊):85~105.

[5] 官春云.甘蓝型油菜产量形成的初步研究[J].作物学报,

1980,6(1):35~44.

[6] 袁婺洲.油菜收获指数的研究[D].湖南农业大学,1994.

[7] 曹卫星.国外小麦生长模拟的研究进展[J].南京农业大

学学报,1995,18:10~14.

[8] B row n DM,Chapm an L J.Soybean eco logy .

D evelopm en t2temperatu re2mo istu re relati on sh i p from

field studies[J].A gricu ltu re Jou rnal,1960,52:496~

499.

[9] Robertson G W.A b i om etero logical five scale fo r a cereal

crop invo lving day and n igh t temperatu re and

p j o toperial[J].In ternati onal Jou rnal of B i om etero logy,

1968,12:191~223.

[10] M c M aster GS,M o rgan JA,W ilhel m WW.Si m u lating

w in ter w heat sp ike develepm en t and grow th[J].

A gricu ltu ral and F ro ist M eteo logy,1992,60:193~220.

[11] M c M aster GC,W ilhel m WW,M o rgan JA.Si m u lating

w in ter shoo t apex pheno logy[J].Jou rnal of A gricu ltu ral

Science,1992,119:1~12.

[12] 沈国权.影响作物发育速度的非线性温度模式[J].气

象,1980,(6):9~11.

[13] 高亮之,金之庆,董耀,等.水稻计算机模拟模型及其应

用之一 水稻钟模型——水稻发育动态计算机模型

[J].中国农业气象,1989,10(1):3~10.

[14] 法郎士J,索恩利JHM.金之庆,高亮之译.农业中数学

模型——农业及其有关科学若干问题的数学研究[M].

北京:农业出版社,1991.100~102.

[15] M cC ree KJ.Equato r fo r rate of dark resp irati on of

w h ite clover and grain so rgho rn as functi on of dry

w eigh t,pho to syn thetic rate and temperatu re[J].C rop

Sience,1974,14(4):509~514.

[16] Pen ing de V ries FW T.T he co sts of m ain tenance

p rocess in p lan t cell[J].A nnals of Bo tany,1975,39:77

~92.

[17] T ho rn ley JHM.Energy,rep iratin and grow th in p lan ts

[J].A nnals of Bo tanny,1997,135:721~728.

[18] T ho rnely THM.Grow th,m ain tenance and rep irati on:a

re2in terp retati on[J].A nnals of Bo taay,1977,141:191~

203.

[19] 王馥棠,李郁竹,王石立.农业产量气象模拟与模型引论

[M].北京:科学出版社,1990.106~142.

[20] 张俊平,陈常铭.水稻群体生长过程和产量动态模拟

[J].生态学报,1990,(4):311~316.

[21] Cu rry RB.D ynam ic si m u latin of p lan t grow th I.

D evelepm en t of a model[J].T ran sacti on s of the

Am erica society of A gricu ltu ral Engineers,1971,14:945

~949.

[22] F rance J,T ho rn ley JHM.M athem atical M odels in

A gricu ltu re A pp roath to P rob lem s in A gricu ltu re and

R elated Science[M].H u rly M ailonhead:Bu tterw o rth£

Co(Pub lisher),1984.122~133.

[23] 廖桂平,官春云,黄璜.作物生长模拟模型技术[J].湖南

农业大学学报,1998,15:24~28.

[24] 梁振兴,朱虹.小麦调控决策系统模型建立的初步探讨

[A].见:黄金龙.小麦生产系统研究[C].北京:北京农

业大学出版社,1994.39~57.

[25] 高亮之,金庆之,黄耀,等.水稻栽培计算机模拟优化决

策系统[M].北京:中国农业科学出版社,1992,21~48.

[26] 张宏名.作物信息获取[A].见:黄金龙.小麦生产系统研

究[C].北京:北京农业大学出版社,1994.140.

752

2002年第5期 作物研究

作物栽培学实验报告小麦生长分析

不同播期小麦幼苗的生长分析 摘要:生长分析是指通过定量测定来分析生长过程。作物的干物质生产和积累是通过作物的生长过程实现的。生长既能描述植物大小的不可逆性,还能描述数量的变化,如用重量表示,干物重即是干物质生产量的指标,作物生长过程中,植株个体和群体生物产量的增长与增长速度、光合器官生产的干物质能力等有关。对作物进行生长分析时,主要通过相对生长率(RGR )、净同化率(NAR )、叶面积比率(LAR )、比叶面积(SLA )等数据的综合分析从而得出最终结论。 关键词:生长分析、干物质、光合器官、生长率、净同化率、叶面积比率、比叶面积、作物生长率、叶干重比 一、目的意义 运用生物观察法和作物生长分析法分析植株的物质积累、转运、分配情况及其与叶片、株高、叶面积等植物学形态特征的关系。 通过本实验,要求既要掌握作物生长分析方法,了解作物生长发育过程中不同时期、不同器官的干物质积累和分配规律,培养综合分析解决问题的能力。 二、实验内容 2·1 光合器官性状 2·1·1叶面积指数(LAI ) 2·1·2叶面积比率(Leaf Area Rate ,LAR):表示作物单位干重的叶面积, 即叶面积对植株干重之比。 1 212121 21111nL nL L L w w nw nw W L LAR --?--== 单位为米2/克。 2·1·3比叶面积(Specific Leaf Area ,SLA): 表示单位叶重的叶面积,可 反映出叶片的厚度 (L W 为叶片干重) 2·2干物质生长指标 2·2·1干物质积累动态 2·2·2干物质分配特征 2·2·3相对生长率(Relative Growth Rate .RGR): 表示单位重量干物质在 单位时间内的干物质增长量。作物干物质的增长是在原有物质的基础上进行的,原来株体越大,其生产的效能就越高,形成的干物质就越多。RGR 反映干物质在原有基础上的增长速度,其计算公式为: w L L SLA = 121 2111t t nw nw dt dw W RGR --= ?=

DSSAT模型在农业应用领域研究综述

DSSAT模型在农业应用领域研究综述 摘要:为了掌握农业转移支持决策系统(Decision Support System for Agrotechnology Transfer, DSSAT)模型在国内农业应用领域的研究进展,更好地让模型在今后气候变化对农业生产影响评估和适应研究中应用,本文以近年来国内的研究和实践为基础,全面总结了模型的应用进展。结果表明:DSSAT模型在中国应用比较广泛,包括不同地区和不同作物之间;利用DSSAT模型研究气候变化对农业生产的影响的研究较多,研究结果比较丰富。但模型在应用中存在研究方法和结果比较分散、应用的作物种类有限、数据需求量大而试验数据有限等问题,这些都需要在今后的研究中不断完善解决。 关键词:DSSAT;气候变化;农业;应用进展 引言 本文综述了近年来农业技术转让决策支持系统(Decision Support System for Agrotechnology Transfer, DSSAT)模型在我国农业与气候变化领域的应用,为模型的进一步应用,即在气候变化对农业影响与适应方面,以及产量及生产潜力预测、种植制度选择等方面提供研究依据,也对未来模型的进一步应用研究有着积极的支撑作用。 自20世纪90年代,中国开始引进DSSAT模型,在不同田间管理和气象条件下进行土壤水分变化、产量潜力进的大量研究,对DSSAT模型在中国不同地区的适用性进行了验证,并提出了不同模拟试验和数据库构建方法,以及参数的修订和优化方案,为模型的应用提供了参考,取得了丰硕成果。随着气候变化研究的不断深入,DSSAT模型在农业与气候变化领域的应应逐渐广泛和深入,有效支撑了气候变化对农业生产的影响与适应研究,推动了模型应用研究的创新与进步。 1 DSSAT模型概况 农业技术转让决策支持系统(DSSAT)山美国乔治亚大学组织丌发,其可以通过一系列程序将作物模拟模型与土壤、气候及试验数据库相结合,进行长期、短期的气候应变决策[1]。其在中国的气候变化对农业生产的影响评估和适应性研究的应用已经丌展很多工作,是目前气候变化影响评估领域应用比较广泛的作物模型之一。DSSAT包括主程序(实验设计和数据管理)和八大功能模块:实验模块(XBuild);画图工具模块(GBuild);土壤数据模块(SBuild);实验数据文件模块(Experiment Data);气象数据文件模块(Weather Data);单季实验分析模块(Seasonal analysis);轮作实验分析模块(Sequence analysis);空间实验分析模块(Spatial analysis)[2]。 自模型引进国内以来,许多研究者介绍了模型的基本情况和应用动态。1996年,罗群英等[3]以DSSAT 3.0的研究和实践为基础,从DSSA T 3.0外壳和作物模型两方面来阐述其新特点以及应用前景,这是国内较早的关于DSSAT模型的介绍。随着模型应用和研究的深入,近年来,刘海龙等[4]针对农业技术推广决策支持系统DSSAT作物系统模型的发展历程、模型结构、数据输入输出、研究进展等进行了综述。王文佳[5]利用CropWat计算得出的冬

纳米酶研究新进展

自阎锡蕴院士提出模拟酶的概念以来,纳米材料的类酶特性得到了广泛关注。其中纳米金以多种酶活性等独特的优势表现出巨大的应用潜力,特别是在葡萄糖酶解中,其既是一种良好的类葡萄糖氧化酶,又是一种优越的电子传递介质。本文制备了5-60nm的金纳米颗粒,并探究了其尺寸依赖的类葡萄糖氧化酶活性,确认了其催化葡萄糖氧化的过程。 和天然酶相比,金属模拟酶具有价格低、产量高、稳定性好等优点,但由于大多没有特异性结合位点,缺乏选择性以及有限的催化活性始终是模拟酶的通病。本文基于对纳米金类葡萄氧化酶活性的研究,提出了一种酶活性增强的选择性模拟酶的构建方法。选用具有类葡萄糖氧化酶活性的小尺寸金纳米颗粒作为催化中心,负载于惰性聚苯乙烯微球表面。以能够与葡萄糖上的邻位羟基可逆结合的氨基苯硼酸同时作为铆钉分子和聚合单体,特异性识别并捕获葡萄糖分子,并在交联剂存在的条件下诱导其聚集,洗脱掉模板分子后获得带有葡萄糖结合袋的分子印迹壳层。此外,我们还在壳层内包埋了具有高氧溶解性的全氟溴辛烷微液滴作为氧供给池,使得催化活性得到进一步提升,催化效率最高可提升至约270倍。该类酶活性增强的选择性模拟酶被尝试用于常见市售饮料与血糖中葡萄糖的检测,获得了与天然酶相近的较为理想的检测结果。

图1.不同尺寸的金纳米颗粒的TEM照片(a)、光学照片(b)、吸收光谱(c);(d)金纳米颗粒做为葡萄糖氧化酶催化葡萄糖氧化的浓度和尺寸依赖性,类酶活性随纳米颗粒尺寸减小而增加;(e)随着葡萄糖浓度增加,金纳米颗粒催化其产生的葡萄糖酸浓度亦增加;(f)随着时间增加,金纳米颗粒催化葡萄糖消耗氧气,导致溶解氧浓度降低

图2. 基于金纳米颗粒和分子印迹技术构建选择性葡萄糖氧化酶模拟酶(PS:聚苯乙烯微球,BSA:牛血清白蛋白,APBA:氨基苯硼酸,PFOB:全氟溴辛烷,Glu:葡萄糖)

数学建模中计算机模拟运用方法研究

数学建模中计算机模拟运用方法研究 摘要:通过对实际问题的非线性、离散、连续三种类型的数学建模解决问题的分析与研究,给出了利用计算机模拟实验验证数学建模有效性的方法,从而使数学建模在解决实际问题中得到更有效的应用。 关键词:计算机模拟;数学建模;技术运用;研究分析 在现阶段信息技术发展的过程中,人们可以利用数学模型方法的设计解决现实中的实际问题,通过对现阶段计算机模拟在数学建模中的运用分析可以发现,其技术形式取得了较大的成就。通过数学与计算机技术的稳定结合,可以实现数学技术的稳定构建,因此,在计算机技术快速发展的今天,计算机及数学建模逐渐成为技术运用中较为重要的途径。通过对实际问题的构建,可以通过计算机模拟技术对于较难解决、而又重要的问题进行系统性的分析。在计算机运用的过程中,不仅可以使问题求解体现出方便、快捷以及精准性的特点,而且也可以使实际问题得到充分性的解决。通过计算机模拟或是计算机程序模拟运用中可以解决实际的问题,并在建立数学、逻辑等模型设计的基础上,可以通过计算机实验对系统资源进行科学化的规定,从而为计算机模拟与数学模型的构建提供稳定支持。 1、计算机模拟及数学建模的概述分析 1.1、计算机模拟 计算机模拟是利用计算机对一个系统使用过程所建立的模型,通过该模型的运用可以进行实验项目的设计。并通过对该系统行为的控制分析,对不同的数据资源进行评估。对于计算机模拟系统而言,其主要是将系统分析以及运筹学作为基础,所模拟的对象以及用途相对广泛,在模拟中可以实现从简单到复杂、从一个变量到多个变量的变化,在交通、经济、生活以及医疗等管理中均得到了广泛性的运用。 1.2、数学建模 对于数学建模而言,主要是运用数学模型解决相关问题,也就是在一组备选数据分析的过程中,选择合理性的数据资源。在现阶段数学模型构建的过程中,其中的空间作为主要的内容,在空间相对应位置设计的基础上,结合了限制条件的保护机制,所选择的模型分为线性以及非线性两种,其中的线性模型以及非线性模型是由变量的阶层所决定的[1]。 2、计算机模拟在数学建模中所解决的问题 第一,对于一些难以在计算环境中进行实验以及观察的数学建模而言,只能运用计算机进行模拟,例如,太空飞行中的数据研究。

SJTU多尺度材料模拟与计算

Dislocation and Stacking Fault Name:Wu lingling(user023) Student number:016050910054 1 Calculations of Lattice constant and volume modulus Using molecular dynamics,we can simulate crystals in edge dislocation,screw dislocations and stacking fault, also we can calculate the dislocation strain energy and dislocations. Comparing the method of molecular dynamics calculation values and theoretical, we can analysis its error.Through this experiment, deepen para fault, fault, and the understanding of molecular dynamics simulation. For edge dislocation, strain for per unit length: 20ln 4(1)e e Gb R E r πn =? For a screw dislocation, strain for per unit length: 20ln 4s e Gb R E r π = Molecular dynamics is dislocation of strain energy method: ()/MD dislocated ref E E E L =? In actual crystal structure, the closed normal stacking sequence may be damaged and staggered, which named the stacking fault.Cambium mistake almost do not produce lattice distortion, but it undermines the integrity of the crystal and the normal cyclical, anomalous diffraction effect in the electronic, allowing the energy of the crystal increased, this part of the increased energy is called the stacking fault energy. The mathod using Molecular dynamics to calculation approach stacking fault: SFE = tot ref E E S γ? 2 Results and Analysis 2.1 helical dislocation -91512.1172811518-(-91519.9264975819)7.80921643s E ev =

专业文献综述-遥感信息与作物生长模型的耦合应用研究进展

专业文献综述 题目: 遥感信息与作物生长模型的耦合应用研究进展姓名: 学院: 专业: 班级: 学号: 指导教师: 职称: 教授 2012年5月28日 南京农业大学教务处制

遥感信息与作物生长模型的耦合应用研究进展 作者: 指导教师: 摘要:遥感信息与作物生长模型的耦合应用可以解决作物长势监测和产量预测等一系列农业问题,越来越受到相关研究人员的关注。本文首先介绍了农业遥感技术和作物模型的发展状况,并在分析遥感数据和作物模型在农业应用中各自优缺点的基础上,阐明二者结合的必要性,综述了遥感信息与作物生长模型的耦合应用的2种方式—强迫法和同化法;其次介绍了遥感数据与作物模型结合的应用领域和目前国内外的应用状况,并分析了其在农业生产各领域的应用潜力;最后提出了二者耦合存在的问题以及未来研究的展望。 关键词:遥感;作物生长模型;耦合应用;研究进展 Research progress on application of remote sensing information coupled with the crop model Author: Instructor: Abstract: Remote sensing information and crop growth model can solve the coupling application of crop growth monitoring and yield forecasting and a series of problems of agriculture, more and more researchers' attention.This paper first introduces the agricultural remote sensing technology and crop model development, and in the analysis of remote sensing data and crop model in agricultural application advantages and disadvantages on the basis of the combination of the two, clarify the necessity, reviews the remote sensing data and crop growth model of coupled application in 2 ways - forced and assimilation method; secondly the paper introduced the remote sensing data and crop model combined with the application domain and application status at home and abroad, and analyses its application in agricultural production potential; finally proposed the two coupling problems and future research prospects. Key words:Remote sensing; Crop models; Coupled applications; Research Progress 1 遥感技术与作物模型的发展 遥感技术是20世纪60年代以来,在现代物理学(包括光学技术、红外技术、微波雷达技术、激光技术和全息技术等)、空间科学、电子计算机技术、数学方法和地球科学理论的基础上发展起来的一门新兴的、综合性的边缘学科,是一门先进的、实用的探测技术[1]。卫星遥感技术具有快速、宏观、准确、客观、及时、动态等特点,在农作物种植面积监测,作物叶面积指数、生物量、光合有效辐射

实验1作物生长分析法

实验1 作物生长分析法 一、实验目的 1.学习生长分析法的测定与计算。 2.分析各生理指标间的关系。 3.学会使用各种仪器。 二、材料及用具 玉米植株、钢卷尺、电子天平、剪刀、牛皮纸袋、干燥箱、真空干燥器 三、内容说明 生长分析法是以作物生育过程中干物质增长过程为中心进行研究的,在测定干物质增长的同时,也测定叶面积。生长分析法的基本观点是作物产量以干物质重量来衡量,作物生育进程也以植株干物质增长过程为中心进行研究。其具体做法是每隔一定天数进行取样调查,测定植株不同器官的干物重并同时测定叶面积。下面是一些重要的生长分析法考察的生理指标。 1.叶面积指数(LAI) 叶面积指数是指作物群体总绿色叶面积与该群体所占土地面积的比值。即叶面积指数=总绿叶面积/土地面积。作物大田生产通常是依靠单位土地面积上的作物群体来进行的,所以计算叶面积指数时要以单位土地面积上的群体叶面积为准而不能以单株叶面积为准。 表1为2001年6月13日取样时,高粱的单个叶片叶面积数据。取样株数为5株。通过下表可计算6月13日的叶面积指数。 表1 2001年高粱资料(叶长、叶宽单位cm。株距20cm,行距50 cm)

高粱的单叶叶面积=叶长×叶宽× 单株叶面积=各绿叶叶面积的和 叶面积指数=平均单株叶面积/平均单株土地面积=平均单株叶面积/(株距×行距)同学们在学习叶面积指数时,可以先以上面的数据计算各处理的叶面积,加深自己的印象。 2.光合势(LAD) 光合势是指在某一生育时期或整个生育时期内群体绿叶面积的逐日累积,光合势的单位以万m2·d/ hm2来表示。计算某一时期内的光合势的方法,一般是以这一时期内单位土地上的日平均叶面积乘以这一时期延续的天数。在群体生长正常的条件下,群体干物质积累数量与光合势呈正相关。 假设在t1~t2时间内,平均有l/2(L1十L2)的叶面积进行光合生产,这一期间的阶段光合势为: LAD=1/2(L2+L1)(t2—t1) 全生育期总光合势为:

环糊精在模拟酶研究中的应用

环糊精在模拟酶中的应用和发展 摘要:环糊精是一种优良的模拟酶母体,在模拟酶的研究中占有重要地位,本文对模拟酶的性质进一步的认识和了解,对环糊精在模拟酶的应用和发展作详细的阐述,展望环糊精发展的前景。 关键词:酶模拟酶环糊精主客体应用 一模拟酶的认识 1 酶的认识 酶是一种蛋白质,广泛存在于生物体中,而且扮演着重要的角色,尤其在生物催化方面,它高度的专一性和高效率的催化对生物的各种生理调节起关键作用,由于催化效率高,有许多科学希望能够从生物体提取这些物质,但是随着时间的推移,科学家发现提取这些的难度非常大,而且成功率比较低,于是科学家转移研究方向,寻找酶有相似功效的模拟酶。 2 模拟酶定义和性质 模拟酶的研究就是从酶中挑选出那些起主导作用的因素来设计并合成一些能表现出生物功能的,比天然酶简单得多的非蛋白分子,,以它们作为模型来模拟酶对底物的结合及催化过程, 进一步找出控制生化过程的重要因素, 追寻酶的高效、专一这些特异性的根源, 发展新的非生物催化剂—模拟酶(mimed enzyme)。 如果要设计一种模拟酶,那么我们主要是模拟酶的那些性质呢?我觉得主要模拟以下性质: 1、高度的专一性,酶只作用一种底物, 只催化一种反应,在酶催化反应中, 利用酶的强疏水场、不对称场、静电场、氢键、范德华力及色散力, 通过诱导锲合作用对底物进行全方位的识别[1]。 2、酶反应的高效率,在于首先与底物结合成不稳定的中间复合物, 具有低活化能, 可用下式表示[2]: E(酶)+S(底物)ES E+P(产物),此结合是特异地进行的, 可用图1表示:

图1 酶结合底物分子示意图 3、主一客体现象,从酶结合底物这点出发, 研究结合特异性、结合驱动力和结合强度, 发展了一门主一客体化学, 可用图2表示: 图2 主一客体作用示意图 总的来说,主一客体现象存在于有机、无机、生物体反应、物质输送及亲和层析等领域中。酶反应的特异结合(主一客体识别)和其后的高选择反应, 吸引人们探索如何模拟生物体反应, 再现酶催化功能, 即模拟酶研究, 这是近年来发展起来的仿生化学的重要部分。模拟酶的催化反应, 在常温、常压、中性、水溶液中进行快速高选择反应, 有效地生成目的物,可促进化学工业向着节省能源、节省资源、无公害的理想境地发展。 在模拟酶的研究中, 对脱辅基酶的模拟为较多, 而可作为其代用品的宿主分子, 目前已有许多, 如冠醚、叶琳环、杯芳烃、环糊精、胶束……等。但迄今被广泛采用且较为优越的是环糊精[3]。 二环糊精的了解和模拟酶方面的发展 1 环糊精定义和性质 环糊精( cyclodextrins, CD) 是由环糊精糖基转移酶作用于淀粉或直链糊精生成的一种由D 吡喃型葡萄糖通过α- 1, 4 糖苷键连接的环状糖, 其中葡萄糖残基的个数一般为6、

含能材料力学性能的多尺度模拟系统开发

含能材料力学性能的多尺度模拟系统开发数值模拟是含能材料力学性能研究的重要手段。常用的模拟软件中,分子动力学模拟能够模拟含能材料分子水平相关性质,但由于计算资源的限制,只限于研究尺度小于纳米的微观体系;物质点法能在接近含能材料颗粒的细观尺度上模拟其性质,但该方法还处于起步阶段,应用并不成熟;而有限元方法可以接近工程的宏观尺度上对含能材料的性质进行研究,但有着不能考虑含能材料微观结构的缺点,直接应用效果不佳。近年来,多尺度模拟方法受到广泛关注,这种方法能将各尺度下的性质联系起来,但尚未有成熟的软件,急需开发使用方便的多尺度模拟软件。针对上述问题,设计并实现了基于分步式模拟的含能材料力学性能的多尺度模拟系统,逐级递推地计算含能材料的力学行为。 在系统的微观尺度计算模块,用分子动力学方法求解含能材料的各种性质,包括组分的状态方程和粘弹性的本构关系,这些性质作为参数输入到细观尺度的模拟计算;在系统的细观尺度计算模块,采用物质点法求解含能材料的力学性质,获得其状态方程式和力学性质的本构关系;在系统的宏观尺度计算模块,基于细观尺度的计算结果应用有限元方法计算宏观含能材料力学性能变化。本系统可为研究含能材料压制过程的力学行为提供一种有效的工具。由于微观尺度和宏观尺度的模拟有比较成熟的软件可用,论文重点研究了细观尺度计算模块。利用了模型近似方法,建立了含能材料细观模型;运用Java3D虚拟场景数据动态存储技术,实现了虚拟场景数据的动态存取,解决了模型建立过程中一个场景一旦建立就不能重复使用,只能在下一次建模时按照流程重复原先的创建步骤的问题;采用基于Vis It的模拟数据并行可视化技术,解决了单机环境下由于计算机资源限制,无法对结果进行高性能可视化显示的问题。 测试结果表明,系统能在1s之内做出响应,并不间断运行5×24小时,其响应能力和稳定性等方面均达到设计目标。该系统能够为含能材料压制工艺提供了理论依据,对优化和改进含能材料质量提供一种有效工具。

栽培学论文作物生长分析

作物生长分析 姓名:******** 班级:*********** 学号:******** 摘要:本实验以测定小麦植株干物质增长为中心,同时也测定叶面积,计算与作物光合作用相关的参数,对不同播期作物生长发育过程中不同时期、不同器官的干物质积累和分配规律做出计算与分析。结果表明,早播小麦生长情况明显比晚播小麦好。 关键词:小麦 早播 晚播 作物生长 干物质 叶面积 作物生长分析就是将作物的生育过程以干物质增长过程为对象,以干物质的积累和分配来衡量作物产量形成的一种方法;作物生长分析法的特点是:(1)在测定干物质增长过程中,同时测定进行光合作用的器官——叶面积,即与光合作用的生理生理功能密切结合,从而超越生育特性与丰产性能的简单相关关系,深入到生态生理的因果关系;(2)是对于不同种类的作物、或同一种作物的不同品种以及同一品种不同栽培条件下的生育差异,均可用生长分析来进行比较。 其具体做法是每隔一定时间,测定植株的干物质重量(注意点是尽可能包括全部器官、可以整株测定、也可以分部位、器官测定)和叶面积(注意点是测定平展开后的绿色叶片),然后计算与光合作用生理功能相关的有关参数,比较不同作物、不同品种、不同生态环境条件下的作物生长和产量形成差异,从而制定合理栽培技术和措施的研究方法。 作物生长分析研究涉及的有关参数主要有(1)叶面积比率LAR ;(2)比叶面积SLA ;(3)叶干重比LWR ;(4)相对生长率RCG ;(5)净同化率NAR ;(6)作物生长率CGR ; 1.光合器官性状 1·1叶面积指数(LAI )又叫叶面积系数,是指单位土地面积上植物叶片总面积占土地面积的倍数。即:叶面积指数=叶片总面积/土地面积。在田间试验中,叶面积指数(LAI )是反映植物群体生长状况的一个重要指标,其大小直接与最终产量高低密切相关。叶面积指数是反映作物群体大小的较好的动态指标。在一定的范围内,作物的产量随叶面积指数的增大而提高。当叶面积指数增加到一定的限度后,田间郁闭,光照不足,光合效率减弱,产量反而下降。 1·2叶面积比率(Leaf Area Rate ,LAR):表示作物单位干重的叶面积,即叶面积对植株干重之比。 1 2121 21 21111nL nL L L w w nw nw W L LAR --? --= = 单位为米2 /克。 1·3比叶面积(Specific Leaf Area ,SLA): 表示单位叶重的叶面积,可反映出叶片的厚度 (L W 为叶片干重) 2.干物质生长指标 w L L SLA =

地下水数值模拟研究进展和发展趋势

地下水数值模拟研究进展与发展趋势 摘要:地下水数值模拟的应用研究进展国外对地下水数值模拟的研究和应用较早,且理论、技术等各方面相对成熟,目前已经从“水量问题”的应用研究逐步过渡到“水质问题”的应用研究上,以解决各种更复杂的地下水问题。国内相关研究起步较晚、同国外存在一定的差距,主要应用研究在地下水位预测、地下水资源开发利用、地下水循环机制研究、地下水资源预报评价等水量、水位问题方面,但在加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题方面的应用研究逐渐增多,并已取得了一定的成果。 关键词:数值模拟、进展、发展趋势 随着计算机技术的快速发展,科学有效的数值计算方法在处理地下水污染、分析地下水资源评估等问题中的应用越来越广泛; 利用数值模拟软件对地下水流等问题进行模拟,以其有效性、灵活性和相对廉价性逐渐成为地下水研究领域的一种不可缺少的重要方法[1]。尤其针对加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题,建立准确的数值模型进行预测是查明污染物污染潜水范围、程度及其分布特征最有效最直观的方法之一,同时还可以为污染区实施污染防治与修复等优化配置提供科学技术支持[2]。 地下水数值模拟的应用研究进展国外对地下水数值模拟的研究和应用较早,且理论、技术等各方面相对成熟,目前已经从“水量问题”的应用研究逐步过渡到“水质问题”的应用研究上,以解决各种更复杂的地下水问题。国内相关研究起步较晚、同国外存在一定的差距,主要应用研究在地下水位预测、地下水资源开发利用、地下水循环机制研究、地下水资源预报评价等水量、水位问题方面,但在加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题方面的应用研究逐渐增多,并已取得了一定的成果[4]。 近几十年来,随着地下水科学和计算机科学的发展,地下水数值模拟也得到了快速发展,主要体现在:加拿大Borden基地、美国Cape Cod基地与Columbus基地开展的大型野外试验场研究,大大丰富了地下水溶质运移的理论和方法,取得不少新的认识,并为发展和检验溶质运移理论和相应数学模型提供了大量数据(MacKay et al,1986; LeBlanc et al,1991;Bogga et al,1992;Zheng and Gorelick,2003);随机方法在非均质介质渗流和溶质运移的模拟中得到比较多的应用,从而加深、甚至改变了人们对此类介质中流体运动和溶质运移的认识(Dagan and Neuman,1997; Zhang D,2002);通过多孔介质中水流运动、溶质运移和化学反应,甚至生物过程的耦合建立模型来集成地研究这些过程也取得很多进展(van Genuchten and Sudicky,1999; Yeh and Tripathi,1989; Barry et al,2002)。此外,计算方法也取得不少进展,但溶质运移模拟中数值弥散和振荡问题的解决和地下水模拟逆问题的求解进展比较缓慢(Sun and Yeh,2007)。 由于种种原因,国内地下水数值模拟开展得比较晚,始于20世纪70年代初,当时文化大革命还没有结束,所以从事这项工作困难重重,而且人也不多,主要来自高等学校和研究部门,以后才逐步扩展到产业部门。为了加快我国地下水数值模拟的发展,深切感到有必要

《界面传递现象的多尺度模拟》课程简介_0819

热能系海外学者短期课程 《界面传递现象的多尺度模拟》 课程名称:界面传递现象的多尺度模拟 (Multiscale Modeling of Interfacial Transport Phenomena) 学时:16学时,1学分 时间:2015年9月6日至9月11日(夏季学期第四周) 9月6日(周日):18:30-20:55 讲课 9月7日(周一):18:30-20:55 讲课 9月8日(周二):18:30-20:55 讲课 9月9日(周三):9:00-11:35 讲课 9月10日(周四):9:00-11:35 讲课 9月 11日(周五): 9:00-10:30 讨论 地点:6A101 授课教师:孙颖副教授 (美国Drexel大学机械工程与力学系) 考核方式:考查 授课对象:研究生、高年级本科生 授课语言:英语 课程简介:介绍界面传递现象中多尺度模拟方法的基本原理、发展方向、优点和局限性以及应用实例。致力于扩宽学生多尺度模拟的视野和培养学生解决移动界面复杂问题的能力。内容涉及用分子动力学、格子玻尔兹曼方法、相场和水平集方法来共同解决移动界面问题和界面微观传递现象,应用范围涉及传热、传质、多相流、气液和固液相变、纳米材料、电化学、新能源等方面。课程主要面向热能系、航院、建筑学院、汽车系、核研院、工物系等的研究生、高年级本科生。 教师简介:Dr. Ying Sun is an Associate Professor in Mechanical Engineering & Mechanics at Drexel University. She obtained her B.Eng. degree from Thermal Engineering at Tsinghua University, and M.S. and Ph.D. degrees both from University of Iowa. Dr. Sun was a recipient of the NSF CAREER Award, a visiting professor at French CNRS, a visiting scholar at RWTH-Aachen, and an Air Force Summer Faculty Fellow. Her research interests include multiphase flows and heat/mass transport, multiscale modeling of transport phenomena in energy systems, wetting and interfacial phenomena, and scalable nanomanufacturing. Dr. Sun has authored and co-authored over 50 peer-reviewed papers and delivered over 60 invited seminars and conference presentations. Her lab is funded by the US National Science Foundation, Department of Energy, Advanced Research Projects Agency-Energy, Air Force Office of Research, Electric Power Research Institute, Ben Franklin Technology Partners, Petroleum Research Fund, and industry.

作物适宜区分析过程

一、X型作物适宜区分析 1、实验目的 根据X 型作物的生长条件,学会用ArcGis软件快速的确定所给地区适合种植X 型作物的范围,并制作专题地图。由此来熟悉ArcGIS的空间分析功能,在理论的基础上,通过ArcGis软件操作实践更深刻的理解GIS的空间分析原理及方法。 2、实验内容 某一地区引进X型经济作物,该作物的生长环境需要满足一定的地形及气象条件。现有该地区的地形及气象数据,请根据X型作物的生长条件,为该地区进行X型作物适宜区分析,并制作专题图。专题图内容要求以地形和水系作为背景,且给出适宜种植面积(投影面积即可)。【1】相关信息说明如下: 数据中,dem为数字高程模型数据,gully.shp为主沟谷数据;climate.txt为气象观测表数据(包含坐标、温度/℃及降雨 / mm等)。 【2】X型作物生长的条件为: (1)作物喜阳(坡向为90~270为阳坡); (2)作物一般生长在该山区主沟谷两侧区域,一般不超过800米; (3)作物生长的年平均温度为9.5-11.5℃; (4)作物生长的年总降雨量为600-720mm。 - 1 -

3、实验步骤 主要流程: [1] DEM数据->坡向图->提取阳坡数据 [2] 沟谷数据->沟谷缓冲区->面转栅格 [3] 栅格插值->温度分布->提取T =9.5-11.5℃数据 [4] 栅格插值->降水量分布->提取600-720mm数据 【1】创建文件地理数据库 导入DEM数据和gully.shp,并将它们添加至视图窗口,在地理处 理中进行环境设置,如下图 【2】添加climate的XY数据 在菜单栏的文件下拉框中点击添加数据->添加XY数据,选择 climate文本数据进行添加,然后右击该图层,点击导出数据,输出 climate点要素类至视图窗口,如下图

几种模拟酶的研究进展

几种模拟酶的研究进展 应化一班201130790107 黄焯轩 模拟酶是一类利用有机化学方法合成的比天然酶简单的非蛋白分子。对环糊精模拟酶、冠醚化合物的模拟酶、超氧化物歧化酶模拟物等结构特征进行综述,为设计和合成更加简单、稳定的模拟酶提供参考。 天然酶是一种生物催化剂,结构复杂,价格昂贵,且易变性失活,而模拟酶(mimetic enzyme),则是一类利用有机化学方法合成的比天然酶简单的非蛋白分子。模拟酶结构比天然酶简单,化学性质稳定,具有酶的功能,还有高效、高选择性和价廉易得等优点。模拟酶的研究不仅对分析化学有重要意义,而且对生物原理和生命过程实质的揭示都有重要意义[1]。近年来,国际上开发出一种分子压印技术,该技术可以借助与模板在高分子物质上形成特异的识别位点和催化位点,其原理与抗体酶的制备大体相同,只是用人工高聚物代替抗体。但在人体内大多数模拟酶的稳定性和活性都会有所下降,因而设计和合成活性中心结构精确、热力学稳定、动力学惰性并具有实用价值的模拟酶,仍然任重而道远。现介绍几种模拟酶的研究现状,以期为模拟酶的进一步开发提供参考。 1环糊精模拟酶 1891年,环糊精被发现,但长期以来由于化学反应被认为仅发生于分子间的碰撞而没有引起人们的重视。近年来,随着对环糊精性质研究的深入,发现其具有独特的包络作用,即包络多种有机和无机分子,因此环糊精可作为模拟酶的模型,模拟多种天然酶[2]。环糊精的分子形状如轮胎,由几个D(+)葡萄糖残基通过α-1,4糖苷键连接而成,聚合度分别为6.7 或8个葡萄糖。α-,β-及γ-环糊精, 每个葡萄糖残基均处于无扭变变形的椅式构象。3种环状糊精的结构相似,均为白色结晶粉末,但性质存在差别。β- 环糊精的水溶解度最低,容易在溶液中结晶,溶解度随温度上升而增高;环状糊精不溶于有机溶剂,结晶无一定熔点,加热200℃开始分解,加有机溶剂能助长β-环糊精从水溶液中结晶出来。工业生产常用甲苯为络合剂,从发酵液中结晶β-环糊精。化合物分子大小适当,能被环状糊精穴洞包埋在内得络合物,较大分子不能被全部包埋在洞内,这种反应成为包接反应,所得产物成为包接络合物,这是环糊精最重要的功能。 2冠醚化合物的模拟酶 1967 年Pederson 首次合成冠醚,并报道了这类化合物具有和金属离子、铵离子及有机伯铵离子形成稳定络合物的独特性质。随后人们合成了各种各样具有不同络合性能的所谓

牙克石作物生长季气侯变化特点分析

牙克石作物生长季气侯变化特点分析 发表时间:2017-05-04T14:38:06.013Z 来源:《基层建设》2017年3期作者:丁书萍1 刘志航2 [导读] 摘要:为揭示牙克石在作物生长季气象因子变化特点,充分利用农业气候资源。 1牙克石气象局内蒙古牙克石 022150;2牙克石市国土资源局内蒙古牙克石 022150 摘要:为揭示牙克石在作物生长季气象因子变化特点,充分利用农业气候资源。本文选取牙克石3个站点1961—2015年作物生长季月平均温度、月降水、月日照时数观测数据,利用数理统计方法,对牙克石3个站点气象因子进行分析。结果表明,牙克石作物生长季从20世纪80年代开始气候变暖趋势明显。20世纪90年代以后降水量减少趋势最为明显。日照时数年代呈“V”状变化。牙克石光温条件最好,博克图 水热条件最好。 关键词:牙克石;作物生长季节;气候变化 Analysis on Meteorological Conditions of Crop Growing in Yakeshi Ding Shuping1 Liu Zhihang1 1Yakeshi Meteorology Bureau, Yakeshi Inner Mongolia 022150; 2 Bureau of land and Resources of Yakeshi, Yakeshi Inner Mongolia 022150 Abstract: In order to find the method of In order to find the characteristics of climatic factors in crop growing season and make full use of agricultural climate resources in Yakeshi. The author focused on sunshine hours and precipitation and temperature during from 1961 to 2015 in Yakeshi by the method of mathematical statistical analysis,discussed the laws of the disaster in crop growing season. The results showed that climate warming trend is obvious form 1980s in crop growing season of yakeshi., the decrease trend of precipitation was the most obvious after 1990s.Sunshine hours changeshape showed "V" .The best conditions of light and temperature was Yakeshi, the best water and heat conditions was Boketu . Key words: Yakeshi ; in crop growing season; climate change 0引言 牙克石属高纬高寒地区,作物熟制为一年一熟。生长季节 ,就其最本质的含义 ,是指“一年中某种作物可以生长的天数”。由于作物生长发育期资料的缺乏 ,所以到目前为止 ,生长季节的具体划分通常是采用日平均气温作为指标 ,即以日平均温稳定高于 (春季 )和低于 (秋季 )某一界限值的时段划定生长季节[1]。根据这一理论,牙克石生长季时间段就定义为5-9月。农业是对气候变化反应最为敏感的行业之一[2],充分利用作物生长季热量、水和光资源,对高产农业稳定发展有重要意义。因此本文通过研究牙克石生长季气候变化规律,以期为农业生产扬长避短、趋利避害寻和品种选育提供规划和决策依据。 1研究区域和方法 1.1 研究区域概况 牙克石市位于呼伦贝尔市中部、大兴安岭中脊中段西坡。全市耕地230万亩,基本农田分为三大类:大田、马铃薯蔬菜基地。牙克石远离海洋,大部分地区属于寒温带大陆性季风气候,北部地区图里河、伊图里河镇属于亚寒带地区[3]。 1.2 资料来源 本文所用气象数据来自牙克石国家一般气象站,图里河国家基准气侯站,博克图国家基准气侯站1961—2015年气象观测资料,包括每年5-9月的月平均气温、月降水量、月日照时数。 2结果与分析 2.1作物生长季节温度变化特点 2.1.1作物生长季节温度的年代变化特点 牙克石市作物生长季节年平均气温具有明显的年代际变化(表2-1),20世纪60年代到80年代基本处于低温时期,从20世纪90年代以后上升趋势明显。从20世纪60年代至今年平均气温的年代际变化均呈暖化趋势,通过分析三个站点每10年升幅牙克石气候倾向率均最大、图里河次之、博克图最小,分别是0.37℃、0.31℃、0.26℃,这一结果超出了全球平均气温0.2~0.5℃/10a的变化速率一致[4]。牙克石20世纪80年代以后的变暖趋势最为明显。 2.1.2 作物生长季温度时间变化特点

总结主要农作物生长习性版

总结主要农作物生长习 性版 Revised by Chen Zhen in 2021

(总结)主要农作物生长习性 一、粮食作物 1.水稻 ①生长习性:水稻喜温、喜湿、地势低平。 ②农业区位的选择:高温多雨、雨热同期的平原地区;在我国的集中分布于东部季风区、秦岭——淮河以南(35oN)。 ③主要分布区:"亚洲的粮食"——水稻;水稻播种面积最大的国家——印度:最大生产国——中国;最大出口国——泰国。主要分布于东亚、东南亚和南亚的季风区,东南亚的热带雨林区,以及埃及、尼日利亚、西班牙、意大利、美国、古巴、委内瑞拉、巴西。由热量条件可分为:单季稻、双季稻、三季稻。我国秦岭以北地区以单季稻为主,以南以双季稻为主。长江中下游平原、四川盆地等地是我国主要的水稻产区。结合各地水稻种植制度确定种植与收获季节。如东北地区,一年一熟,则是春种秋收;长江中下游地区一年两熟,有的田地是种双季稻(即一块地中一年种两次水稻),双季稻中,早稻是春种夏收(一般是5.1前插完秧苗,8.1前抢收早稻,抢插晚稻,故将7月下旬至8月上旬这段时间称为双抢),晚稻是夏种秋收(11月初收完)。还有一种是稻麦连种,即当地的冬小麦收获后再种水稻,则这种水稻是夏种秋收(它收获不久再种小麦或油菜)。一般考试只考双季稻。在南方有些地区(如海南)可种三季水稻。 2.小麦(冬小麦和春小麦) ①生长习性:水热要求不高:耐寒、耐旱、适应性强 ②农业区位的选择:温带大陆性气候,我国冬小麦和春小麦的分界线为古长城(或3500℃积温线) ③主要分布区:播种面积和产量最大的粮食作物;小麦最大生产国——中国;最大出口国——美国。春小麦一般春播秋收,生长期为80天——120天,多分布在纬度较高或海拔较高、热量较差的地区。主要分布与中温带的东北平原、河套平原、宁夏平原、新疆和青藏高原等地。冬小麦一般秋播夏收,生长期较长,南方为120天左右,北方为270天,西南地势较高地区一般为330天以上。冬小麦主要分布在华北及其以南的地区。目前,我国专用小麦优势区域重点:黄淮海优质小麦带、长江下游优质麦带、大兴安岭沿麓优质小麦带。 3.玉米 ①生长习性:玉米是喜温作物,品种有早熟、中熟、晚熟三类,生长期较长(80--140天) ②农业区位的选择:夏季高温多雨、生长季较长的地区 ③主要分布区:单产最高--玉米;玉米最大的生产国和出口国--美国;我国的主产地在吉林省。在我国分布较广,主要分布为北方的春播玉米、黄淮海平原的夏播玉米和南方山地丘陵的玉米。其中黄淮海平原夏播玉米是中国主要玉米区。目前,我国专用玉米优势区域重点:东北--内蒙古专用玉米优势区和黄淮海专用玉米优势区。 二、油料作物 1.油菜 ①生长习性:性喜温,种子含油量为33--50%。 ②农业区位的选择:土壤肥沃的平原地区 ③主要分布区:油菜是我国最重要的油料作物,主要分布在长江流域,近年来有北移南迁趋势,扩大到黄淮海平原、辽宁以及华南地区;四川产量全国第一。我国长江流域是世界

相关主题
文本预览
相关文档 最新文档